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Diagrams On Discrete Data

Abstract In this paper, we present a novel method for me-
dial axis approximation based on Constrained Centroidal
Voronoi Diagram of discrete data (image, volume). The pro-
posed approach is based on the shape boundary subsampling
by a clustering approach which generates a Voronoi Dia-
gram well suited for Medial Axis extraction. The resulting
Voronoi Diagram is further filtered so as to capture the cor-
rect topology of the medial axis. The resulting medial axis
appears largely invariant with respect to typical noise con-
ditions in the discrete data. The method is tested on various
synthetic as well as real images. We also show an applica-
tion of the approximate medial axis to the sizing field for
triangular and tetrahedral meshing.
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Fig. 1 A two-dimensional representation of the medial axis of a
boundaryB in the smooth and discrete case. Small perturbations on the
boundary of the shape introduces larges ”spikes” in the medial axis.
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1 Introduction

In the last forty years, the Medial Axis (MA) has been a
constant research topic. The MA of a shape provides a com-
pact representation of its features. The MA has been pro-
posed as a tool for shape analysis, surface reconstruction,
animation control, mesh generation and many other applica-
tions [1,13,14,17]. A concise definition of the MA or skele-
ton in the smooth case was given by Blum [5], who postu-
lated the well-known prairie fire (or grassfire) analogy [9].
The MA also can be defined as the set of centres of maximal
balls which can fit inside a shape boundary. In figure 1 (a),
we consider the MA of the shape in the smooth case. The
fire front starts at the same time at every point on the bound-
ary of a compact setB, moving with constant speed intoB,
locally perpendicular to the boundary and the place where
two or more fronts collide defines the medial axis. In figure
1 (b), noise was added to the original shape and its skeleton
was computed. One could see that the MA is very sensitive
to noise and small pertubations on the boundary introduces
large ”spikes” in the MA. The above definitions were for-
mulated in smooth space. However, many of the applications
that need MA approximation have discrete 3D datasets, such
as those acquired using medical scanners. In discrete space,
the definitions are analogous to the smooth case. In figure 1
(c), we proceed to the discrete case in adding to noise on the
boundary shape. In the discrete case, with our approach the
MA extraction is robust to noise (d) and the correct topology
of the MA is found.

2 Contribution and Outline

This paper presents a discrete approach for approximate
MA. This method is of completely discrete nature: it is es-
pecially designed for pixel or voxel data. It is based on a dis-
crete definition of Constrained Centroidal Voronoi Diagram
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Fig. 2 From left to right : the shape in the primal graph (a); the shape boundary in the dual graph (b); its Constrained CentroidalVoronoi diagram
(c); approximation of Medial Axis after filtering (d)

(CCVD) which provides an evenly distribued sampling of
the shape boundary.

Figure 2 shows a summary of our approach. (a) shows
the original shape. In (b), the boundary of the shape is de-
tected. In (c), we construct the CCVD of the whole image,
with the constraint that all the Voronoi sites lay on the shape
boundary. The medial axis (d) is extracted from the VG by
eliminating Voronoi edges intersecting the shape boundary
and by filtering edges according to angle criterion.

The outline of this paper is as follows : In the next sec-
tion, we review related works. Section 4 gives the prelim-
inaries and definitions for this approach. In Section 5, we
provide the details of the proposed approximation of MA
definition and computation. In Section 6, we present the re-
sults of the algorithm and we compare our approach to others
in the literature. Section 7 gives an exemple of applicationto
mesh sizing function and we conclude in Section 8.

3 Related Works

In the following, we give a brief survey of approaches for
MA extraction in the discrete or smooth case. This state of
the art is far from being exhaustive due to the huge amount
of existing methods. There are many approaches to com-
pute the MA, but they can be broadly organised into three
classes : distance transforms, thinning or morphological ero-
sions and Voronoi approaches.

