
HAL Id: hal-02272225
https://hal.science/hal-02272225v1

Submitted on 28 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Polygonal Mesh Simplification With Discrete
Centroidal Voronoi Diagrams

Sébastien Valette, Ioannis Kompatsiaris, Jean-Marc Chassery

To cite this version:
Sébastien Valette, Ioannis Kompatsiaris, Jean-Marc Chassery. Adaptive Polygonal Mesh Simplifica-
tion With Discrete Centroidal Voronoi Diagrams. ICMI, 2005, Tozeur, Tunisia. �hal-02272225�

https://hal.science/hal-02272225v1
https://hal.archives-ouvertes.fr

Adaptive Polygonal Mesh Simplification With
Discrete Centroidal Voronoi Diagrams

Sébastien Valette
Informatics and Telematics Institute

Thessaloniki
Greece

Email: valette@iti.gr

Ioannis Kompatsiaris
Informatics and Telematics Institute

Thessaloniki
Greece

Email: ikom@iti.gr

Jean-Marc Chassery
LIS

Grenoble
France

Email: jean-marc.chassery@lis.inpg.fr

Abstract— In this paper, we propose an adaptive polygonal
mesh coarsening algorithm. This approach is based on the
clustering of the input mesh triangles, driven by a discretized
variationnal definition of centroidal tesselations. It is able to
simplify meshes with high complexity i.e. meshes with a large
number of vertices and high genus. We demonstrate the ability
our scheme to simplify meshes according to local features such
as curvature measures. We also introduce an initial sampling
strategy which speeds up the algorithm, an on-the-fly checking
step to guarantee the validity of the clustering, and a post-
processing step to enhance the quality of the approximatingmesh.
Experimental results show the efficiency of our scheme both in
terms of speed and visual quality.

I. I NTRODUCTION

3D meshes are used in a vast majority of 3D applications
such as Computer Aided Design, Medical Imaging, Virtual
Reality and Video Games. 3D models are constructed by
designers, or can be generated automatically from real objects
using 3D scanners. Nowadays, the models can have up to
several million or even billion elements (vertices) and some-
times need a preprocessing step to match a given application
requirements. The processing step sometimes consists in re-
ducing the complexity of the mesh (in terms of number of
elements, topology or smoothness) to accelerate renderingor
transmission, increasing its elements aspect ratio (for accurate
finite elements analysis), or remeshing (to meet a given
connectivity constraint). As a consequence, automatic or semi-
automatic geometry processing becomes increasingly impor-
tant for interactions between various applications. We propose
in this paper an adaptive surface mesh coarsening algorithm,
which resamples the surface to a mesh with many fewer
elements than the original mesh. Our approach extends the
work of Valette and Chassery [1] to non-uniform Centroidal
Voronoi Diagrams. The complexity of our algorithm (in terms
of calculations and memory requirements) is low, allowing the
processing of large meshes, as shown in the results section,
where processing meshes with up to 1 million triangles within
a minute.

II. PREVIOUS WORK

Coarsening a mesh consists in resampling the original sur-
face with a lower number of vertices. The number of existing
approaches for mesh resampling is very high. For simplicity,

we can split the existing approaches in three categories:
refinement, decimation, or direct approaches, which will be
described more precisely, due to promising recent advances.

Refinement approaches [2], [3], [4], approximate the orig-
inal surface with a coarse mesh which is iteratively refined
until a given precision is reached.

Decimation approaches, such as [5], [6], [7], [8], [9] also
process the mesh iteratively, constructing several resolution
levels. For a given mesh, several resolution levels are con-
structed by means of elementary simplifications (edge collapse
or face merge, as an example), until the approximation error
reaches a user-defined maximum. A survey of coarsening
approaches is made in [10].

In opposition to the first two categories, direct approaches
(or remeshing approaches) compute a mesh with a given
number of elements or approximation error budget in a single
resolution way. Some approaches remesh the original surface
in a global parametric space [11], [12], [13], [14] They provide
good results, but are limited in practice by the parametrization
step, involving heavy calculations and numerical instability. To
overcome these problems, some approaches [15], [16] were
proposed, involving local parametrization and optimization of
the remeshed model. Other works [17], [18] distribute new
vertices directly on the original surface mesh, to build a new
tessellation which can be further optimized.

