Benjamin Fontan

Emmanuelle Rozet

Eric Jenn

Efficient Management of Requirements in Very Large Scale Development Projects in Avionics

Keywords: Requirement engineering, meta-modeling, certified embedded systems. I

Requirement engineering is a crucial part of development, in particular in terms of cost. This paper gives an overview of the problems we faced during the development of a very large avionics application, presents the solutions we have adopted, and the gains we observed.

INTRODUCTION

The problems related to the development of large scale software-intensive systems are definitely not new. Some efficient techniques have been -and are still being -proposed to cure the "software crisis" diagnosed in the late 60's. In the domain of airborne avionics systems, prevention used to be the primary means to avoid being contaminated: problems and solutions are kept as simple as possible, predictability is enforced, and partitioning and segregation of functions are common practices. However, if a small increase of functional complexity can still be worked out this way thanks to a proportional increase of resources, this approach does not scale. We faced this discontinuity during the development of our new Flight Management System: the problem is functionally very complex, the development teams are very large and distributed over multiple internal and external entities, the number of development artifacts is huge, etc. In simple terms: solutions that used to work smoothly for our previous developments simply don't work any more. Requirement management, or better, requirement engineering, is one particular practice that need to be adapted in this new context. In this paper, we show how we tackled this complexity and present some of the lessons learnt. The paper is organized as follows: Section II gives an overview of the context and identifies the main challenges regarding requirement management, Section III shows how we modeled the problem, Section IV gives some details about how the model has been exploited and implemented in tools, Section V gives an overview of the tool suite, and Section VI concludes the paper.

II. STATEMENT OF THE PROBLEM

A. The context Roughly speaking, a Flight Management System (FMS) provides the crew with means (in particular, interaction means) to define and manage flight plans, to predict the trajectory of the aircraft in the time, space and mass dimensions. It also pro-vides the Flight Guidance System (the autopilot) with data to guide the aircraft along the predicted trajectory. With respect to other airborne functions such as the Flight Warning function or the Braking and Steering function, the FMS is "unusual". It has to build and manage large, complex and dynamic data sets, it has to react to asynchronous events coming from the Man Machine Interface in a timely manner, and, finally, it has to perform some "low level" command and control functions such as guiding the aircraft. It is also unusual in terms of size. To give a rough idea, the baseline of our latest FMS contains around 15000 system requirements leading to more than 21000 high level software requirements (HLR), all this being implemented by more than 1000KLOC of Ada code. The organization is dimensioned adequately: it involves more than 300 system, software, and integration engineers located at multiple locations worldwide. The system is developed at DAL B according to [START_REF] Rtca/Eurocae | Software Considerations in Airborne Systems and Equipment Certification[END_REF].

B. The Challenges

In this context, several organizational and technical challenges have to be faced. From an organizational perspective, the main challenges are  To manage the fragmentation, distribution and concurrency of activities  To focus the work of engineers on their main tasks. From a technical perspective, the main challenges are  To reuse development artifacts from one version of a product to another, from one product to another in the same product line, or even from one product to another in another product line.  To automate activities using tools while masking the internals of those tools and make their usage as simple as possible. All these challenges concern the production, communication, maintenance of any development artifact. Here, we focus on requirement artifacts, i.e., the "identifiable element[s] of a function specification that can be validated and against which an implementation can be verified" [START_REF] Sae | Guidelines for Development of Civil Aircraft and Systems, Aerospace Recommended Practice[END_REF].

The set of requirements covers all levels and phases of a system development, from the user-level to the software and hardware levels, from inception to validation. It covers all aspects: technical, functional, and nonfunctional (performance, reliability, etc.). As any other artifact in a development process, requirements are engineered: they are elicited, documented, validated and negotiated, and managed. The quality of this engineering process is crucial: as illustrated on Fig. 1, a defect in a requirement propagates throughout the development process and its impact on the overall cost is roughly amplified by 10 from one stage to the next one! Fig. 1. Requirements versus cost in a typical development process

1) Manage fragmentation and distribution of activities

A large scale development usually means the "distribution" of people over multiple activities, teams, industrial sites, industrial organizations, countries, and possibly "cultures". One challenge is to ensure that these people understand each other, and all share and comply with a common process. Activities shall be performed homogeneously throughout time and space. In previous developments, it was not uncommon for people in the same development team to play multiple roles and perform multiple engineering activities (specification, architectural design, coding,…) as far as this ubiquity was deemed acceptable with respect to the development standards. On large developments, teams are more specialized and dedicated to some well-defined activity (definition of the logical architecture, definition of the physical architecture, coding, etc.). As the size of the development team gets larger (around 350 at peak for the FMS) and the duration of the development phase gets longer (more than 10 years for the FMS), turn-over increases dramatically. So, the transmission of information from individual to individual, from document to individual becomes crucial. All these new conditions benefit from a better formalization of information. Fragmentation and distribution of activities open the door to concurrency. Indeed, in order to comply with shorter development delays, the sequential organization of activities is now replaced by a highly concurrent set of processes where multiple versions of the same product, multiple components, etc. are developed in parallel. Activities are "pipelined" in order to optimize the usage of human resources. This "pipelining" imposes new constraints to all development activities, including requirement management.