The distance functions, are based on the fact that the
locus of the points of MA are coincidental with the singu-
larities of a distance function to the boundary. A distance
transform or distance field (D) is defined for each pointx
of a shapeS as the smallest distance from that point to the
boundaryBS of the shape:

D(x) = min
x∈BS,y∈S

(d(x,y)) (1)

where d is some distance metric. An appropriate dis-
tance metric (such as Euclidean or cityblock distance) is first
used to calculate the distance transform of the shape. The
local maxima of this distance function or the corresponding
discontinuities in its derivatives are then detected, eachof
which indicates a point of MA [15]. In [8], Coeurjolly et al.
present time optimal algorithms to extract the MA with the

squared distance transform and the reverse Euclidean dis-
tance transformation. They explain the links between Eu-
clidean Distance Transform and the construction of a VD.

Thinning, or morphological erosion, has been proposed
to mimick Blum’s grassfire formulation and operate by suc-
cessively eroding points from the boundary of the object,
while retaining the end points of line segments, until no
more thinning is possible [24]. All thinning algorithms op-
erate in the discrete space. They have been used on pixel and
voxel image data in the areas of pattern recognition and im-
age processing. Recently, an implementation of the fire front
propagation in the discrete volume was proposed in [26].

There are also many approaches based on Voronoi Dia-
grams (VD) in the smooth setting [3].

Definition 1 Given an open setΩ of Ra, and n differ-
ent sites (or seeds)zi;i=0,1,...,n−1, the Voronoi Diagram (or
Voronoi Tesselation) can be defined asn distinct cells (or
regions)Ci such that:

Ci = {w ∈ Ω |d(w,zi) < d(w,z j) j = 1,2, . . . ,n, j 6= i} (2)

whered is a distance measure.

A survey of approaches for the construction of the me-
dial axis (and Voronoi diagrams) is given by Sherbrooke et
al. [12]. The MA is represented as a subset of the boundary
of Voronoi cells defined within a compact setB by points on
the boundary. The elements of MA are sets of points equidis-
tant from at least two points on the boundary and their union
represents a local symmetry axis of the shape. More specif-
ically, it has been shown (for the 2D case in [6, 23] and for
the 3D case in [11, 20]) that, under appropriately chosen
smoothness conditions and as the sampling rate increases,
the vertices of the VD of a set of boundary points will con-
verge to the exact MA. In the smooth case, approximating
the MA from the VD in 3D has been attempted in the past.
The VD is deduced from the Delaunay Triangulation and
then, a filtering is applied to the VD to approximate the MA.
Dey and Zhao [11] compute the subset of the Voronoi facets
or edges and vertices located inside the surface and then fil-
ter out some Voronoi vertices and their incident elements
according to some angle and ratio criteria.

In medical image processing, real image data from com-
puter tomography, magnetic resonance, with large amount



Medial Axis Approximation with Constrained Centroidal Voronoi Diagrams On Discrete Data 3

of voxels and noise, cause MA to be very dense and compu-
tation time to be expensive because they generate too many
nodes and lines. There are two challenges to compute this
approximation of MA :

– The MA is highly unstable with respect to small details
of the shape.

– Only a discrete approximation of the MA is known and
its sampling is dependent of the distribution of the input
points.

4 Preliminaries and Definitions

Discrete shapes are defined to be a finite subset of the pixels
or voxels of a space graph. The faces, edges, and vertices are
collectively called boundary elements of the shape. For clar-
ity reasons, we explain our approach in two dimensions. An
image (or volume) is transformed into a graph such that, for
each pixel (or each voxel) a vertex is associated, and pixels
(or each voxel) that are neighbors in the sampling grid are
joined by an edge [18]. This graph is denoted byG = (V,E)
and is called primal graph or neighborhood graph. Where
V and E denote, the set of vertices, the set of edges, i.e.
the set of unordered vertex pairs, respectively. The dual of
this graph is the graph representing inter-pixel edges and
inter-pixel vertices. This graph is denoted byG and is simply
called dual graph.

