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OPINION

Are k13 and plasmepsin II genes, involved 
in Plasmodium falciparum resistance 
to artemisinin derivatives and piperaquine 
in Southeast Asia, reliable to monitor resistance 
surveillance in Africa?
Francis Foguim Tsombeng1,2,3, Mathieu Gendrot1,2,3, Marie Gladys Robert1,2,3, Marylin Madamet1,2,3,4 
and Bruno Pradines1,2,3,4*

Abstract 

Mutations in the propeller domain of Plasmodium falciparum kelch 13 (Pfk13) gene are associated with artemisinin 
resistance in Southeast Asia. Artemisinin resistance is defined by increased ring survival rate and delayed parasite 
clearance half-life in patients. Additionally, an amplification of the Plasmodium falciparum plasmepsin II gene (pfpm2), 
encoding a protease involved in hemoglobin degradation, has been found to be associated with reduced in vitro 
susceptibility to piperaquine in Cambodian P. falciparum parasites and with dihydroartemisinin–piperaquine failures in 
Cambodia. The World Health Organization (WHO) has recommended the use of these two genes to track the emer-
gence and the spread of the resistance to dihydroartemisinin–piperaquine in malaria endemic areas. Although the 
resistance to dihydroartemisinin–piperaquine has not yet emerged in Africa, few reports on clinical failures suggest 
that k13 and pfpm2 would not be the only genes involved in artemisinin and piperaquine resistance. It is imperative 
to identify molecular markers or drug resistance genes that associate with artemisinin and piperaquine in Africa. K13 
polymorphisms and Pfpm2 copy number variation analysis may not be sufficient for monitoring the emergence of 
dihydroartemisinin–piperaquine resistance in Africa. But, these markers should not be ruled out for tracking the emer-
gence of resistance.
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Background
According to the World Health Organization (WHO), 
artemisinin-based combination therapy (ACT) has been 
recommended as treatment of uncomplicated falci-
parum malaria since 2001. However, Plasmodium fal-
ciparum parasites resistant to artemisinin derivatives 
emerged in Southeast Asia, and more particularly in 

western Cambodia, Myanmar, Thailand and Laos [1–6]. 
More recently, the emergence of P. falciparum resist-
ance to dihydroartemisinin–piperaquine was observed 
in Cambodia, where recrudescent infections had rapidly 
increased [7–9], and then in Vietnam [10, 11]. However, 
dihydroartemisinin–piperaquine is little-used in African 
countries for the treatment of uncomplicated malaria, 
where artemether–lumefantrine and/or artesunate–amo-
diaquine are currently used. Only Senegal has adopted 
dihydroartemisinin–piperaquine as a third alternative 
first-line regimen. Dihydroartemisinin–piperaquine has 
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emerged as a potential combination for chemoprevention 
in pregnant women and children in Africa [12–14].

According to the WHO, the resistance to dihydroar-
temisinin–piperaquine has not yet emerged in Africa. 
There is currently no evidence of failing efficacy of dihy-
droartemisinin–piperaquine in Africa. The latest pub-
lished studies showed that PCR-corrected adequate 
clinical and parasitological response (APCR) at day 42 
ranged between 94.6 and 100% for the treatment of 
uncomplicated P. falciparum malaria in children treated 
between 2011 and 2017 in Africa (Tanzania, Rwanda, 
Mali, Guinea, Burkina Faso, Angola, Niger) [15–20]. 
However, there are some rare cases of clinical failures 
with dihydroartemisinin–piperaquine in Africa [15]. 
Two cases of late treatment failure after 30 and 32 days 
were reported in Italian travelers returning from Ethio-
pia and treated with dihydroartemisinin–piperaquine 
[21, 22]. Additionally, some clinical failures in travelers 
returning from Africa, and confirmed by an expected 
plasmatic level of dihydroartemisinin–piperaquine, were 
obtained in the French national reference centre for 
malaria (unpublished personal data). The genes involved 
in resistance to artemisinin derivatives and piperaquine 
in Southeast Asia do not properly explain these few clini-
cal failures observed in Africa [22–27]. It is imperative 
to monitor the emergence of dihydroartemisinin–pipe-
raquine resistance in Africa. But, are k13 and plasmepsin 
II genes reliable to survey resistance in Africa?

Artemisinin derivative resistance
The emergence and spread of resistance to artemisinin 
derivatives were observed in Southeast Asia [1–6]. This 
resistance was associated with delayed parasite clearance 
half-lives (> 5  h) after artemisinin-based monotherapy 
treatment or ACT [1, 4, 28, 29]. Additionally, slow in vivo 
parasite clearance half-live was correlated with in  vitro 
resistance manifested an increase in the ring-stage sur-
vival rate after contact with 700  nM of artemisinin for 
6 h, evaluated with a new phenotypic assay, the in vitro 
ring-stage survival assay or RSA [30–33].

