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1. Introduction  

 

  Transient heating occurs in rocket engines, in particular in the following 

cases : 

 

  1. After injection, the fuel or oxidizer liquid droplets are not stabilized, and 

one can observe a relaxation period, 

 

  2. For stabilized droplets, acoustic waves generated by the engine cause 

departure from the stabilized regime and can originate high frequency 

instability. 

 

  It seems that thermal exchange inside the droplet has an important effect on 

transient behavior and on the vaporization stability.  
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There is often a problem with numerical codes which are  

more and more complex. Then one needs simple analytical 

models, able to describe transient heating. 

 

We will present here: 

 

 - First: a discrete (two-layer) model for heat transfer  

inside the droplet 

 

 - Secondly: a study of the response of an evaporating  

droplet to an acoustic field 
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  Basic considerations on transient heating and dynamic response of an 

evaporating droplet are discussed.  

 

  The two-layer model is proposed here to take into account heat transfer 

inside the droplet (assuming a finite heat exchange coefficient between both 

layers).  

  High frequency combustion instability in liquid rocket engines is a result of 

coupling between combustion processes and the chamber acoustics. Droplet 

evaporation is one possible driving mechanism of combustion instability.  

  In order to investigate this possibility, we consider an evaporating droplet 

submitted to an acoustic field. The objective of the study is to determine droplet 

response.  
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2. Two-layer model for droplet transient heating 
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Temperature profiles inside the liquid droplet for three models 

a)       Conductive heat exchange  (Law & Sirignano, 1977) 

b)       Infinite thermal conductivity (cf. Chin & Lefebvre, 1985) 

Two-layer model (Present work): an alternative to a) and b) 
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rL: liquid density
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Heat fluxes and energy equation of the liquid phase 

Two-layer model: a discrete system with  

two temperatures to describe the droplet 

evolution 
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We suppose an ideal mixture of perfect gases and the quasi-steady  

hypothesis in the gaseous phase. 

At rest: Nu=2, NuL=2,          Sh=2.  

Here: BT (and BM ) are not constant.   If Le=1, BT=BM 
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equations: 
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   If we assume coefficients                    and the Spalding parameter BT  to be constant 

(The parameter BT  associated with heat exchange can be deduced from the mass 

Spalding parameter BM. In the particular case Le=1,     ), we obtain  
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3. Analysis of frequency response characteristics  
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Droplet at a velocity node in a closed cavity  

       V,',','
,

2

,

ddttVpdVdttVptVqN
tVtV



Response factor: 

For sinusoidal oscillations with the same period 

  

               , where                are modulus 

  

and      the phase difference between q’ and p’. 
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mass flow rate  

reduced fluctuation 
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The mean droplet of Heidmann  

and Wieber  

Linearized theory: 
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small perturbations 
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,,, BA are constant coefficients. 
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The case of a droplet at uniform temperature  

without external flow  
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Influence of the reduced heat exchange coefficient  between the two liquid layers, on the reduced 

response factor           , for             , T=3000K, p=10b, YAC=0.9 N   5.0
3
 SL rr
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Influence of  for liquid Nusselt number equal to 2:  
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O2/H2O : T=3000°K ; P=10 Bar ; Yac=0.9
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4. Conclusions and prospects: 
 

• A two-layer model is used for internal droplet heat exchange. 

 

• A linearized model is developed on the basis of Heidmann and Wieber theory 

A dynamic model is investigated on the basis of the two previous models, and 

is then used in the stability analysis to determine the complex transfer function 

and the response factor of a vaporizing droplet submitted to small periodic 

perturbations. Only the case of a pressure perturbation is considered.  

 In every case the results shows the important effect of thermal exchange 

inside the droplet on the vaporization stability. 

 

• To continue these investigations, it should be interesting: 

   - To conceive a N-layer model to compare with the two-layer model and find 

the volume fraction  

   - To study the effect of convection due to relative velocity gas/droplet 

   - For the future, to validate numerically the results 

  
This work has been supported by CNES and ONERA. The authors are indebted to Richard 
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