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Medial Axis Approximation with Constrained Centroidal Vor onoi

Diagrams On Discrete Data

Abstract In this paper, we present a novel method for méceywords Medial Axis - Discrete Data Constrained
dial axis approximation based on Constrained Centroidaéntroidal Voronoi Diagrams
Voronoi Diagram of discrete data (image, volume). The pro-

posed approach is based on the shape boundary subsam
by a clustering approach which generates a Voronoi D

pling
1@-Introduction

gram well suited for Medial Axis extraction. The resulting

Voronoi Diagram is further filtered so as to capture the coli the last forty years, the Medial Axis (MA) has been a
rect topology of the medial axis. The resulting medial axigonstant research topic. The MA of a shape provides a com-
appears largely invariant with respect to typical noise-copact representation of its features. The MA has been pro-
ditions in the discrete data. The method is tested on varigussed as a tool for shape analysis, surface reconstruction,
synthetic as well as real images. We also show an applie@imation control, mesh generation and many other applica-
tion of the approximate medial axis to the sizing field fofions [1,13,14,17]. A concise definition of the MA or skele-

triangular and tetrahedral meshing.
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Fig. 1 A two-dimensional representation of the medial axis of

ton in the smooth case was given by Blum [5], who postu-
lated the well-known prairie fire (or grassfire) analogy [9].
The MA also can be defined as the set of centres of maximal
balls which can fit inside a shape boundary. In figure 1 (a),
we consider the MA of the shape in the smooth case. The
fire front starts at the same time at every point on the bound-
ary of a compact seé8, moving with constant speed ini)
locally perpendicular to the boundary and the place where
two or more fronts collide defines the medial axis. In figure
1 (b), noise was added to the original shape and its skeleton
was computed. One could see that the MA is very sensitive
to noise and small pertubations on the boundary introduces
large "spikes” in the MA. The above definitions were for-
mulated in smooth space. However, many of the applications
that need MA approximation have discrete 3D datasets, such
as those acquired using medical scanners. In discrete,space
the definitions are analogous to the smooth case. In figure 1
(c), we proceed to the discrete case in adding to noise on the
boundary shape. In the discrete case, with our approach the
MA extraction is robust to noise (d) and the correct topology
of the MA is found.

2 Contribution and Outline

This paper presents a discrete approach for approximate
MA. This method is of completely discrete nature: it is es-

boundaryB in the smooth and discrete case. Small perturbations on tpecially designed for pixel or voxel data. It is based on a dis

boundary of the shape introduces larges "spikes” in the ahedis.

crete definition of Constrained Centroidal Voronoi Diagram
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Fig. 2 From left to right : the shape in the primal graph (a); the shiaguundary in the dual graph (b); its Constrained Centrdidednoi diagram
(c); approximation of Medial Axis after filtering (d)

(CCVD) which provides an evenly distribued sampling a§quared distance transform and the reverse Euclidean dis-
the shape boundary. tance transformation. They explain the links between Eu-
Figure 2 shows a summary of our approach. (a) showkdean Distance Transform and the construction of a VD.
the original shape. In (b), the boundary of the shape is de- Thinning, or morphological erosion, has been proposed
tected. In (c), we construct the CCVD of the whole imagée mimick Blum’s grassfire formulation and operate by suc-
with the constraint that all the Voronoi sites lay on the gshagessively eroding points from the boundary of the object,
boundary. The medial axis (d) is extracted from the VG hyhile retaining the end points of line segments, until no

eliminating Voronoi edges intersecting the shape boundamore thinning is possible [24]. All thinning algorithms op-

and by filtering edges according to angle criterion. erate in the discrete space. They have been used on pixel and

The outline of this paper is as follows : In the next secoxel image data in the areas of pattern recognition and im-

tion, we review related works. Section 4 gives the prelirage processing. Recently, an implementation of the fire fron

inaries and definitions for this approach. In Section 5, waopagation in the discrete volume was proposed in [26].