In [19] and [20] the authors propose to remesh the model
using geodesic distances: the new vertices are created using
geodesic front propagation. Note that the vertices distribution
can also be adapted to local curvature.

Note that remeshing approaches allow the construction of
meshes with as many vertices as wanted. Indeed, mesh coars-
ening is not the main goal of remeshing approaches, as they
permit other improvement (in terms of triangles aspect ratio)
and shape adapted remeshing (e.g. adaption of the sampling
according to the local curvature).

In [21] and [1], the triangles of the input mesh are clustered
and a new coarsened mesh is build based on the clustering.
These approach are efficient when the number of triangles of
the output mesh is much lower than the number of triangles
of the input mesh. The approach of Cohen-Steiner et al. [21]
aims to create approximation-efficient meshes, whereas the
approach of Valette and Chassery [1] aims to create uniform

output triangluations.
In [22], Nooruddin and Turk propose to simplify the mesh

topology by a volumetric approach: the mesh is converted
to a volumetric representation (voxels) which topology is
simplified by means of morphological operations. Afterwards,
the volume is re-converted to a polygonal model which is
further simplified.

We can also mention out-of-core approaches for coarsening
[23], [24], used for large models which do not fit entirely
inside the computer RAM.

III. O UR APPROACH

In this paper, we propose an algorithm for mesh coarsening,
which produces adaptive triangulations. Our approach can be
applied to manifold meshes with any genus and any number of
holes. The first step is a clustering of the mesh cells (triangles)
into a discrete Centroidal Voronoi Diagram (CVD), according
to a desired density function.

The second step consists in replacing each cluster by a
single vertex, and constructing the triangulation according to
the clusters adjacency relations. We assume that the subsam-
pling factor of the coarsening is high i.e. the ratio between
the number of original vertices and the number of vertices of
the resulting mesh is high. In this paper, we display results
with meshes which number of vertices is at least divided by
20. Those high subsampling ratios enable us to formalize a
clustering approach, noticing that even if the input surface
is a discrete set (the union of several polygons), it can be
seen as a continuous space, as the input polygons will be
small compared to the output ones. Note that our approach
simultaneously simplifies the mesh geometry and its topology,
and thus can be seen as a topological and geometric filter.

IV. T ECHNICAL BACKGROUND

In this section, we make an overview of Centroidal Voronoi
Diagrams (CVD) in terms of energy minimization, both for
their continuous and discretized versions. Supplementaryde-
tails can be found in [25] and [1]

A. Voronoi Diagrams

Given an open setΩ of R
a, and n different sites (or

seeds)zi;i=0,1,...,n−1, the Voronoi Diagram can be defined as
n distinct regionsCi such that:

Ci = {w ∈ Ω|d(w, zi) < d(w, zj)j = 0, 1, . . . , n − 1, j 6= i}
(1)

whered is a function of distance. These diagrams are well
known in the literature. The dual of a Voronoi Diagram is
a Delaunay triangulation, which has the property that the
outcircle of every triangle does not contain any other site.

B. Centroidal Voronoi Diagrams

A Centroidal Voronoi Diagram is a Voronoi Diagram where
each Voronoi sitezi is also the mass centroid of its Voronoi
Region:

zi =

∫

Ci
x.ρ(x)dx

∫

Ci
ρ(x)dx

(2)

whereρ(x) is a density function ofCi

Moreover, Centroidal Voronoi Diagrams minimize the en-
ergy given as:

E =

n−1
∑

i=0

∫

Ci

ρ(x)‖x − zi‖
2dx (3)

Constructing a Centroidal Voronoi Diagram (CVD) can be
done using K-means clustering and Lloyd’s relaxation method
[26], as an example. CVDs have intrinsic properties which
make them optimal for a wide range of applications[25]
because they optimize the compactness of the created Voronoi
Regions (see equation 3).

C. A discretized Central Voronoi Diagram definition

In [1], a discrete definition of CVD is given.Ω is no longer
a continuous space, but a polygonal meshM . Subsequently
we will only consider triangular meshes, but extension to the
polygonal case is straightforward. The discrete definitionof the
CVD falls into this constraint: the boundaries of each Voronoi
RegionCi is a subset of the edges ofM . As a consequence, a
Voronoi region is the union of several mesh trianglesTj . Note
that with such restriction, the regionsCi are no more Voronoi
regions in the strict sense. Constructing such diagram comes
now as a clustering problem: we want to merge the Triangles
Tj of the meshM into n clusters (which look like Voronoi
regions)Ci, each cluster having only 1 connected component.