The Discrete Voronoi Graph (DVG) is a graph of ver-
tices and edges which are a subset of the CCVD. The ver-
tices are the locus of points that have at least 3 pixels of
different labels while the edges are the locus of points con-
taining at least 2 pixels of different labels. In the discrete
case, we call elements of the VG the boundary sub-edges
incident to the pixels from the CCVD. There are a wide va-
riety of edge detection algorithms in the literature, generally
driven by neighbouring relationships.

We also can build a triangulation by dualizing the con-
structed diagram. There are a wide variety of algorithms
available to build a Delaunay triangulation for a set of points
in the smooth case. In fig. 3, an example of the relationship
between Voronoi regions and Delaunay triangulation in two
dimensions is given. The Voronoi sitesZi are joined by a De-
launay edge if their Voronoi regions are adjacent.Ei, j is an
element of the DVG.

Fig. 3 Left: Delaunay Triangulation and its dual Voronoi Diagram in
the smooth case; Middle: similar configuration in the discrete setting;
Right: the DVG

5 Our Approach

This section describes the algorithm for constructing a MA
approximation. Figure 4 provides an overview of this ap-
proach, consisting of three stages : the original model (a) is
processed by our Constrained Centroidal Voronoi Diagram
approach (b). The clusters anisotropy is measured by means
of principal axis analysis (c). The DVG (d) is extracted from
the CCVD following the neighbouring relationship. Finally,
an approximation of the MA is created (f) by filtering the
Voronoi element sets of the DVG (e).

5.1 Clustering algorithm

Our proposal is to construct the VD by a constrained clus-
tering, where each cluster boundary potentialy representsa
subset of the MA. The performance of the MA approxima-
tion approaches is usually dramatically reduced if the input
shape is noisy. To address this problem, we propose to fil-
ter by clustering and then subsample the boundaryB of the
shape, while constructing the VD in the image.

5.1.1 Centroidal Voronoi Diagram

In this subsection, we make an overview of Centroidal
Voronoi Diagrams (CVDs). The work presented here is
closely related to the work of Valette et al. [25].

A CVD is a Voronoi diagram where each Voronoi sitezi
is also the mass centroid of its Voronoi region :

zi =

∫

Ci
x.ρ(x)dx

∫

Ci
ρ(x)dx

(3)

whereρ(x) is a density function. CVD minimize the en-
ergy given as:

E =
n

∑
i=1

∫

Ci

ρ(x)‖x− zi‖2dx (4)

Practically, a centroidal distribution of points is useful
because the points are well-spaced. CVDs optimize the com-
pactness of the created Voronoi regions and can be done, us-
ing algorithms such as k-means or Lloyd relaxations.

5.1.2 Constrained Centroidal Voronoi Diagram

We want to construct a CVD on a discrete input. Our ap-
proach is based on partitioning (clustering) the discrete in-
put in a variational framework, which groups discrete cells
into K clusters through the minimization of the total intra-
cluster variance. Our algorithm is based on the construction
of a partitioning which minimizes equation (4). It is possi-
ble to efficiently minimize with an iterative algorithm that
updates the clustering according to tests on the boundaries
between the different clusters. Here, we chooseρ(x) to be
uniform. The shape boundary is used for initial clustering.
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(a) (b) (c) (d) (e) (f)

Fig. 4 The original model (a) is processed by our Constrained Centroidal Voronoi Diagram approach (b). The clusters anisotropy is measured
by means of principal components analysis (c). The DVG (d) isextracted from the CCVD following the neighbouring relationship. Finally, an
approximation of MA is created by filtering the Voronoi element sets of the DVG (e and f).

Then, we define the digital shape as the set of all vertices la-
belled as boundary or not boundary. At each clusterCi is as-
sociated a site. The major difference with [25] is that the site
is defined as the center of mass of only the boundary vertices
contained in the cluster. We also add an additional constraint
to our clustering algorithm : to ensure diagram conformity,
a cluster must always contain at least one boundary vertex.

