Damien Chabrol 
  
Vincent David 
  
Patrice Oudin 
  
Gilles Zeppa 
  
Mathieu Jan 
  
Freedom from interference among time-triggered and angle-triggered tasks: a powertrain case study

Over the last years, the amount of software integrated in products like cars, planes, or trains has considerably grown in order to get more intelligent, more open and more communicating embedded systems. Due to this trend, the ability to manage the software complexity while respecting the safety constraints is now key for competitiveness in industrial domains such as automotive, aeronautic or railway.

To achieve this challenge, the real-time kernel plays a major role. Unfortunately the current technologies proposed by the market are handicapped by programming models with poor or nonexistent temporal semantics. This weakness is a really blocking point to keep under control the cost and the time-tomarket of safety-related and always more complex embedded systems.

To address these issues, KRONO-SAFE has extended its real-time kernel, called KRON-OS, in order to support an innovative programming model enabling to mix periodic and aperiodic real-time references while guaranteeing the freedom from interference among treatments and the determinism of system behavior on single-core and multi-core processors.

Introduction

Embedded systems are becoming widely present in all our daily products. This means more and more embedded software; Software is bringing many product innovations in order to achieve scalability, flexibility, connectivity, maintenance and management: the final value of a product is now largely based on its embedded software. Control of software technologies for embedded systems becomes a key asset for competitiveness. In addition, the boundaries between the "critical" systems and "comfort" vanish. By comfort system, we can consider: intelligent home, consumer electronics, e-health, digital city the smart-grid, and more. By "critical" systems, we mean aeronautics, railway, automotive and part of energy. In the world of critical applications, this trend has two impacts:

-Time to market pressure becomes higher, but certification requirements are not relaxed. Product development cycle and maintenance processes must be reviewed in order to achieve fast and safe results. -Several industrials can participate to the realization of a product (with different critical levels). The most critical parts of the applications must not be impacted by any malfunction of a non-critical function.

The industry requires compliance to safety certifications on single-core but not also on multi-cores platforms. In addition, it is now necessary to get the possibility to make the product evolve during its lifetime (offering additional functionalities typically).

The key element to control both the time-to-market and coexistence of critical and non-critical functions on a device is the real-time kernel (called also Real-Time Operating System and noted RTOS) which allows the share of hardware resources in a safe and effective manner. The technology evolution that needs the industry to perform a new revolution requires solving the current difficulties of RTOS. Indeed, "timing behavior in RTOSs is coarse and becomes increasingly uncontrollable as the complexity of the system increases" as said Professor Edward A. Lee [1].

Specifically for hard real-time systems, the tasks are often modeled as periodic activities which lead to the realization of multi-tasking systems based on fixed policy priorities [2] [3]. Nevertheless, this approach is absolutely not flexible. Typically the implementation of functions that are not periodic is complex and inefficient. The task will be activated even if no functional processing has to be done leading to unnecessary load of the system. If the system function behavior can change within a certain range, then its model becomes even more complex and the overall system efficiency is drastically reduced. In other words, although such systems are deployed industrially, their execution and programming models are too simple to be used in safety context because the confidence in the system is mainly based on analysis without guarantee.

Other approaches provide more flexible task model for describing the real-time tasks as a temporal activities of sequences [4] [5], a task being then represented as a graph of processing's with time constraints [6], which can even be data-dependent. When high flexibility and performance are required, a dynamic scheduling approach is necessary to optimally use execution resources. Besides, formal schedulability analysis can be performed to demonstrate the timeliness property of a system [4]. The drawback is that the number of preemption points for each task can become quite complex to evaluate. Besides, some application domains require systems to be built without temporal interference among their real-time tasks. This requirement for a "freedom from temporal interference" among real-time tasks therefore favors the use of static scheduling instead of dynamic scheduling approach [7] [8].