provide the details of the proposed approximation of MA There are also many approaches based on Voronoi Dia-

definition and computation. In Section 6, we present the rgrams (VD) in the smooth setting [3].

sults of the algorithm and we compare our approach to others

inthe literature. Section 7 gives an exemple of application Definition 1 Given an open sef2 of R?, and n differ-

mesh sizing function and we conclude in Section 8. ent sites (or seeds)i—o1..n-1, the Voronoi Diagram (or
Voronoi Tesselation) can be defined raglistinct cells (or
regions)C; such that:

G ={weQdwa) <dwz)j=12...nj#i} (2

In the fO”OWing, we give a brief survey of approaCheS quvhered is a distance measure.
MA extraction in the discrete or smooth case. This state of

the art is far from being exhaustive due to the huge amount a survey of approaches for the construction of the me-
of existing methods. There are many approaches to Cogig| axis (and Voronoi diagrams) is given by Sherbrooke et
pute the MA, but they can be broadly organised into threg [12]. The MA is represented as a subset of the boundary
classes : distance transforms, thinning or morphologieal € of \oronoi cells defined within a compact sby points on
sions and. \Voronoi appr.oaches. the boundary. The elements of MA are sets of points equidis-
The distance functions, are based on the fact that tfagt from at least two points on the boundary and their union
locus of the points of MA are coincidental with the singurepresents a local symmetry axis of the shape. More specif-
larities of a distance function to the boundary. A distanggally, it has been shown (for the 2D case in [6, 23] and for
transform or distance field) is defined for each poiMt the 3D case in [11, 20]) that, under appropriately chosen
of a shapeS as the smallest distance from that point to thémoothness conditions and as the sampling rate increases,

3 Related Works

boundaryBs of the shape: the vertices of the VD of a set of boundary points will con-
, verge to the exact MA. In the smooth case, approximating
D(x) = Xegg[ges(d(x’ y)) (1) the MA from the VD in 3D has been attempted in the past.

The VD is deduced from the Delaunay Triangulation and
whered is some distance metric. An appropriate dighen, a filtering is applied to the VD to approximate the MA.
tance metric (such as Euclidean or cityblock distance)ss fibey and Zhao [11] compute the subset of the Voronoi facets
used to calculate the distance transform of the shape. Tteedges and vertices located inside the surface and then fil-
local maxima of this distance function or the correspondirigr out some Voronoi vertices and their incident elements
discontinuities in its derivatives are then detected, ezfchaccording to some angle and ratio criteria.
which indicates a point of MA [15]. In [8], Coeurjolly etal.  In medical image processing, real image data from com-
present time optimal algorithms to extract the MA with theuter tomography, magnetic resonance, with large amount
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of voxels and noise, cause MA to be very dense and complour Approach
tation time to be expensive because they generate too many

nodes and lines. There are two challenges to compute thigis section describes the algorithm for constructing a MA
approximation of MA : approximation. Figure 4 provides an overview of this ap-
roach, consisting of three stages : the original models(a) i
rocessed by our Constrained Centroidal Voronoi Diagram
pproach (b). The clusters anisotropy is measured by means
f principal axis analysis (c). The DVG (d) is extracted from
he ccvD following the neighbouring relationship. Finally

an approximation of the MA is created (f) by filtering the
Voronoi element sets of the DVG (e).

— The MA is highly unstable with respect to small detail
of the shape.

— Only a discrete approximation of the MA is known an
its sampling is dependent of the distribution of the inpy
points.