We assume that the subsampling factor of this clustering
is high, i.e the ratio between the number of original boundary
vertices and the number of sites of the VD is high. We then
have to evaluate of the optimal number of clusters. If we
have few clusters, it is difficult to define the shape of the
object. In the opposite case, using many clusters, ”spikes”
appears on the medial axis. Figure 4 shows an example of
constrained clustering on a shape with 400 clusters.

We now define the various graphs extracted from the
CVD. The motivation behind this dualisation is a good ap-
proximation of the boundary Voronoi cells for a better lo-
calization of the MA of the discrete shape. During the next
step of the method, the constructed CCVD should be trans-
formed into a DVG and the Delaunay Triangulation can be
computed.

5.2 Filtering conditions

In this subsection, we describe the filtering algorithm. It is
well-known that the MA is very sensitive to small perturba-
tion of the shape boundary and many filtering methods have
been proposed to remove bad components associated with
noise or other artifacts. [7, 16] and [10] give a state of art of
these approaches in the smooth case. Our aim is to approx-
imate the MA with a subset of Voronoi edges or facets. i.e
to decide if a given vertex set belongs or not to the MA. Our
algorithm uses two criteria to select the Voronoi elements
from the DVG.

5.2.1 Mesuring clusters anisotropy and principal axes

Following the general observation that the Voronoi cells are
elongated along the normal direction at the boundary points
[2], our algorithm measures the anisotropy of each clusterCi

in order to have a confidence measure on the normal estima-
tion. For eachCi, we compute its covariance matrixMi and
deduce the local cluster anisotropy from the eigenvalues of
Mi [22]. Mi can be viewed as a 3 x 3 tensor. The eigenval-
ues and eigenvectors of this symmetric and positive definite
matrix correspond to the axes lengths and directions of an el-
lipsoid, respectively. We can deduce the principal axis from
the eigenvector associated to the highest eigenvalue ofMi.
The fractional anisotropy (FAi) allows to compute the local
anisotropy of eachCi [4] :

FAi =

√
3√
2

√

(Λ 1
i −Λi)2 +(Λ 2

i −Λi)2 +(Λ 3
i −Λi)2

√

(Λ 1
i

2
+Λ 2

i
2
+Λ 3

i
2
)

(5)

with :

Λi =
(Λ 1

i +Λ 2
i +Λ 3

i )

3
(6)

whereΛ j, j=1,2,3
i are the eigenvalues ofMi, with Λ 1

i >

Λ 2
i > Λ 3

i .
One note that :

0≤ FAi ≤ 1 (7)

The FAi index is zero in a perfect isotropic case (a
sphere) and 1 in the anisotropic case (the hypothetical case

Fig. 5 Left: a cut of the Constrained Centroidal Voronoi Diagram of
emty box with 1000 Voronoi cells. Right: each cluster is replaced by its
equivalent ellipsoid. TheFAi shows the local anisotropy of each cluster
Ci.
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Fig. 6 Left: Centroidal Voronoi Diagram of the portion of the figure
4. Middle : estimation of principal axis for each cluster. Right: after
correction, the encircled direction is now correctly estimated.

of an infinite cylinder). IncreasingFAi values indicate a
higher tensor anisotropy. Figure 5 (left) shows a cut-view
of the CCVD of an empty box (for wich the cube boundary
defines the shape boundary). In figure 5 (right), each cluster
is replaced by its equivalent ellipsoid. The ellipsoids elonga-
tion clearly depict the cluster anisotropy.

Sometimes, a cluster is mostly isotropic (i.eFAi is close
to 0) and its first principal axis does not approximate the
normal direction. We detect these cases with the following
test :

d(Ci,zi) > α .Λ 1
i (8)

whereΛ 1
i is the principal eigenvalue ofCi, Ci is its barycen-

ter andα is a arbitrary constant (in our experiments, we set
α = 0.6). Whenever this test is true for a cluster, we estimate
its normal direction as :

−→Ni =

−−→
Ci zi

‖
−−→
Ci zi‖

(9)

In figure 6 (middle), the principal axis (encircled) gives
a bad approximation of the normal direction. Then, we com-
pute the normal direction as above and obtain a good ap-
proximation of the normal direction (right).