2) Focus on developers tasks, mask complexity of tools

An engineer is usually supposed to achieve one main task making the best usage of his/her skills. However, in practice this task is often precedeed by or accompanied by some low added value but necessary activities of data extraction, impact "analysis", or coverage "analysis". Complexity of languages and tools is another problem that may divert engineers from this "main" task. Indeed, to manage a complex and large development, one has usually no choice but to use commercial means (e.g., configuration management tools) that are generic and powerful enough to deal with various problems but which complexity is often much too apparent to the end-user. Generally speaking, generic tools and notations have usually one big counterpart: if they are able to simplify the resolution of any complex problems, they may well make the resolution of a simple problem more complex. In practice, people need to be accompanied and left with actions and decisions that really take benefits from they skills. We will see later how this applies to requirement management.

3) Enhance re-usability, automate activities

A large scale development usually means a large set of artifacts that have to be managed. On the FMS, for instance, this set contains more than 1 500 000 artifacts for which we have  To guarantee the integrity and the consistency of issues, review statuses and allocations  To perform changes impact analysis  To generate progress and quality metrics with a high level of reproducibility and reliability.

Traceability is a means to ensure consistency and to support change impact analysis. It is defined as "the evidence of an association between items, such as between process outputs, between an output and its originating process, or between a requirement and its implementation." or a "discernible association between two or more logical entities such as requirement, system elements, verification or tasks" [START_REF]System Engineering Handbook[END_REF]. Traceability ensures and demonstrates the complete control over the transformation process. It ensures that no user requirement "disappears" and, conversely, that no artifact "appears" in the process without reason. Ensuring traceability is mandatory for certification. Furthermore, we also need to improve the precision and accuracy of quotations and reduce bidding delays. This requires a capability to identify all key requirements (so-called "critical requirement" for the design). All these activities shall be performed continuously, quickly with as less human interventions as possible, throughout the development process, with short delays. Finally, in the context of certification, we must:  Identify each version of each artifact/document  Prove that orphan requirements (so-called derived requirements) are justified and have been taken into account in safety analysis  Prove that all requirements have been verified (analyzed, tested, etc.)  Prove that all requirements in a delivered baseline have been reviewed and comply with the development standards.

In the agile context, project stakeholders need to manage systematically/daily requirement impact analysis process in a large scale project to enable:  The earliest detection and correction of defects  The generation of metrics on a daily basis (requirement stability, reviews, …)  The automatic triggering on issue of requirements and automatic review rules update (compliance rules, changes justification rules, etc)  The efficient validation/negotiation process of requirements with several stakeholders (system designer, system integrator, hardware designer, software designer …). These activities improve reactivity with daily requirement integration, and competitiveness by cost reduction of review with incremental baseline and reviews.

III. FROM THE CHALLENGES TO THE REQUIREMENT

METAMODEL

All previous challenges share one common need: to be able to define precisely and document the structure and the semantics of the development artifacts, and their relations. The objective is (i) to enhance the overall communication process of development artifacts, (ii) to facilitate their automatic processing including production, transformation, navigation, verification. A well-defined structure is a prerequisite for the mechanized processing of artifacts and it ensures that any developer will find the expected information where he/she expects it to be, in the format in which he/she expects it to be. Finally, a welldefined semantics prevents misinterpretations, and facilitate maintenance. In modern parlance, formalization of structural and semantic definition is expressed via a metamodel. For requirement engineering and management, the metamodel usually carry the following concepts:  Artifact, i.e., an element that is identified throughout the development cycle.  Semantics links between artifacts (e.g., "verifies", "satisfies" relations)  Issue and Review status  Baseline, i.e., a well-defined set of formal objects at the same level of specification (usually merged in formal documents such as Software Requirement Specifications, Software Design Documents, etc.). Once instantiated in a Tooled Up Process, one shall ensure and maintain the consistency of the model, including the correctness of semantic links with respect to the artifacts issues included in a baseline.

A. Basic concepts used in this metamodel

The set of formal artifact contains:

 Requirements (REQ) possibly specialized into a functional requirements, capability requirements, etc.  Integration Verification/Validation Procedures (IVVP) including inspections, analysis, demonstrations, or tests [START_REF]System Engineering Handbook[END_REF] with their status (i.e, "written", "to be run", "OK", "KO", etc.).  Configuration Items (CI) which corresponds to the logical and physical [START_REF] Rtca/Eurocae | Software Considerations in Airborne Systems and Equipment Certification[END_REF]components of the project. Traceability between REQs and CIs enables to map requirement and architectural models.