4 Preliminaries and Definitions 5.1 Clustering algorithm

Discrete shapes are defined to be a finite subset of thg Pix8|s proposal is to construct the VD by a constrained clus-
or voxels of a space graph. The faces, edges, and verticesare,, '\yhere each cluster boundary potentialy represents
collectively called boundary elements of the shape. Fo¥ I3  p<at of the MA. The performance of the MA approxima-

ity reasons, we explain our approach in two dimensions. 4y, annroaches is usually dramatically reduced if the inpu
image (or volume) is transformed Into a graph such thatz 9 ape is noisy. To address this problem, we propose to fil-
each pixel (or each voxel) a vertex is associated, and pix

; . X . P by clustering and then subsample the boundof the
(or each voxel) that are neighbors in the sampling grid ; ; ; ;
joined by an edge [18]. This graph is denotedy. (V. £) fRape, while constructing the VD in the image.
and is called primal graph or neighborhood graph. Where i .
V and E denote, the set of vertices, the set of edges, Pet-1 Centroidal Voronoi Diagram
the set of unordered vertex pairs, respectively. The dual of i ) i
this graph is the graph representing inter-pixel edges ajfidthis subsection, we make an overview of Centroidal
inter-pixel vertices. This graph is denoted®gnd is simply voronoi Diagrams (CVDs). The work presented here is
called dual graph. closely relqted to the v_vork of Valette et al. [25]. o

The Discrete Voronoi Graph (DVG) is a graph of ver- A CVD is a Voronoi diagram where each Voronoi szte

tices and edges which are a subset of the CCVD. The VE,_EBJSO the mass centroid of its Voronoi region :
tices are the locus of points that have at least 3 pixels of | y (x)dx
different labels while the edges are the locus of points con—= LS Mt
taining at least 2 pixels of different labels. In the diseret  Jo P(X)dX
case, we call elements of the VG the boundary sub-edges h is a density function. CVD minimize th i
incident to the pixels from the CCVD. There are a wide va- w _erep(x). IS a density function. minimize the en
riety of edge detection algorithms in the literature, getigr €r9y given as.
driven by neighbouring relationships. n 5

We also can build a triangulation by dualizing the corE = ZI/ P (X)X — z[“dx 4)
structed diagram. There are a wide variety of algorithms = G
available to build a Delaunay triangulation for a set of p®in  practically, a centroidal distribution of points is useful
in the smooth case. In fig. 3, an example of the relationstiacause the points are well-spaced. CVDs optimize the com-
between Voronoi regions and Delaunay triangulation in tWes ctness of the created Voronoi regions and can be done, us-

dimensions is given. The Voronoi sit&sare joined by a De- ng algorithms such as k-means or Lloyd relaxations.
launay edge if their Voronoi regions are adjacédqt, is an

element of the DVG.

®3)

5.1.2 Constrained Centroidal Voronoi Diagram

We want to construct a CVD on a discrete input. Our ap-
2 proach is based on partitioning (clustering) the discrete i

put in a variational framework, which groups discrete cells

— Fis Fas into K clusters through the minimization of the total intra-

‘ cluster variance. Our algorithm is based on the constnuctio
Zﬁ % E, * of a partitioning which minimizes equation (4). It is possi-

ble to efficiently minimize with an iterative algorithm that
Fig. 3 Left: Delaunay Triangulation and its dual Voronoi Diagram i UPdates the clustering according to tests on the boundaries
the smooth case; Middle: similar configuration in the ditesetting; between the different clusters. Here, we chopge) to be
Right: the DVG uniform. The shape boundary is used for initial clustering.
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Fig. 4 The original model (a) is processed by our Constrained Owlar Voronoi Diagram approach (b). The clusters anisgtispneasured
by means of principal components analysis (c). The DVG (éxisacted from the CCVD following the neighbouring relasip. Finally, an
approximation of MA is created by filtering the Voronoi elemhsets of the DVG (e and f).

