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Abstract—In this paper, we propose an adaptive polygonal we can split the existing approaches in three categories:
mesh coarsening algorithm. This approach is based on the refinement, decimation, or direct approaches, which will be
clustering of the input mesh triangles, driven by a discretzed described more precisely, due to promising recent advances
variationnal definition of centroidal tesselations. It is @le to . ' . .
simplify meshes with high complexity i.e. meshes with a lagy Refinement gpproaches [21, [3, [41’ aPDVPX'm"?‘te the erg-
number of vertices and high genus. We demonstrate the abilit inal surface with a coarse mesh which is Iteratlvely refined
our scheme to simplify meshes according to local features s until a given precision is reached.
as curvature measures. We also introduce an initial samplig Decimation approaches, such as [5], [6], [7], [8], [9] also
strategy which speeds up the algorithm, an on-the-fly checkg — ,ocess the mesh iteratively, constructing several réisalu

step to guarantee the validity of the clustering, and a post- | ls. . h | lution | |
processing step to enhance the quality of the approximatingnesh. evels. For a given mesh, several resolution levels are con-

Experimental results show the efficiency of our scheme botmi Structed by means of elementary simplifications (edge pséia
terms of speed and visual quality. or face merge, as an example), until the approximation error

reaches a user-defined maximum. A survey of coarsening
approaches is made in [10].
3D meshes are used in a vast majority of 3D applicationsin opposition to the first two categories, direct approaches
such as Computer Aided Design, Medical Imaging, Virtugbr remeshing approaches) compute a mesh with a given
Reality and Video Games. 3D models are constructed hymber of elements or approximation error budget in a single
designers, or can be generated automatically from reattshjeresolution way. Some approaches remesh the original furfac
using 3D scanners. Nowadays, the models can have upirt@ global parametric space [11], [12], [13], [14] They pice/
several million or even billion elements (vertices) and semgood results, but are limited in practice by the parameidna
times need a preprocessing step to match a given applicatsdep, involving heavy calculations and numerical instghiTo
requirements. The processing step sometimes consists inaeercome these problems, some approaches [15], [16] were
ducing the complexity of the mesh (in terms of number giroposed, involving local parametrization and optimizatof
elements, topology or smoothness) to accelerate renderinghe remeshed model. Other works [17], [18] distribute new
transmission, increasing its elements aspect ratio (fourate vertices directly on the original surface mesh, to build & ne
finite elements analysis), or remeshing (to meet a givésssellation which can be further optimized.
connectivity constraint). As a consequence, automatiemis  In [19] and [20] the authors propose to remesh the model
automatic geometry processing becomes increasingly impaosing geodesic distances: the new vertices are created usin
tant for interactions between various applications. Wepse geodesic front propagation. Note that the vertices distioin
in this paper an adaptive surface mesh coarsening algqrittoan also be adapted to local curvature.
which resamples the surface to a mesh with many fewerNote that remeshing approaches allow the construction of
elements than the original mesh. Our approach extends theshes with as many vertices as wanted. Indeed, mesh coars-
work of Valette and Chassery [1] to non-uniform Centroidaning is not the main goal of remeshing approaches, as they
Voronoi Diagrams. The complexity of our algorithm (in termgermit other improvement (in terms of triangles aspecbjati
of calculations and memory requirements) is low, allowing t and shape adapted remeshing (e.g. adaption of the sampling
processing of large meshes, as shown in the results sectiagording to the local curvature).
where processing meshes with up to 1 million triangles withi In [21] and [1], the triangles of the input mesh are clustered
a minute. and a new coarsened mesh is build based on the clustering.
These approach are efficient when the number of triangles of
the output mesh is much lower than the number of triangles
Coarsening a mesh consists in resampling the original sof-the input mesh. The approach of Cohen-Steiner et al. [21]
face with a lower number of vertices. The number of existingims to create approximation-efficient meshes, whereas the
approaches for mesh resampling is very high. For simplicitgpproach of Valette and Chassery [1] aims to create uniform

|. INTRODUCTION

Il. PREVIOUS WORK



output triangluations.
In [22], Nooruddin and Turk propose to simplify the mesh o Je, z-p(x)da @)
topology by a volumetric approach: the mesh is converted ‘ fci p(z)dz
to a volumetric representation (voxels) which topology is
simplified by means of morphological operations. Afterveard
the volume is re-converted to a polygonal model which |g
further simplified.
We can also mention out-of-core approaches for coarsening el
[23], [24], used for large models which do not fit entirely k= Z
inside the computer RAM.