D. Discrete minimization

The discrete definition of the CVD consists in reformulating
the energy termE (equation 3) and trying to find the clustering
minimizing E, which is now defined by:

E =

n−1
∑

i=0

∑

Tj∈Ci

∫

Tj

ρ(x)‖x − zi‖
2dx

 (4)

It is easy to demonstrate that the individual contribution of
each triangleTj to the global energy termE can be simplified
to: ∫

Tj

ρ(x)‖x − zi‖
2dx = ρj‖zi − γj‖

2 + Aj (5)

where

Aj =

∫

Tj

ρ(x)‖x − γi‖
2dx (6)

ρj =

∫

Tj

ρ(x)dx (7)

γj =
1

ρj

∫

Tj

ρ(x)xdx (8)

Aj depends only on the geometry ofTj and on the density
functionρ(x), ρ is the global weight ofTj according toρ(x)
andγj is the center of gravity ofTj . Note that in [1] the term
Aj was omitted, which was the first approximation made by

Fig. 1. Local neighbouthood used for the clustering evolution. The triangles
Tj andTk originally belong to the clustersCa andCb, and the test consists
in checking if changing the configuration (putingTj in Cb or Tk in Ca will
decrease the global energy term.

Valete and Chassery. But we will prove that excludingAj

from the computation does not influence the quality of the
results. By suming each triangle individual contribution to E,
following equation 5, it comes:

E =

n−1
∑

i=0

∑

Cj∈Vi

ρj‖zi − γj‖
2

 +
∑

j

Aj (9)

which proves that whatever the clusters configuration con-
sists in, the contribution of the termsAj will always be the
same. We can then safely omit their computation to minimize
a new energy term:

F =
n−1
∑

i=0

∑

Tj∈Ci

ρj‖γj − zi‖
2

 (10)

It is possible to efficiently minimize this energy term with an
iterative algorithm that updates the clustering accordingto tests
on the boundaries between the different clusters. Assuming
that a given edgee is on the boundary between two clusters
Ca andCb (see figure1),e has two adjacent trianglesTj and
Tk belonging respectively toCa andCb, three values ofF are
computed:

• Finit (the initial configuration) :Tj belongs toCa and
Tk belongs toCb.

• F1 (Ca grows andCb shrinks) : bothTj andTk belong
to Ca.

• F2 (Ca shrinks andCb grows): bothTj and Tk belong
to Cb.

the clusters configuration is updated according to the lowest
computed energy term betweenFinit,F1 andF2. By looping in
the boundary edge set (the set of edges between two different
clusters), we iteratively minimizeF . As F is always positive
and each local modification reduces F, the convergence of the
algorithm is guaranteed.

Moreover, it was shown that when processing one edge, the
comparison of the three values ofF for the three cases is not
needed, and instead of computing F, we only need to compute:

L = −

∥

∥

∥

∑

Tj∈Ca
ρjγj

∥

∥

∥

2

∑

Tj∈Ca
ρj

−

∥

∥

∥

∑

Tj∈Cb
ρjγj

∥

∥

∥

2

∑

Tj∈Cb
ρj

(11)

Fig. 2. A triangular plane falls into 4 parts having different vertices density
(left). Despite the sharp density changes, the clustering (right) remains uniform
over the plane

for each of the three cases. A fast and efficient computation
is possible by storing the values

∑

Tj∈Ca
ρjγj and

∑

Tj∈Ca
ρj

in accumulator arrays.
Figure 2 shows an example of clustering on a randomly

triangular plane. The original plane (right) consists in 4 areas
with a different sampling density. The four regions contain
respectively (from top left to botom right) 10000, 20000,
40000 and 80000 vertices. Notice that despite the sharp density
changes in the original sampling, the resulting clustering
(right) is still uniform.