5.2.2 Pole condition

Amenta et al. were the first to propose the definition of poles
[19] and proposed the Powercrust algorithm [20] to con-
struct manifold triangulations of three-dimensional points.
When the boundaryB is sufficiently dense, the Powercrust
is guaranteed to produce a geometrically and topologically
correct approximation. We recall that the set of poles is a
subset of Voronoi vertices. In 2D, all Voronoi vertices con-
verge to the medial axis. In 3D, some Voronoi vertices may
be far from the medial axis but poles are guaranteed to con-
verge to the medial axis. Each boundary-point is associ-
ated with two poles, denoted bypi+ and pi−, respectively.
These two poles are the farthest Voronoi vertices of Voronoi
cell. The boundaryB also is divided in two sets of poles:
inside and outside poles. The definition of poles plays an
important role in normals approximation. WhenB is a suf-
ficiently densely sampled, the Voronoi cells appear natu-
rally anisotropic, and are approximately perpendicular tothe

boundary of the shape. Our approach is based on an estimate
of the vertices position with respect to the shape boundary
and the estimated normal direction. We define the discrete
elementEi, j as the set of vertices adjacent to the clustersCi
andC j. The critical part consists in tagging each vertex of
each element aspositive or negative. For each elementEi, j,
we define an operatorf(i, j) as follows:

f (i, j) =

{

i when FAi > FA j
j when FA j > FAi

(10)

We denote its site asz f (i, j) and its estimated principal
axisN f (i, j). This allows a good approximation of the normal
directionN f (i, j) to the shape boundary.

In this regard, a vertex candidatev ∈ Ei, j will be tagged
as negative or positive depending on the sign ofS f (i, j)(v)
defined as :

S f (i, j)(v) =< −−−−→z f (i, j) v,−−−→N f (i, j) > (11)

S f (i, j)(v) then provides an information on v with respect
to the boundary shape. We then define the first filtering con-
dition as follows :

Ei, j ∈ MA i f S f (i, j)(v1).S f (i, j)(v2) ≥ 0, (12)

∀(v1,v2) ∈ (Ei, j ⊗Ei, j)

If an elementEi, j contains verticesv for whichS f (i, j)(v)
is not always of the same sign, it can be deduced that this el-
ement crosses the shape boundary, and therefore is not con-
sidered as MA element. In the opposite case, all elements
with the same sign belongs to the same side of the boundary.
Howewer, we do not know if they are inside or outside of the
shape. Figure 7 shows two examples whereE1,2 is rejected
for inclusion in the MA, andE1,3 is considered as a part of
the MA.

Our objective is to extract a simplified MA. However,
in some cases, we see some ”spikes” appearing on the MA.
Then we use an angle condition to filter out some spikes at
the poles condition.

Fig. 7 A candidate vertexv ∈ E1,3; E1,3 does not cross the shape
boundary as its vertices are all tagged same way;E1,2 crosses the shape
boundary as its vertices are not always tagged wich the same sign. As
a consequenceE1,3 ∈ MA andE1,2 /∈ MA;
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5.2.3 Angle condition

An angle condition can be used to remove points from
straight edges to eliminate spikes in the MA. Dey and Zhao
[11] use a criteria on a angle condition to retain faces from
the VD of a set of boudary points. They consider the an-
gle between an approximate of the normal direction at the
boundary points and a Delaunay edge (dual to a Voronoi
face). If that angle is small, the Voronoi face is kept as a
part of the MA.