wherep(x) is a density function of’;
Moreover, Centroidal Voronoi Diagrams minimize the en-
rgy given as:

[ ol - ulPds 3)
i=0 7 Ci

Constructing a Centroidal Voronoi Diagram (CVD) can be
I1l. OUR APPROACH done using K-means clustering and Lloyd’s relaxation metho

26], as an example. CVDs have intrinsic properties which

In this paper, we propose an algorithm for mesh coarseni . . S
which produces adaptive triangulations. Our approach ean fake them optimal for a wide range of applications[25]

: . . eTcause they optimize the compactness of the created \lorono
applied to manifold meshes with any genus and any numberF?egions (see equation 3)
holes. The first step is a clustering of the mesh cells (ttes)g '

into a discrete Centroidal Voronoi Diagram (CVD), accogdinC. A discretized Central Voronoi Diagram definition

to a desired density function. In [1], a discrete definition of CVD is giverf is no longer

The second step consists in replacing each cluster by, &ontinuous space, but a polygonal megh Subsequently
single vertex, and constructing the triangulation ace@dd e will only consider triangular meshes, but extension ® th
the clusters adjacency relations. We assume that the subsgBlygonal case is straightforward. The discrete definitibiie
pling factor of the coarsening is high i.e. the ratio betweqyp falls into this constraint: the boundaries of each Varion
the number of original vertices and the number of vertices RfegionC,- is a subset of the edges df. As a consequence, a
the resulting mesh is high. In this paper, we display resu®ronoi region is the union of several mesh triangigsNote
with meshes which number of vertices is at least divided QMat with such restriction, the regiod% are no more Voronoi
20. Those high subsampling ratios enable us to formalizegyions in the strict sense. Constructing such diagram some
clustering approach, noticing that even if the input swfagow as a clustering problem: we want to merge the Triangles
is a discrete set (the union of several polygons), it can he of the meshM into n clusters (which look like Voronoi

seen as a continuous space, as the input polygons will fggjions)C;, each cluster having only 1 connected component.
small compared to the output ones. Note that our approach

simultaneously simplifies the mesh geometry and its topglod®: Discrete minimization
and thus can be seen as a topological and geometric filter. The discrete definition of the CVD consists in reformulating
the energy tern¥’ (equation 3) and trying to find the clustering
IV. TECHNICAL BACKGROUND minimizing E, which is now defined by:

In this section, we make an overview of Centroidal Voronoi 1
Diagrams (CVD) in terms of energy minimization, both for E— Z Z / p(@)||z — z||2dz (4)
their continuous and discretized versions. Supplemerdary T ‘

. . i=0 \T;€C;
tails can be found in [25] and [1]

It is easy to demonstrate that the individual contributién o
A. Voronoi Diagrams each triangleél’; to the global energy termv’ can be simplified

Given an open sef) of R®* and n different sites (or to:

2 _ . A2 -
seeds);.i—0.1....n_1, the Voronoi Diagram can be defined as /T p)l|z = zil|"dz = pjllzi — ;" + Aj ()
n distinct regionsC; such that: !

where
C; ={w e Qd(w,z;) < d(w,z;)j =0,1,...,n—1,5 # i}
: O g = [ pale -l ©)
whered is a function of distance. These diagrams are well !
known in the literature. The dual of a Voronoi Diagram is pi = / pla)dx )
a Delaunay triangulation, which has the property that the 1TJ
outcircle of every triangle does not contain any other site. v = A p(x)zdx (8)
J J

B. Centroidal Voronoi Diagrams A; depends only on the geometry Bf and on the density

A Centroidal Voronoi Diagram is a Voronoi Diagram wherdunction p(z), p is the global weight of; according top(x)
each Voronoi sitez; is also the mass centroid of its Voronoiand~; is the center of gravity of’;. Note that in [1] the term
Region: A; was omitted, which was the first approximation made by



Fig. 1. Local neighbouthood used for the clustering evotutiThe triangles
T5 and Ty, originally belong to the cluster§', andC}, and the test consists
in checking if changing the configuration (putifig in C, or T}, in Cq will

Fig. 2. A triangular plane falls into 4 parts having differerrtices density
decrease the global energy term.

(left). Despite the sharp density changes, the clusterigbt] remains uniform
over the plane

Valete and Chassery. But we will prove that excludidg
from the computation does not influence the quality of the for each of the three cases. A fast and efficient computation
results. By suming each triangle individual contributionH, is possible by storing the vaIu@TjECa PiVj andZTiECa Pj
following equation 5, it comes: in accumulator arrays.