V. OUR APPROACH

A. Curvature indicator as density function

In sharp contrast with [1], we propose to cluster the mesh
triangles in a non-uniform way. Adaptivity is a key feature
for many applications, when some parts of the mesh must
contain more vertices than other parts. As an example, it is
well known that approximating schemes must provide a high
vertices budget to regions with high curvature features. Inthis
paper, we propose to mimick an approximating scheme, by
giving to each triangleTj a weight ρj according to local
curvature measures. As we aim at applying our scheme to very
complex meshes, the curvature measure has to be very robust
against bad sampling conditions that may be encountered when
processing such models. We propose to compute a curvature
indicator with such properties. To do so, we calculate the
matrix A2×2 of the Weingarten map of the surface using a
polynomial fitting of the local neighbourhood of each triangle,
as explained in [27]. The local principal curvaturesEj,1 and
Ej,2 are the eigenvalues of A. In all our experiments, we chose
the neighbourhood of a triangle to be the union of the 2-ring
of its three vertices. Finally, we set each triangle weightρj to:

ρj = |Tj|
(√

E2
j,1 + E2

j,2

)γ

(12)

where |Tj | is the area ofTj and γ is a gradation parameter
which controls the curvature adapted bahaviour of our scheme.
In spirit with [12], setting γ = 0 will produce uniform
clustering whereas higher values ofγ will give more and more
importance to the regions with high curvatures. Figure 3 shows
the curvature indicator computed on the Happy Budda model

Fig. 3. Curvature indicator for the Happy Buddha model. Left: original
model, right: curvature indicator (higher values are brighter)

with γ = 1.5. Note that as expected, the regions with high
curvature depict higher values than relatively flat regions.

B. Efficient initial sampling

To begin the clustering process, an initial sampling step
must be done, to associate at least one triangle to each cluster.
In [1], the initial sampling is done by randomly picking one
triangle of the mesh for each cluster. As a consequence, the
clusters will be equally distributed over the original mesh.
This is convenient for uniform coarsening, as the goal is to
build clusters with the same surface. But this is not appropriate
for adaptive clustering, since the regions with higher density
should contain more clusters than regions with low density.
Indeed, if we randomly distribute the clusters during the en-
ergy minimization process, the clusters in low density regions
will slowly move towards regions with high density, resulting
in very low convergence speed. To alleviate this problem,
we propose to distribute the clusters according to the density
function. To do so, we first compute a global average cluster
density:

D =
1

n

∑

j

ρj (13)

where n is the number of desired clusters. This density
corresponds to the average cumulated density that each cluster
should have at the end of the clustering process. We try to
initialize the clustering with clusters having such a cumulated
density. For each cluster, we randomly pick a free triangle
Tf (a triangle which was not previously associated to any
cluster) and grow a region aroundTf until its cumulated
density reachesD. If at some point some clusters remain

to be initialized and no more triangles are free (which can
happen, as we operate on a discrete set), we randomly pick one
non-free triangle for each non initialized cluster. This initial
sampling strategy was proven to be efficient in accelerating
the convergence of the approach. As an example, clustering
the David model to 20k vertices with randomly picked initial
clusters took 44 seconds, and clustering with our initialization
algorithm took only 31 seconds.

C. Convergence issues

The clustering is based on the minimization of a positive
energy term defined on a discrete set. Each clustering evolu-
tion decreases the energy term, and the convergence of the
clustering is then theoretically guaranteed. In practice,some
numerical issues can appear. The computation of a curvature
indicator gives a different weightρj to each triangleTj.
Very low values ofρj could prevent the clustering algorithm
convergence, as the acumulator arrays might not have the
required precision range. This can also happen when one or
several triangles of the mesh have null or almost null area:
they could move from one cluster to an other one without
any noticeable consequences for the energy term, preventing
the clustering step to converge. To solve those problems, we
slightly modify the approach : We first compute the average
triangle weightρav, and a thresholdThρ = 10−5ρav. All the
clusters weights belowThρ are set toThρ, which will give a
significant value to the clusters having almost null weight.