Current RTOS provide a set of services through an interface (called API) without proposing execution model to ensure a safe and efficient resource sharing mechanisms. It is then up to the developers through the offered programming model to design correctly the software architecture. Managing how the system should behave becomes a very hard task for the developer. It is very difficult to avoid errors and in particular at temporal level due to the numerous conversions between logical and real temporal units.

So, industrials need a new kind of solution in order to address performance, safety and flexibility together with time-to-market constraints. Performance refers to CPU and memory resources usage which should be consumed efficiently in order to avoid oversizing of hardware resource. Safety refers to compliance with safety standards thanks to determinism, noninterference, fault tolerance mechanisms completed by some proofs (sizing, execution) to build the confidence in the system. Flexibility refers to ability for the users to create, update, modify, extend, and reuse components with the help of tools that automatize complex and risked development phases.

This paper deals with the new paradigm included to KRON-OS which generalizes the Time-Triggered (TT) approach to external events, and which was briefly presented in [9]. The triggering of tasks can be linked to the occurrence of events from the controlled system, in addition to the classical physical time scale of the TT paradigm. Moreover, we present how this paradigm can be deployed in a safety context where deterministic behaviors, where output values will be unique for a same set of input values, and noninterference among functions shall be ensured. To target this requirement, KRON-OS helps to build more reliable real-time systems based on a flexible task model with a scheduling that relies on a static approach in order to master the freedom from interferences among tasks.

This paper is organized as follows: Section 2 describes the related work in the design of task and computational models that target hard real-time system. Section 3 then presents the KRON-OS solution, while section 4 describes its provided TIME-triggered paradigm. Section 5 shows its use on the DELPHI DIESEL SYSTEM powertrain use case. Finally, section 6 concludes and gives some perspectives.

Related works

In the event-trigger computational model, no constraints are applied on top of the periodic task model: tasks may perform I/O at any time when they are scheduled. This is what is classically found in TT approaches, such as in [10]. [START_REF] David | Safety properties ensured by the OASIS model for safety critical real-time systems[END_REF] introduces a flavor of the TT paradigm, which also let tasks perform I/O at any time when they are scheduled. The recurrent realtime tasks are statically represented as flexible cyclic graphs [START_REF] Lemerre | An introduction to time-constrained automata[END_REF], allowing any temporal triggering to be specified. The temporal constraints of a task can therefore be chosen depending on the result of an application-level condition. A dynamic scheduling of the chosen execution paths is performed. However, in both cases within multitasking systems this leads to I/O latency and jitter. The periodic control demand of the I/O operations [START_REF] Arzen | An introduction to control and scheduling co-design[END_REF] is therefore violated, resulting in a degradation of the control performance [START_REF] Wittenmark | Timing problems in real-time control systems[END_REF]. Besides, tasks may release useless jobs, from the control point of view, wasting resources. [START_REF] Henzinger | From control models to real-time code using Giotto[END_REF] is also a TT programming language and introduces the concept of Logical Execution Time (LET). It provides a programming abstraction for hard realtime applications which exhibit (only) time-periodic and multi-modal behavior. The reading of inputs is performed in logically zero time before the activation date of tasks, but in practice through hardware interrupts. This is called the one-sample computation model or the synchronized I/O computational model, as output is generated at the deadlines. A constant I/O latency of one sampling period is achieved. However, this reduces the schedulability of the system due to I/O interrupt handlers' execution.

GIOTTO [5]