Figure 2 shows an example of clustering on a randomly

n—1 . . . . .
triangular plane. The original plane (right) consists inrdas
E= Z Z pill=i —%‘HQ + ZAJ‘ ) with a different sampling density. The four regions contain
=0 \Cievi J respectively (from top left to botom right) 10000, 20000,

which proves that whatever the clusters configuration coi0000 and 80000 vertices. Notice that despite the sharptgens
sists in, the contribution of the terms; will always be the changes in the original sampling, the resulting clustering
same. We can then safely omit their computation to minimiZgght) is still uniform.

a new energy term:
9y V. OUR APPROACH

A. Curvature indicator as density function

n—1
F= Z > pillv =zl 19 sharp contrast with [1], we propose to cluster the mesh
=0 \Te triangles in a non-uniform way. Adaptivity is a key feature
Itis possible to efficiently minimize this energy term with a for many applications, when some parts of the mesh must
iterative algorithm that updates the clustering accortiingsts contain more vertices than other parts. As an example, it is
on the boundaries between the different clusters. Assumiwgll known that approximating schemes must provide a high
that a given edge is on the boundary between two clustersertices budget to regions with high curvature featureshis
C, andC, (see figurel)e has two adjacent triangle§; and paper, we propose to mimick an approximating scheme, by
T belonging respectively t¢’, andCy, three values of” are giving to each trianglel; a weight p; according to local

computed: curvature measures. As we aim at applying our scheme to very
o Fy; (the initial configuration) :T; belongs toC, and complex meshes, the curvature measure has to be very robust
T}, belongs toCh. against bad sampling conditions that may be encountered whe
« I} (C, grows andC; shrinks) : bothT; and T}, belong processing such models. We propose to compute a curvature
to C,. indicator with such properties. To do so, we calculate the
« I (C, shrinks andC), grows): bothT; and T}, belong matrix A,o of the Weingarten map of the surface using a
to Cb. polynomial fitting of the local neighbourhood of each triémg

the clusters configuration is updated according to the lowés €xplained in [27]. The local principal curvaturg, and
computed energy term betweéh,;,F; and . By loopingin .2 aré the eigenvalues of A. In all our experiments, we chose
the boundary edge set (the set of edges between two differilft N€ighbourhood of a triangle to be the union of the 2-ring
clusters), we iteratively minimiz&. As F is always positive ©f Its three vertices. Finally, we set each triangle wejghto:
and each local modification reduces F, the convergence of the ¥
algorithm is guaranteed. pj = ITj] (\/ EF,+ EJ22) (12)
More_over, it was shown that when processing one e_dge, mﬁere|Tj| is the area ofl; and~ is a gradation parameter
comparnison qf the three vaIues_ETfor the three cases is Oty hich controls the curvature adapted bahaviour of our sehem
needed, and instead of computing F, we only need to commea:Spirit with [12], settingy — 0 will produce uniform
2 2 clustering whereas higher values-ofvill give more and more
L= — HZTJ‘GCa pﬂjH _ HZTJEC’v pﬂjH (11) importance to the regions with high curvatures. Figure 3xsho
ZTjeca Py ZT,-EC;, Py the curvature indicator computed on the Happy Budda model




to be initialized and no more triangles are free (which can
happen, as we operate on a discrete set), we randomly pick one
non-free triangle for each non initialized cluster. Thigiah
sampling strategy was proven to be efficient in accelerating
the convergence of the approach. As an example, clustering
the David model to 20k vertices with randomly picked initial
clusters took 44 seconds, and clustering with our initzion
algorithm took only 31 seconds.

C. Convergence issues

The clustering is based on the minimization of a positive
energy term defined on a discrete set. Each clustering evolu-
tion decreases the energy term, and the convergence of the
clustering is then theoretically guaranteed. In practsmme
numerical issues can appear. The computation of a curvature
indicator gives a different weighp; to each triangleT};.