Then, we define the digital shape as the set of all verticesiia-order to have a confidence measure on the normal estima-
belled as boundary or not boundary. At each cluStés as- tion. For eaclC;, we compute its covariance mattig and
sociated a site. The major difference with [25] is that thie sideduce the local cluster anisotropy from the eigenvalues of
is defined as the center of mass of only the boundary vertidds[22]. M; can be viewed as a 3 x 3 tensor. The eigenval-
contained in the cluster. We also add an additional comstrailes and eigenvectors of this symmetric and positive definite
to our clustering algorithm : to ensure diagram conformitynatrix correspond to the axes lengths and directions of-an el
a cluster must always contain at least one boundary vertelpsoid, respectively. We can deduce the principal axisfro

We assume that the subsampling factor of this clusteritite eigenvector associated to the highest eigenvalé .of
is high, i.e the ratio between the number of original boupdal he fractional anisotropyHA;) allows to compute the local
vertices and the number of sites of the VD is high. We themisotropy of eacl; [4] :
have to evaluate of the optimal number of clusters. If we
have few clusters, it is difficult to define the shape of the /3 \/(Ail—Wi)2+ (A2 =N)2+ (A= N)2
object. In the opposite case, using many clusters, "spikdsAi = 7 > > > (5)
appears on the medial axis. Figure 4 shows an example of V2 \/(/\il +AZHNA)
constrained clustering on a shape with 400 clusters. )

We now define the various graphs extracted from the With:
CVD. The motivation behind this dualisation is a good ap- (AL +AZ+AS)
proximation of the boundary Voronoi cells for a better lofi = - 3 (6)
calization of the MA of the discrete shape. During the next .
step of the method, the constructed CCVD should be trans- where A"'=*%2 are the eigenvalues ofl;, with AL >
formed into a DVG and the Delaunay Triangulation can b&? > A3,

computed. One note that :
0<FA <1 (7)
5.2 Filtering conditions The FA; index is zero in a perfect isotropic case (a

sphere) and 1 in the anisotropic case (the hypothetical case
In this subsection, we describe the filtering algorithmsit i
well-known that the MA is very sensitive to small perturba-
tion of the shape boundary and many filtering methods ha
been proposed to remove bad components associated \
noise or other artifacts. [7, 16] and [10] give a state of &rt «
these approaches in the smooth case. Our aim is to appr
imate the MA with a subset of Voronoi edges or facets. i
to decide if a given vertex set belongs or not to the MA. Ot
algorithm uses two criteria to select the Voronoi elemen
from the DVG.

FA Index

. 1.00

0.750
| 0500

0.250

Iu.oo

5.2.1 Mesuring clusters anisotropy and principal axes

. . . Fig. 5 Left: a cut of the Constrained Centroidal Voronoi Diagram of
Following the general observation that the Voronoi celes agmty hox with 1000 Voronoi cells. Right: each cluster is aggid by its
elongated along the normal direction at the boundary poiriguivalent ellipsoid. ThEA; shows the local anisotropy of each cluster
[2], our algorithm measures the anisotropy of each clGterCi.
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boundary of the shape. Our approach is based on an estimate
—~ - of the vertices position with respect to the shape boundary
< [ and the estimated normal direction. We define the discrete
=——) elements; ; as the set of vertices adjacent to the clus@rs
~—= 7 | andC;. The critical part consists in tagging each vertex of

' | | ‘ | | I each element ggositive or negative. For each elemert; j,

Il we define an operatdf; ;) as follows:

Il
\

Il

Fig. 6 Left: Centroidal Voronoi Diagram of the portion of the figuref (i,]) = { i when FA > FA;

4. Middle : estimation of principal axis for each clustergRi after j when FAj > FA
correction, the encircled direction is how correctly estied.

w'””

i

Ii

Iy
il

Ui

(10)