D. Guaranteed valid clusters

Once the clustering done, each cluster has to be to be
a connex set of cells. One way to respect this constraint,
after the convergence algorithm, is to ”clean” the clusters
falling into several connected components, and to restart the
clustering step again. These two steps can be repeated until
the constraint is respected. Although this approach works well
in practice, there is no theoretical proof that it will always
succeed, and running alternatively the clustering step andthe
cleaning step can be computationally expensive. To overcome
these drawbacks, we run a three step algorithm. First, we run
the clustering algorithm as described above. Afterwards, we
run the cleaning step. If some cleaning was done (meaning that
some clusters did not respect the connexity constraint), wethen
re-apply the clustering step, with an additionnal embedded
checking step. Figure 1 displays a local boundary context used
during clustering evolution. Each time a triangleTj has to
move from one clusterCa to an other clusterCb, we check if
this modification does not break the connexity property of the
clusterCa. To do so, we perform two verifications:

• if one of the two neighbour trianglesTu or Td does not
belong toCa, then associatingTj to Cb will not affect
the connexity ofCa, and the modification is allowed

• if both trianglesTu andTd belong toCa, there still must
be a path between them to keepCa connex. A sufficient
condition (but not mandatory) is to check that all the
triangles in the 0-ring of the vertexVl belong toCa. If
this this condition is not true, we forbid the modification.

With this constraint, after the second clustering step, allthe
clusters are guaranteed to have only one connex component.
Note that we do not take this constraint into account during the
first minimization process, as it would significantly decrease
the speed of the algorithm, and it could prevent the removal
of the input mesh topological noise.

E. Meshing and geometry enhancement

Once the clustering step is finished, the output mesh con-
nectivity can be build, based on the clustering. We create
one vertex for each cluster. We also create output triangles
whenever an input mesh vertex is adjacent to 3 or more
different clusters. Valette and Chassery [1] propose to setthe
output vertices geometry to the centroid of their respective
clusters, followed by a projection on the original mesh. We
propose an other approach: instead of projecting the vertices
on the original mesh, a more efficient is to use a quadric-
based placement, in spirit with [28]: As explained in [5], each
triangleTj of the input mesh can be associated with a4 × 4
quadric matrixQj which represents a bilinear form usefull to
compute the weighted quadratic distance between any point
and the plane containingTj . The quadrics of all the triangles
belonging to a given clusterCi are sumed together, and an
”optimal” vertex position forCi is computed, according to
this sum, in accordance with [28].

Figure 4 shows a comparison between the approach pro-
posed in [1] (left) and the quadrics-based approach (right),
on the Bunny model uniformly coarsened to 600 vertices. It is
clear that the quadric approach performs better approximation,
most significantly for the Bunny ears.

Fig. 4. Comparison between 2 approaches for vertices placement. Left:
approach from [1]. Right : quadric based placement

VI. RESULTS

We have tried our approach on a large set of reference
meshes having up to several hundred thousands of vertices. We
insist on the fact that many previous approaches were unable
to process such big meshes, due to their complexity (high
number of vertices, presence of topological noise). Moreover,
the David model has 65 non-manifold edges, but this did not
cause any problem to our algorithm.

Figure 5 shows the curvature indicator computed for the
Bunny model, and the corresponding coarsened version to 3k
vertices. Note that the Input Bunny only has 70k vertices.

As our approach works well when the number of output
vertices is much lower than the number of input vertices, we
first subdivided the Bunny model with a Butterfly subdivision
scheme, in order to obtain a 280k vertices of the Bunny, well
suited for our algorithm. Figure 6 shows the results obtained
when coarsening the Turbine blade model to 20k vertices. Note
that the topology of the original model is well respected, as
the small holes remain intact.

Figure 7 shows a coarsened version of the david model with
20k vertices (γ=1). Figure 8 is a close-up view of the original
and coarsened versions of the David model to 20k vertices
(γ=0 and 1.5). Figure 9 shows two versions of the Dragon
model coarsened to 5k vertices (γ=0 and 2). Figure 10 shows
four coarsened versions of the original Happy Buddha model
with 10k vertices (γ: 0, 0.5, 1 and 1.5).

In all the presented results, whenγ > 0, the vertices
are clearly concentrated in regions of high curvature. As a
consequence, the sharp details of the original mesh are well
preserved.