Very low values ofp; could prevent the clustering algorithm
convergence, as the acumulator arrays might not have the
required precision range. This can also happen when one or
several triangles of the mesh have null or almost null area:
they could move from one cluster to an other one without
any noticeable consequences for the energy term, pregentin
Fig. 3. Curvature indicator for the Happy Buddha model. Leftginal the clustering step to converge. To solve those problems, we
model, right: curvature indicator (higher values are biegh slightly modify the approach : We first compute the average
triangle weightp,,,, and a threshold'h, = 1075p,,. All the
lusters weights beloW's, are set tal'h,, which will give a
ignificant value to the clusters having almost null weight.

with v+ = 1.5. Note that as expected, the regions with higg
curvature depict higher values than relatively flat regions
- I . D. Guaranteed valid clusters
B. Efficient initial sampling
To begin the clustering process, an initial sampling ste
must be done, to associate at least one triangle to eaclerclusa er the convergence algorithm, is to "clean” the clusters
In [1], the initial sampling is done by randomly picking ong '

trianale of the mesh for each cluster. As a CoNSeqUence Eﬁ"ing into several connected components, and to redtart t
lang . S ach cluster. As sequ ' Sstering step again. These two steps can be repeated until
clusters will be equally distributed over the original mes)}

Once the clustering done, each cluster has to be to be
connex set of cells. One way to respect this constraint,

o i . . ~~'the constraint is respected. Although this approach womds w
Th_|s 'S convenl.ent for uniform coarsening, as the go_al 'S practice, there is no theoretical proof that it will alvgay
build clus_ters with the same surface. BUI th's.'s n(_)t appt_m@r succeed, and running alternatively the clustering stepthed
for adaptive glustermg, since the regions W'th. higher dy-ns_ cleaning step can be computationally expensive. To oveecom
should contain more cIugter_s than regions with I(.)W dens'%ese drawbacks, we run a three step algorithm. First, we run
Indeed, if we randomly distribute the clusters during the ethe clustering algorithm as described above. Afterwards, w
ergy minimization process, the clusters in low density sagi '

will slowly move towards regions with hiah densitv. r i run the cleaning step. If some cleaning was done (meanirng tha
slowly move fowards regions gh density, resmj some clusters did not respect the connexity constraintjhese

in very low convergence speed. To aIIeV|a_te this prObIerPe-apply the clustering step, with an additionnal embedded
Wwe propose to d|str|bute_ the clusters according to the tyensJ:hecking step. Figure 1 displays a local boundary contead us
function. To do so, we first compute a global average CIUStgﬁring clustering evolution. Each time a triangle has to

density: 1 move from one cluste€, to an other cluste€’, we check if
D = o Z Pj (13)  this modification does not break the connexity property ef th
J clusterC,. To do so, we perform two verifications:

where n is the number of desired clusters. This density « if one of the two neighbour triangl€és, or T; does not
corresponds to the average cumulated density that eadierclus  belong toC,,, then associating’; to C;, will not affect
should have at the end of the clustering process. We try to the connexity ofC,, and the modification is allowed
initialize the clustering with clusters having such a cuatedl « if both trianglesT’, andTy belong toC,, there still must
density. For each cluster, we randomly pick a free triangle be a path between them to ke€p connex. A sufficient
T (a triangle which was not previously associated to any condition (but not mandatory) is to check that all the
cluster) and grow a region arourifly until its cumulated triangles in the 0-ring of the verteX; belong toC,. If
density reachedD. If at some point some clusters remain this this condition is not true, we forbid the modification.



With this constraint, after the second clustering stepthedl As our approach works well when the number of output
clusters are guaranteed to have only one connex compongattices is much lower than the number of input vertices, we
Note that we do not take this constraint into account dutireg tfirst subdivided the Bunny model with a Butterfly subdivision
first minimization process, as it would significantly de®a scheme, in order to obtain a 280k vertices of the Bunny, well
the speed of the algorithm, and it could prevent the remowalited for our algorithm. Figure 6 shows the results obthine
of the input mesh topological noise. when coarsening the Turbine blade model to 20k verticese Not
that the topology of the original model is well respected, as
the small holes remain intact.

Once the clustering step is finished, the output mesh conigyre 7 shows a coarsened version of the david model with
nectivity can be build, based on the clustering. We creag@y vertices {=1). Figure 8 is a close-up view of the original
one vertex for each cluster. We also create output trianglggd coarsened versions of the David model to 20k vertices
whenever an input mesh vertex is adjacent to 3 or MOfe=0 and 1.5). Figure 9 shows two versions of the Dragon
different clusters. Valette and Chassery [1] propose tdreet yodel coarsened to 5k vertices=0 and 2). Figure 10 shows
output vertices geometry to the centroid of their respectiyoyr coarsened versions of the original Happy Buddha model
clusters, followed by a projection on the original mesh. Wgith 10k vertices {: 0, 0.5, 1 and 1.5).
propose an other approach: instead of projecting the esrti_c In all the presented results, when > 0, the vertices
on the original mesh, a more efficient is to use a quadrigre clearly concentrated in regions of high curvature. As a
based placement, in spirit with [28]: As explained in [S]cRa ¢onsequence, the sharp details of the original mesh are well
triangle 7); of the input mesh can be associated with a 4 preserved.
quadric matrix@; which represents a bilinear form usefull t0  apje | shows results obtained for all the models presented
compute the weighted quadratic distance between any pqiithis paper. The first column is the number of vertices of the
and the plane containin;. The quadrics of all the triangles oiginal mesh. The second one is the number of vertices of the
belonging to a given clustef; are sumed together, and an,arsened mesh. We computed two different objective @iter
"optimal” vertex position forC; is computed, according 10 5 measure the quality of the output meshes. One is based on
this sum, in accordance with [28]. the angles of the resulting triangles (the minimal anglg;,.,