We denote its site ag; j, and its estimated principal

of an infinite cylinder). IncreasingA values indicate a @XiSNs j). This allows a good approximation of the normal
higher tensor anisotropy. Figure 5 (left) shows a cut-vie@iréctionNy j) to the shape boundary. ,
of the CCVD of an empty box (for wich the cube boundary In this regard, a vertex candidates E; ; will be tagged
defines the shape boundary). In figure 5 (right), each clus@gr negative or positive depending on the sigrgf j, (v)
is replaced by its equivalent ellipsoid. The ellipsoidagla- defined as :
tion clearly depict the cluster anisotropy.
Sometimes, a cluster is mostly isotropic (4 is close St(i,j) (V) =< Z(i ) Vs N j) > (11)
to 0) and its first principal axis does not approximate the ) , . )
normal direction. We detect these cases with the foIIowing tr?é(iﬁj) (v) then provides an information on v with respect

test - tot boundary shape. We then define the first filtering con-
o dition as follows :

d(C,z) > a.A? (8)

whereAl is the principal eigenvalue &, G; is its barycen- Ej.j € MAIf Sy jy(va).S(i j)y(v2) >0, (12)

ter anda is a arbitrary constant (in our experiments, we set
a = 0.6). Whenever this test is true for a cluster, we estimate
its normal direction as :

V(vi,Vo) € (ELJ ® Ei7j)

N If an elemeng; j contains vertices for which S ;) (v)
Gz is not always of the same sign, it can be deduced that this el-
”a” ement crosses the shape boundary, and therefore is not con-

sidered as MA element. In the opposite case, all elements
In figure 6 (middle), the principal axis (encircled) givesvith the same sign belongs to the same side of the boundary.
a bad approximation of the normal direction. Then, we corftowewer, we do not know if they are inside or outside of the
pute the normal direction as above and obtain a good a&ape. Figure 7 shows two examples whgre is rejected

N = 9)

proximation of the normal direction (right). for inclusion in the MA, andEy 3 is considered as a part of
the MA.
5.2.2 Pole condition Our objective is to extract a simplified MA. However,

in some cases, we see some "spikes” appearing on the MA.
Amenta et al. were the first to propose the definition of polddien we use an angle condition to filter out some spikes at
[19] and proposed the Powercrust algorithm [20] to cofbe poles condition.
struct manifold triangulations of three-dimensional pein
When the boundar is sufficiently dense, the Powercrust
is guaranteed to produce a geometrically and topologica '
correct approximation. We recall that the set of poles is :
subset of Voronoi vertices. In 2D, all Voronoi vertices cor N
verge to the medial axis. In 3D, some Voronoi vertices m: g, ,
be far from the medial axis but poles are guaranteed to C( .- T —
verge to the medial axis. Each boundary-point is asso " ~""------- BESSSSEEES T
ated with two poles, denoted ly, and p;_, respectively. C -
These two poles are the farthest Voronoi vertices of Voron :
cell. The boundanB also is divided in two sets of poles: '

inside and outside poles. The definition of poles plays Y. 7 A candidate vertew € Eys; E1s does not cross the shape

im_portant role in normals apprOXimatiO_n- Wheris a suf-  poundary asiits vertices are all tagged same \Eay;crosses the shape
ficiently densely sampled, the Voronoi cells appear natbeundary as its vertices are not always tagged wich the s@me/s

rally anisotropic, and are approximately perpendiculdheo & consequence; 3 € MAandE; » ¢ MA;
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5.2.3 Angle condition

An angle condition can be used to remove points 1
straight edges to eliminate spikes in the MA. Dey and Z
[11] use a criteria on a angle condition to retain faces
the VD of a set of boudary points. They consider the

gle between an approximate of the normal direction a
boundary points and a Delaunay edge (dual to a Voi
face). If that angle is small, the Voronoi face is kept :
part of the MA.

Our method is based on the direct construction of
VG in the discrete space. Therefore, we consider the i
between the normal of an element of the VG (dual to a
launay edge) and the normal direction at the shape bou
wich is estimated by the principal axis associated with
surrounding cluster. For each boundary element cant.uw..