Table I shows results obtained for all the models presented
in this paper. The first column is the number of vertices of the
original mesh. The second one is the number of vertices of the
coarsened mesh. We computed two different objective criteria
to measure the quality of the output meshes. One is based on
the angles of the resulting triangles (the minimal angle∠min,
the average minimal angle∠av, and the percentage of angles
which are less than 30 degrees∠ < 30o) and the second one is
based on the triangles shape (minimal qualityQmin, average
quality Qav, which ranges between 0 and 1, as defined in
[29]). The processing times were measured on a computer
with an Intel Pentium-M 1.5Ghz and 512 Mb RAM. Timings
are given only for the curvature indicator computation and
for the clustering step, as the timings for the meshing step are
negligible. The last column gives memory consumption of our
approach for all the tested meshes

Fig. 5. Processing the Stanford Bunny. Left : curvature indicator (γ = 2).
Right : coarsened model with 3k vertices

VII. C ONCLUSION AND PERSPECTIVES

We proposed in this paper an efficient algorithm for adaptive
mesh coarsening. Based on a discrete definition of Centroidal
Voronoi Diagrams, the clustering can be fastly computed with
low memory requirements, and is therefore able to process

Model #v #v2 γ ∠min ∠av ∠ < 30
o Qmin Qav curvature clustering Memory

(original) (coarsened) (deg) (deg) (%) (s) (s) MB

Blade 883k 20k 1.5 0.08 36.7 10 0.02 0.69 142 108 308

Buddha 543k 10k 0 2.1 46.4 1.12 0.05 0.82 0 36 207

Buddha 543k 10k 0.5 0.49 39.1 7.32 0.01 0.73 92 35 207

Buddha 543k 10k 1 0.49 39.1 7.32 0.01 0.73 92 48 207

Buddha 543k 10k 1.5 0.49 39.1 7.32 0.01 0.73 92 45 207

David 507k 20k 0 0.85 46.8 1.1 0.02 0.83 0 24 161

David 507k 20k 1 0.24 40.2 6.4 0.01 0.74 82 31 161

David 507k 20k 1.5 0.24 40.2 6.5 0.01 0.74 82 31 161

Dragon 437k 5k 0 3 47 1.2 0.09 0.84 0 22 166

Dragon 437k 5k 2 0.77 40 6.5 0.02 0.73 73 31 166

Bunny 70k 3k 1 1.26 38.1 8.1 0.04 0.71 21 8 68

TABLE I

T IMINGS AND QUALITY MEASUREMENTS FOR THE TESTED MESHES

large triangular meshes. In the future, we plan to give this
approach an anisotropic behaviour, for fast and efficient ap-
proximation of large meshes.

ACKNOWLEDGEMENTS

This work was founded by the Marie Curie Fellowship
Association. The models presented in this paper are courtesy
of Stanford University and the Digital Michelangelo Project
[30].

REFERENCES

[1] S. Valette and J.-M. Chassery, “Approximated centroidal voronoi di-
agrams for uniform polygonal mesh coarsening,”Computer Graphics
Forum (Eurographics 2004 proceedings), vol. 23, no. 3, pp. 381–389,
2004.

[2] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle, “Multiresolution analysis of arbitrary meshes,” Computer
Graphics, vol. 29, no. Annual Conference Series, pp. 173–182, 1995.

[3] H. Delingette, M. Hebert, and K. Ikeuchi, “Shape representation and
image segmentation using deformable surfaces,”Image and Vision
Computing, vol. 10(3), pp. 132–144, April 1992.

[4] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin,
“Maps: Multiresolution adaptive parameterization of surfaces,” ACM
SIGGRAPH Conference Proceedings, pp. 95–104, 1998.

[5] M. Garland and P. S. Heckbert, “Surface simplification using quadric
error metrics,” Computer Graphics, vol. 31, no. Annual Conference
Series, pp. 209–216, 1997.

[6] H. Hoppe, “Progressive meshes,”Computer Graphics, vol. 30, no.
Annual Conference Series, pp. 99–108, 1996.

[7] G. L. Miller, D. Talmor, and S. H. Teng, “Optimal good-aspect-ratio
coarsening for unstructured meshes,” inProceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, January 1997.

[8] J. Rossignac and P. Borrel, “Multi-resolution 3d approximations for ren-
dering complex scenes,” inGeometric Modeling in Computer Graphics,
B. F. Springer Verlag and T. Kunii, Eds., 1993, pp. 455–465.

[9] S. Valette and R. Prost, “Wavelet-based multiresolution analysis of
irregular surface meshes,”IEEE Transactions on Visualization ans
Computer Graphics, vol. 10, no. 2, pp. 113–122, 2004.

[10] P. S. Heckbert and M. Garland, “Survey of polygonal surface simplifi-
cation algorithms,”SIGGRAPH 97 courses notes, 1997.