In [START_REF] Lozoya | The one-shot task model for robust real-time embedded control systems[END_REF], the so-called one-shot task model is introduced. Sampling is done when the tasks start to be executed. However, outputs operations are performed only at the deadlines of tasks. Compared to the one-sample computation model, the number of interrupts handlers is reduced by half. In the worst-case, I/O latency is one sample but is generally lower, allowing faster reactions to perturbations. Finally, latency jitters are eliminated as the actuation is always done at job deadlines. In [START_REF] Cervin | The control server: a computational model for real-time control tasks[END_REF], another proposal for reducing the jitters consists in limiting the time interval where control jobs can execute. The control tasks is divided into a calculate output task and an update state task, whose deadlines are assigned through an off-line evaluation. In [START_REF] Albertos | Rt control scheduling to reduce control performance degrading[END_REF] and [START_REF] Balbastre | A task model to reduce control delays[END_REF], tasks are also divided into several subtasks: sampling, control and actuation. While limiting the jitters, the system schedulability is reduced because subtasks are forced to execute within shorter time intervals. In [START_REF] Buttazzo | Elastic scheduling for flexible workload management[END_REF], a task model is proposed which allow periodicity of task to be modified in order to optimize their values according to the current utilization of the system. In [START_REF] Velasco | The self triggered task model for real-time control systems[END_REF], a task model is also presented in order to jointly optimize the used computing resources and the control performance. The proposed tasks model allows each control task to trigger itself: the timing constraints are dynamically adjusted depending whether the controlled system is stable or subject to perturbations. To the best of our knowledge, xGIOTTO [START_REF] Sanvido | xGiotto language report[END_REF] [23] is our closest work. It is an extension of GIOTTO which can also deals with asynchronous events, in addition to the TT paradigm. Through a mechanism called event scoping, activities can start either due to physical timing constraints or on the occurrence of an external event. However, the synchronized I/O computational model, and its limited schedulability capability, still applies. Besides, the end of an activity must still be specified in physical time preventing the capability to define an (application specific) time scale for deadlines different than physical time. In addition, a delay exists between the occurrence of an event and the first activation instant of a related task since tasks being executed must first terminates.

KRON-OS : TIME-triggered paradigm

To address these needs for the design of nextgeneration real-time systems, KRONO-SAFE brings an innovative real-time kernel called KRON-OS. KRON-OS is a methodology for the design and the implementation of embedded real-time multitasking systems. In order to have a safe execution, KRON-OS helps the application designer to have a "correct by construction" real-time system. In order to achieve this, the execution support is totally abstracted from the developer's point of view and relies on a rigorous execution control concept including resources sharing (CPU, memory, I/O, multi-core support), monitoring, protection mechanisms (spatial and temporal partitioning) and error recovery mechanisms. Moreover, the system is designed to have deterministic behaviors (i.e. predictable and reproducible behaviors in both temporal and logical domains) in order to guarantee the consistency between offline analysis and tests, on one hand, and actual execution, on the other. Such determinism level is then reached by mastering sources of asynchronism (i.e. pre-emption due to scheduling policy, variations of the execution times, and communication delays) from the design level to execution. The tasks are then activated using a timetriggered approach where its time-scale, observations, and interactions are defined at the design step, allowing precise control of the system execution.

Historically, KRON-OS provided a time-triggered paradigm where time was only set by a timer. The following chapter show how this model is now extended to external trigger and how mix of such triggered paradigm is built.

a. Programming model

The dependability relies on the explicit and nonambiguous software description in order to bring a whole knowledge of all the application behavior. For this, the software functions must be specified without dissociating temporal and logical behaviors and must give all the run time hypotheses. To reach this objective, KRON-OS provides a language based on a declarative approach that allows to abstract critical aspects from the implementation: developers write their application needs (not how to implement it). By this way, application can be developed through a set of real-time components with rigorously specified and controlled resources. It has to be noticed that each task can adopt different time-scales and different temporal behaviors without considering real time execution at design level. KRON-OS is based on the TIME-Triggered execution paradigm. The system observes the environment and initiates its activities at predetermined points of the globally synchronized time. For each task, its timescale, observations, and interactions are defined at the design step, allowing precise control of the system. The decomposition in tasks corresponds exactly to the processing that should be executed in parallel (i.e. activities that are not directly dependent). No constraint on the decomposition of an application in tasks and the trigger source are imposed by KRON-OS. A TT task -also called an agent -is an autonomous entity defined by a deterministic labeled transition system, where labels represent elementary activities (denoted EA) representing sequential computation. Each EA has an associated deadline D, i.