Ei j, we associate an angi# ;. Fig. 9 Three slices of a volume representing a heart and their cespe
tive Medial Axis

©:j = /N j), Nij (13)

The approximation of the angl®, j for a MA element re- - S—

quires both the knowledge of the principal ais(i, j) of N N N

the neighbouring cluster having the greatest anisotroply & / =) ( V|

the estimated normal direction Bf j, notedN; ;. The scalar | ‘ \ ‘

product is useful when you need to calculate the angle t o— /_—/_

tween two vectors. Then, we define the angle filtering co - , p) )

dition as : 4 .

Eij eMAIf A >y, Aty > B AY (14)

with

Aij =] <NgijyNij > | (15)

Where/\fl(i‘j) and/\if”j are the largest eigenvalue®©f; j

and the minimal eigenvalue &; j, respectively, ang and
B are arbitrary. (in our experiments, we set 0.8 and
B = 0.7) Figure 8 shows an illustative example whég
is computed.

6 Results

The proposed algorithms has been tested with several uis-

prete data. T.hese algorithms were implemented in C++ 'ﬁé. 10 Comparison between our approach and the RDMA approach
ing the VTK library. [8]. Left : original shape. Middle : RDMA; Right : our apprdac

'B Figure 9 shows the results obtained on three different
. c. slices of a volume representing a human heart.
4 N&, ; Figure 10 shows comparative results between our ap-
q 1 WPH proach and the RDMA approach [8]. The first column is the
. ‘.,-El .- C, orjginal shape. The.second column are fche res_ults obtained
’ with RDMA. The third column was obtained with our ap-
' proach. The first row shows a simple shape with sharp cor-
' ners. The second row shows a slice of a human heart. The
Fig. 8 The angle condition : the angle betweld; 4 andNy 4 has to third row shows the same human heart but with noise on the

be within a given range, or the elemeits will be filtered out from shape b_oundaries. One can clearly see that in our approach
the MA. the MA is smooth and connex for the three cases.
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Fig. 12 Top : a shape (left) and its medial axis (right). Bottom : On
the left, sizing function on the MA in 3D. The colors represéme
sizing values. On the right, mesh generated with respettesizing
function.

Fig. 11 On the top, approximation of the Medial Axis. On the bottom,
2D Delaunay triangulation with 2000 vertices. 8 Conclusions

In this paper, we have presented an approach that approx-
imates the medial axis for pixel or voxel objects. This ap-
proach is based on the Voronoi graph computed from a set
of nodes distributed across the boundary. One of the key as-
pects is its completely discrete nature. Experimentallt@su
Mesh sizing is one important aspect of the mesh generatfgave shown that the method creates Medial Axis approxima-
problem.The size of the elements may be either a congi@ns which are robust to noise, and very suitable for mesh
quence of the meshing algorithm when no sizing constrairggneration. Future work may include robust filtering of the
are provided as input, or may be explicitly controlled by th&IA elements, in order to increase the robustness of the ap-
user or by the physical simulation carried on over the megioach.
Several techniques have been proposed for automatic gen-
erations of mesh size function. Quadros and al. [26] usggeknowledgements The Human heart data are courtsey of Dr Patrick
medial axis generation over domain boundaries to constr@tirysse from CREATIS at Lyon. This work was supported int par
mesh sizing functions. For our experimentations, we useylthe BioRFMod project (ANR-06-JCJC-0124-01) and the iRiég
the definition of Alliez et al. [21] who proposed a sizin@hﬁ”eﬁ.‘p@ Cluster 2 ISLE, PP3, subproject I3M: Imageréidale

- . : . - odélisation Multiéchelles : du petit animal & 'Horem
function u(x) which provides the element size at each pom%
x. Figures 11 and 12 show MA approximations of the letters
"CGI” and a "bird” shape. One can see the influence of t
MA then mesh sizing, as meshing density is higher in th
regions (the bird nozzle and tail regions).

7 Application to sizing function for mesh generation
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