Different molecular markers, associated with in  vitro 
resistance to artemisinin derivatives measured by stand-
ard phenotypic assays, were previously proposed. Poly-
morphisms in the pfATPase6 gene, encoding the P. 
falciparum sarco-endoplasmic reticulum calcium-ATPase 
PfATPase 6 protein, were first associated with in  vitro 
resistance [34], but not with in vivo delayed parasite clear-
ance in P. falciparum parasites from the Thai-Cambodia 
border [35]. Amplification of the P. falciparum multid-
rug resistance 1 gene (pfmdr1) was also associated with 
in  vitro reduced susceptibility to artemisinin derivatives 
[36–38], but never with delayed parasite clearance [39]. 
Additionally, mutations on pfmdr1 genes were shown to 

be correlated with in vitro reduced susceptibility to arte-
misinin derivatives [40–42]. The involvement of polymor-
phisms in potential genes was evaluated, such as pfubp-1 
encoding the P. falciparum ubiquitin specific protease 1 
[43–45], the gene encoding the RING E3 protein ubiq-
uitin ligase [46, 47], pfap2mu encoding the P. falciparum 
adaptor protein complex 2 mu subunit [44, 48], pfmdr5 
encoding the P. falciparum multidrug resistance 5 pro-
tein [49] or pfmdr6 encoding the P. falciparum multidrug 
resistance 6 protein [49–51]. Only mutations pfap2mu 
S160N and pfubp1 E1525D/Q were found in cases of 
African imported P. falciparum malaria with clinical fail-
ure with ACT [25]. Whole-genome sequencing of the 
artemisinin-susceptible F32-Tanzania strain and the 
artemisinin-resistant F32-ART line, obtained after 5 years 
of artemisinin pressure, led to identification of several 
mutations (M476I, C580Y, R539T, Y493H, I543T and 
P574L) in the propeller domain of the kelch 13 (k13) gene 
(PF3D7_1343700) that are associated with in vitro resist-
ance to artemisinin [31, 52, 53]. These mutations were 
associated with artemisinin-resistant (high survival rate) 
Cambodian isolates evaluated with RSA [1, 31, 32]. Addi-
tionally, these mutations were also associated with in vivo 
delayed parasite clearance half-lives (> 5  h) in Southeast 
Asia, including Cambodia, Vietnam, Thailand, Myan-
mar and China [1, 31, 54] or parasitaemia still positive on 
day 3 after 7 days of artesunate monotherapy or 3 days of 
ACT [23]. Another mutation, F446I, was predominant in 
Myanmar and associated with high survival rate and P. 
falciparum in vivo delayed clearance [55–58].

According to the WHO, the proportion of patients still 
parasitaemic on day 3 (10%) or with a parasite slow clear-
ance half-life above 5 h (10%) after artesunate monotherapy 
or treatment with ACT, or carrying k13 mutations associ-
ated with artemisinin resistance in Asia are indicators to 
identify emergence of suspected artemisinin resistance 
[59]. Resistance to artemisinin is confirmed when at least 
5% of the patients carry parasites with k13 resistance-asso-
ciated mutations are still parasitaemic on day 3 or show 
slow parasite clearance [59]. The WHO has recommended 
evaluate k13 resistance-associated mutations to track emer-
gence and spread of artemisinin resistance in Africa.

The main k13 mutations involved in artemisinin resist-
ance in Southeast Asia are not yet reported in Africa 
certainly due to an absence of artemisinin resistance in 
Africa [23, 60–68]. Artemisinin resistance due to k13 
mutations has not disseminated to African countries 
yet. However, clinical failures with ACT, although rare, 
were reported in Africa (Angola, Senegal, Zaire) or in 
imported falciparum cases from Africa (Angola, Ethio-
pia, Liberia, Uganda) and were not associated with k13 
resistance-associated mutations [21–25, 69–71]. In some 
cases, pharmacokinetic data were associated and allowed 
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to exclude sub-therapeutic drug exposure to dihydroarte-
misinin [21, 22]. On Senegalese patients, parasites were 
still detected on day 3 after ACT treatment and were 
wild-type for K13 [24]. An isolate from Equatorial Guinea 
collected from patient with early treatment failure after 
artemisinin–piperaquine showed in  vitro survival rate 
higher than the rate observed in the control strains but 
lower than rate in Asian artemisinin-resistant strain with 
a C580Y mutation [72]. However, none of the mutations 
described in artemisinin resistance in Asia was detected. 
A new mutation (M579I) was identified.

Additionally, 98.5% of Cambodian patients with isolates 
carrying C580Y or Y493H mutations on day 1 were nega-
tive on day 3 after dihydroartemisinin–piperaquine treat-
ment [73]. Cambodian parasites with in  vitro survival 
rates above the cut-off of 1% can lack the k13 mutations 
involved in artemisinin resistance in Cambodia [74]. 
Chinese patients with R539T mutant parasites imported 
from Angola and P574L mutant parasites from Equato-
rial Guinea all recovered after treatment with dihydroar-
temisinin–piperaquine [75].