Semantics relations are defined over the set of artifacts [START_REF] Rtca/Eurocae | Software Considerations in Airborne Systems and Equipment Certification[END_REF]:  The allocated by relation between configuration items and requirements in order to build allocation matrices.  The satisfies relation (covering refinement and factorization) between requirement across the successive development phases in order to build traceability matrices  The verifies relation between test items and requirement (e.g., a IVVP "verifies" a REQ) in order to build coverage matrices

B. Enhance the Requirement Engineering metamodel

In the FMS project, two formal artifacts have been added to the usual requirements metamodel in order to complete the traceability process:  Methods, which represent all code included in the embedded software. A Method artifact implements a Software Design Requirement (Low Level Requirement collected in the Software Design Document (SDD)  Flows, which represents all internal and external control and data flows. Requirement artifacts (System, Software and Hardware) consume or produce a Flow artifact. Fig. 2 presents the relationships between several formal artifacts. The metamodel also distinguishes two kinds of Issue and Review attributes:  Internal Issue/review Status (those depicted in Fig. 3)  Compliance Issue/Review Status They will be described in more details the final version of the paper.

IV. FROM THE REQUIREMENT METAMODEL THE TOOL UP PROCES

The metamodel and the exploiting tools have been implemented using proprietary and off-the-shelf tools. IBM DOORS [START_REF][END_REF] and IBM RMF [START_REF]Requirement Management Framework[END_REF] have been used to manage traceability, artifact (Requirements, Configuration Items, IVV Procedures), and baselines.

Proprietary tools have been developed to manage  Additional artifacts (Flows, Methods, IVV Results)  Automatic Issue and Review mechanisms (VACRM and IVVCRM)

A. Instanciation of Requirement Engineering metamodel in the DOORS FMS project.

Fig. 4 depicts the instantiation of the metamodel in the DO178-B DAL B context. Fig. 5 illustrates the benefits of this metamodel instantiation. It shows one example of traceability and coverage views from system requirements and test to software methods and units test. This view is deployed for each SRS of the FMS system Configuration Items, over more than 127 documents.

B. Instanciation of the Issue and Review metamodel

The automatic triggering of issues and reviews relies on the metamodel instantiation depicted in Fig. 3. A preview of the FMS process tool suite is shown in the Fig. 6 and7.

Fig. 6 shows how the tool in charge of internal modification detection manages the evolution of internal issue and review attributes in the nominal case and in the derogation case. The following figures illustrate some parts of our tool-up process including the management of concurrent development activities (Fig. 8), the analysis of baselines (Fig. 9), the review triggering mechanism (Fig. 10), and the automatic generation of a project progress overview (Fig. 11).

Fig. 8 describes how change requests are managed: whenever the software needs to be modified to take into account a problem report or an evolution request, a parallel development stream is created. Once the modifications are complete and validated, it is possible to rebase from the original reference stream, resolve potential conflicts, and then deliver those modifications. Attributes management is entirely based on the data model introduced in the previous section. The reference module is then versioned and baselined in order to be delivered. With respect to most existing descriptions of requirement management processes (e.g., [START_REF] Hoffman | Requirement for Requirement Management Tool[END_REF]), our paper depicts something that has been actually applied on a very large development. With respect to other requirement metamodels such as ReqIf [START_REF] Omg | Requirement Interchange Format (ReqIF), Object Management Group[END_REF] for instance, which is focused on the structure of requirements and on the way they are exchanged, our metamodel also covers the relation between the requirements and the other development artifacts. Furthermore, ReqIf or Eclipse RMF [START_REF]Eclipse RMF[END_REF] is still to be applied on a large scale project. Our metamodel and associated tools and processes have been used by more than 300 people for more than 2 years. Finally, the two major improvements are worth being mentioned:  The automation of some crucial part of the requirement management process has strongly reduced the time that the users spend interacting with tools, and the set of intermediate pre/post check or reviews have been drastically reduced.  The automation of the reviews has facilitated the implementation of a continuous integration process (a 30% gain of time during reviews activities), and it is now possible to monitor in real time reviews activities.

Fig. 2 .

 2 Fig. 2. Formal artifacts interaction metamodelC. Define issue consistency to improve impact analysis and automated reviews mechanismsAs depicted on Fig.3, a formal artifact is composed of several attributes:  Description attributes that describe the artifact itself (i.e., Text, equation, UML diagram, allocated item descrip-

Fig. 3 .

 3 Fig. 3. Internal Issue and Review interaction metamodel

Fig. 4 .Fig. 5 .

 45 Fig. 4. Metamodel instantiation in the DO 178 C context

Fig. 7 Fig. 6 .Fig. 7 .

 767 Fig. 7 describes how the tool in charge of compliance change checks the compliance issue and update compliance reviews attributes in nominal case.

Fig. 9 Fig. 10 (Fig. 10 .

 91010 Fig. 9 describes one way to analyze a new input baseline. The tool enables to launch a comparison between two baselines, given a subset of the official data model attributes list.A synthesis of created/modified/deleted items is provided, and a detailed difference is given in rich text format for all items. The possibility to choose a subset of attributes enables to