Our method is based on the direct construction of the
VG in the discrete space. Therefore, we consider the angle
between the normal of an element of the VG (dual to a De-
launay edge) and the normal direction at the shape boundary
wich is estimated by the principal axis associated with each
surrounding cluster. For each boundary element candidate
Ei, j, we associate an angleΘi, j.

Θi, j = 6 N f (i, j),Ni, j (13)

The approximation of the angleΘi, j for a MA element re-
quires both the knowledge of the principal axisN f (i, j) of
the neighbouring cluster having the greatest anisotropy and
the estimated normal direction ofEi, j, notedNi, j . The scalar
product is useful when you need to calculate the angle be-
tween two vectors. Then, we define the angle filtering con-
dition as :

Ei, j ∈ MA i f Ai, j > γ , Λ 1
f (i, j) > β . Λ 3

i, j (14)

with

Ai, j = | < N f (i, j),Ni, j > | (15)

whereΛ 1
f (i, j) andΛ 3

i, j are the largest eigenvalue ofC f (i, j)

and the minimal eigenvalue ofEi, j, respectively, andγ and
β are arbitrary. (in our experiments, we setγ = 0.8 and
β = 0.7) Figure 8 shows an illustative example whereAi, j
is computed.

6 Results

The proposed algorithms has been tested with several dis-
crete data. These algorithms were implemented in C++ us-
ing the VTK library.

Fig. 8 The angle condition : the angle betweenN f (1,4) andN1,4 has to
be within a given range, or the elementE1,4 will be filtered out from
the MA.

Fig. 9 Three slices of a volume representing a heart and their respec-
tive Medial Axis

Fig. 10 Comparison between our approach and the RDMA approach
[8]. Left : original shape. Middle : RDMA; Right : our approach

Figure 9 shows the results obtained on three different
slices of a volume representing a human heart.

Figure 10 shows comparative results between our ap-
proach and the RDMA approach [8]. The first column is the
original shape. The second column are the results obtained
with RDMA. The third column was obtained with our ap-
proach. The first row shows a simple shape with sharp cor-
ners. The second row shows a slice of a human heart. The
third row shows the same human heart but with noise on the
shape boundaries. One can clearly see that in our approach
the MA is smooth and connex for the three cases.
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Fig. 11 On the top, approximation of the Medial Axis. On the bottom,
2D Delaunay triangulation with 2000 vertices.

7 Application to sizing function for mesh generation

Mesh sizing is one important aspect of the mesh generation
problem.The size of the elements may be either a conse-
quence of the meshing algorithm when no sizing constraints
are provided as input, or may be explicitly controlled by the
user or by the physical simulation carried on over the mesh.
Several techniques have been proposed for automatic gen-
erations of mesh size function. Quadros and al. [26] used
medial axis generation over domain boundaries to construct
mesh sizing functions. For our experimentations, we used
the definition of Alliez et al. [21] who proposed a sizing
functionµ(x) which provides the element size at each point
x. Figures 11 and 12 show MA approximations of the letters
”CGI” and a ”bird” shape. One can see the influence of the
MA then mesh sizing, as meshing density is higher in thin
regions (the bird nozzle and tail regions).

Figure 13 shows a similar process for the 3D volume
containing a human heart.

Our experiments support that both angle and dual con-
ditions together produce a good approximation to the actual
MA. Furthermore, the algorithm showed strong resistance
against noise and boundary distorsion.

Fig. 12 Top : a shape (left) and its medial axis (right). Bottom : On
the left, sizing function on the MA in 3D. The colors represent the
sizing values. On the right, mesh generated with respect to the sizing
function.

8 Conclusions

In this paper, we have presented an approach that approx-
imates the medial axis for pixel or voxel objects. This ap-
proach is based on the Voronoi graph computed from a set
of nodes distributed across the boundary. One of the key as-
pects is its completely discrete nature. Experimental results
have shown that the method creates Medial Axis approxima-
tions which are robust to noise, and very suitable for mesh
generation. Future work may include robust filtering of the
MA elements, in order to increase the robustness of the ap-
proach.
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