Figure 4 shows a comparison between the approach pfga average minimal anglé,,, and the percentage of angles
posed in [1] (lef) and the quadrics-based approach (righf}hich are less than 30 degregs< 30°) and the second one is
on the Bunny model uniformly coarsened to 600 vertices. It 5ed on the triangles shape (minimal quafity,;., average
clear th_at fche quadric approach performs better approiomat quality Q.., which ranges between 0 and 1, as defined in
most significantly for the Bunny ears. [29]). The processing times were measured on a computer
with an Intel Pentium-M 1.5Ghz and 512 Mb RAM. Timings
are given only for the curvature indicator computation and
for the clustering step, as the timings for the meshing step a
negligible. The last column gives memory consumption of our
approach for all the tested meshes

E. Meshing and geometry enhancement

o

Fig. 4. Comparison between 2 approaches for vertices placenteft:
approach from [1]. Right : quadric based placement

VI. RESULTS

We have tried our approach on a large set of reference
meshes having up to several hundred thousands of verti@s.AflY. 5. Processing the Stanford Bunny. Left : curvaturedattir ¢ = 2).
insist on the fact that many previous approaches were unaBfght : coarsened model with 3k vertices
to process such big meshes, due to their complexity (high
number of vertices, presence of topological noise). Moegov
the David model has 65 non-manifold edges, but this did not
cause any problem to our algorithm. We proposed in this paper an efficient algorithm for adaptive
Figure 5 shows the curvature indicator computed for thmesh coarsening. Based on a discrete definition of Centroida
Bunny model, and the corresponding coarsened version to\8konoi Diagrams, the clustering can be fastly computedh wit
vertices. Note that the Input Bunny only has 70k verticekw memory requirements, and is therefore able to process

VIl. CONCLUSION AND PERSPECTIVES



Model #v #v2 o' Lmin Lav £ <30° | Qmin | Qav | curvature | clustering | Memory
(original) | (coarsened) (deg) | (deg) (%) (s) (s) MB
Blade 883k 20k 15| 0.08 36.7 10 0.02 | 0.69 142 108 308
Buddha 543k 10k 0 2.1 46.4 1.12 0.05 | 0.82 0 36 207
Buddha 543k 10k 05| 0.49 39.1 7.32 0.01 | 0.73 92 35 207
Buddha 543k 10k 1 0.49 39.1 7.32 0.01 | 0.73 92 48 207
Buddha 543k 10k 15| 0.49 39.1 7.32 0.01 | 0.73 92 45 207
David 507k 20k 0 0.85 46.8 1.1 0.02 | 0.83 0 24 161
David 507k 20k 1 0.24 40.2 6.4 0.01 | 0.74 82 31 161
David 507k 20k 15| 0.24 40.2 6.5 0.01 | 0.74 82 31 161
Dragon 437k 5k 0 3 47 1.2 0.09 | 0.84 0 22 166
Dragon 437k 5k 2 0.77 40 6.5 0.02 | 0.73 73 31 166
Bunny 70k 3k 1 1.26 38.1 8.1 0.04 | 0.71 21 8 68
TABLE |

TIMINGS AND QUALITY MEASUREMENTS FOR THE TESTED MESHES

large triangular meshes. In the future, we plan to give thjss]
approach an anisotropic behaviour, for fast and efficient ap
proximation of large meshes. [14]
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Fig. 6. Coarsened version of the Turbine Blade Model (20kaes,v = 1.5)

Fig. 7. Coarsened version of the David model (20k vertiees; 1)



Fig. 8. David model coarsened to 20k vertices. Left: origim@sh. Center: uniform coarsening £ 0). Right: curvature adapted coarsening=£ 1.5)

Fig. 10. Coarsened versions of the Happy Buddha model to &fices { = 0,0.5,1, 1.5)