These data suggest that other mechanisms than k13 
mutations may explain artemisinin resistance, and more 
particularly in Africa. Mutations on falcipain 2a gene, 
encoding a cysteine protease and haemoglobinase and 
atg18 gene, encoding the autophagy-related protein 18, 
might be associated with artemisinin resistance in para-
sites from the China Myanmar-border [76–78]. Addi-
tionally, mutations in the actin-binding protein coronin 
(R100K, E107V or G50E) conferred high in vitro survival 
rate in Senegalese P. falciparum strains, and this in the 
absence of mutation on the k13 propeller gene [79].

Piperaquine resistance
Emergence of P. falciparum resistance to dihydroarte-
misinin–piperaquine was observed in Cambodia, where 
the prevalence of recrudescent infections rapidly increased 
[7–9], and then in Vietnam [10, 11]. Additionally, in vitro 
resistance to piperaquine was detected in Cambodia and 
increased rapidly between 2013 and 2015 [80]. Duplica-
tion of the Plasmodium falciparum plasmepsin II gene 
(pfpm2) (PF3D7_1408000), encoding a protease involved 
in haemoglobin degradation, has been found to be associ-
ated with reduced in vitro susceptibility to piperaquine in 
Cambodian P. falciparum parasites and with dihydroar-
temisinin–piperaquine failures in Cambodia [81, 82]. A 
new in vitro test, the piperaquine survival assay (PSA), was 
developed to follow piperaquine resistance [83]. Plasmo-
dium falciparum dihydroartemisinin–piperaquine failures 
in Cambodia were associated with piperaquine survival 
rate above 10% or high piperaquine IC50 above 90 nM esti-
mated by in vitro standard assay [81–83].

However, the involvement of pfpm2 in piperaquine 
resistance seems controversial in Africa. In Mali, the 
presence of P. falciparum isolates with pfpm2 duplica-
tions was confirmed in only 7 out of 65 clinical fail-
ures with dihydroartemisinin–piperaquine [26]. Three 
patients harbouring parasites with two copies of pfpm2 
in Tanzania were successfully treated with dihydroar-
temisinin–piperaquine [84]. Additionally, only a single 
copy of pfpm2 was detected in two isolates collected in 
imported malaria cases from Ethiopia and Cameroon 
after dihydroartemisinin–piperaquine failures [22, 27]. 
The use of dihydroartemisinin–piperaquine as inter-
mittent preventive treatment during pregnancy did not 
select for pfpm2 duplication in Uganda [85]. Ex vivo sus-
ceptibility to piperaquine in imported P. falciparum para-
sites from Africa, in Ugandan and Senegalese isolates 
was not associated with variation in pfpm2 copy num-
ber ([86–88], unpublished personal data). Additionally, a 
recent publication showed that overexpression of pfpm2 
did not change the susceptibility of the 3D7 P. falciparum 
strain to piperaquine [89].

All these data suggest that pfpm2 would not be the only 
gene that explains the resistance to piperaquine in Africa. 
The P. falciparum chloroquine resistance transporter 
gene (pfcrt) may be a causal gene because piperaquine is a 
dimer of chloroquine. Mutations in pfcrt could be involved 
in piperaquine resistance. However, the K76T mutation 
involved in chloroquine resistance was not associated 
with in vitro and ex vivo resistance to piperaquine [90, 91]. 
Novel mutations in pfcrt, like H97Y, F145I, M343L, C350R 
or G353V, seem to confer in vitro resistance to piperaquine 
in P. falciparum parasites [92–94]. However, there is no 
direct evidence of piperaquine inhibiting PfCRT.

Conclusion
Mutations in K13 (C580Y, R539T, Y493H, I543T and P574L) 
and pfpm2 duplications in P. falciparum are associated with 
in  vitro resistance and clinical failures with dihydroarte-
misinin–piperaquine in Southeast Asia. Although the resist-
ance to dihydroartemisinin–piperaquine has not yet emerged 
in Africa, the first data on clinical failures and in vitro reduced 
susceptibility suggest that k13 and pfpm2 would be not the 
only genes involved in artemisinin and piperaquine resist-
ance. It is imperative to identify new genes to explain resist-
ance to artemisinin and piperaquine in Africa. It is necessary 
to maintain tracking of the emergence and spread of k13 and 
pfpm2 mutant parasites in Africa, which could be imported 
from Asia. This surveillance must be associated with the 
tracking of dihydroartemisinin–piperaquine clinical failures 
in Africa due to resistant parasites. Too few studies associ-
ate drug plasmatic measures to verify good compliance and 
pharmacokinetic to confirm resistance. African parasites 
may have their own genetic background preference to select 
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dihydroartemisinin–piperaquine resistance which surely dif-
fers from Southeast Asian parasites. These isolates should be 
characterized by assessing k13 polymorphisms, pfpm2 copy 
number variation, but also other potential marker of resist-
ance. The identification of new genes involved in dihydroarte-
misinin–piperaquine resistance in Africa could be performed 
by systematic analysis of African resistant parasites by 
genome wide association study (GWAS).
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