[11] P. Alliez, M. Meyer, and M. Desbrun, “Interactive Geometry Remesh-
ing,” ACM Transactions on Graphics. Special issue for SIGGRAPH
conference, vol. 21(3), pp. 347–354, 2002.

[12] P. Alliez, É. C. de Verdière, O. Devillers, and M. Isenburg, “Isotropic
surface remeshing,” inProceedings of Shape Modeling International,
2003, pp. 49–58.

[13] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, andM. Desbrun,
“Anisotropic polygonal remeshing,”ACM Transactions on Graphics.
Special issue for SIGGRAPH conference, pp. 485–493, 2003.

[14] X. Gu, S. Gortler, and H. Hoppe, “Geometry images,”ACM SIGGRAPH
Conference Proceedings, pp. 355–361, 2002.

[15] V. Surazhsky, P. Alliez, and C. Gotsman, “Isotropic remeshing of
surfaces: a local parameterization approach,” inProceedings of 12th
International Meshing Roundtable, 2003.

[16] V. Surazhsky and C. Gotsman, “Explicit surface remeshing,” in Pro-
ceedings of the ACM/Eurographics Symposium on Geometry Processing,
June 2003.

[17] J. Lötjönen, P.-J. Reissman, I. E. Magnin, J. Nenonen, and T. Katila, “A
triangulation method of an arbitrary point set for biomagnetic problems,”
IEEE Transactions on Magnetics, vol. 34, no. 4, pp. 2228–2233, 1998.

[18] G. Turk, “Re-tiling polygonal surfaces,”Computer Graphics, vol. 26,
no. 2, pp. 55–64, 1992.

[19] G. Peyré and L. Cohen, “Geodesic remeshing using frontpropagation,”
in IEEE workshop on Variational, Geometric and Level Set Methods in
Computer Vision, 2003.

[20] O. Sifri, A. Sheffer, and C. Gotsman, “Geodesic-based surface remesh-
ing,” in International Meshing Roundtable, 2003.

[21] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variationnal Shape
Approximation,” ACM Transactions on Graphics. Special issue for
SIGGRAPH conference, 2004.

[22] F. Nooruddin and G. Turk, “Simplification and repair of polygonal mod-
els using volumetric techniques,”IEEE Transactions on Visualization
and Computer Graphics, vol. 9, no. 2, pp. 191–205, April-June 2003.

[23] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink,“Large
mesh simplification using processing sequences,” inIEEE Visualization
conference proceedings, 2003.

[24] J. Wu and L. Kobbelt, “A stream algorithm for the decimation of massive
meshes,”Graphics Interface Proceedings, pp. 185–192, 2003.

[25] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoitesselations:
applications and algorithms,”SIAM Review, no. 41(4), 1999.

[26] S. P. Lloyd, “Least squares quantization in pcm,”IEEE Trans. Inform.
Theory, vol. 28, pp. 129–137, Mar. 1982.

[27] F. Cazals and M. Pouget, “Estimating differential quantities using poly-
nomial fitting of osculating jets,”Computer Aided Geometric Design,
vol. 22(2), pp. 121–146, 2005.

[28] P. Lindstrom, “Out-of-core simplification of large polygonal models,”
in Siggraph 20000, Computer Graphics Proceedings, K. Akeley, Ed.
ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000, pp.
259–262.

[29] P. Frey and H. Borouchaki, “Surface mesh evaluation,” in 6th Interna-
tional Meshing Roundtable, 1997, pp. 363–374.

[30] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and
D. Fulk, “The digital michelangelo project,” inSIGGRAPH Conference
Proceedings, 2000, pp. 131–144.

Fig. 6. Coarsened version of the Turbine Blade Model (20k vertices,γ = 1.5)

Fig. 7. Coarsened version of the David model (20k vertices,γ = 1)

Fig. 8. David model coarsened to 20k vertices. Left: original mesh. Center: uniform coarsening (γ = 0). Right: curvature adapted coarsening (γ = 1.5)

Fig. 9. Dragon model coarsened to 5k vertices. Left: uniformcoarsening (γ = 0). Right: curvature adapted coarsening (γ = 2)

Fig. 10. Coarsened versions of the Happy Buddha model to 10k vertices (γ = 0, 0.5, 1, 1.5)

