N
N

N

HAL

open science

Dynamic software updates vs AUTOSAR
Hélene Martorell, Jean-Charles Fabre, Matthieu Roy, Régis Valentin

» To cite this version:

Hélene Martorell, Jean-Charles Fabre, Matthieu Roy, Régis Valentin. Dynamic software updates vs
AUTOSAR. Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse, France.

hal-02272217

HAL Id: hal-02272217
https://hal.science/hal-02272217
Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02272217
https://hal.archives-ouvertes.fr

Dynamic software updates vs AUTOSAR

Hélene Martorell'»?3, Jean-Charles Fabre?2, Matthieu Roy?#, and Régis Valentin'

! RENAULT Technocentre, 1, Avenue du Golf 78288 Guyancourt, France
{helene.martorell, regis.valentin}@renault.com,
2 LAAS-CNRS, 7 avenue du colonel Roche, Toulouse, France
{martorell, fabre, roy}@laas.fr
3 Univ. de Toulouse, INP, LAAS, F-31400 Toulouse, France
4 Univ. de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. Automotive systems are now shifting to become more software-based machines. The
AUTOSAR (AUTomotive Open System ARchitecture) standard defines a software architecture,
which remains quite static: this is one of its main drawbacks. Before a vehicle is put in operation,
the whole software system is tested, validated and then uploaded in ECUs in a monolithic
fashion. Improving adaptability of software system would allow car manufacturers to easily
modify the initial configuration or provide additional features to the customers. For this reason
after a careful analysis of the main concepts of the standard, we defined an approach for allowing
dynamic updates. Currently such modifications are not supported by the standard, but could
lead to significant gain in time and resources. Based on this approach we analysed the undesired
events that could arise in consequence of the mechanisms added for the updates. Then safety
features are suggested in order to help preventing these hazards, in terms of prevention and
tolerance.

Keywords - Dynamic Update, AUTOSAR, Automotive, Embedded Systems, Safety

1 Introduction

Todays vehicles are becoming increasingly software intensive. In this field, quality, cost and time-to-
market criterion are paramount. For this reason the AUTOSAR [1] [2] (AUTomotive Open System
Architecture) standard was designed. It defines a component-based software architecture that aims at
increasing reuse by abstracting the hardware away.

AUTOSAR presents a static architecture since everything must be known at compile time, before
the ECUs (Electronic Control Units) are loaded with the software. This means that adding new
functionalities is not straightforward. Yet, it is becoming necessary : it will for example allow the car’s
owner to benefit from features that did not exist when his car was produced. A consequence of this
kind of technique could be a reduction of the amount of software uploaded on production line and a
specialization of the ECU in order to fulfil clients customization wishes [3]. A simple example in which
this approach could be used is adding a pulse electric window control in order to increase comfort and
safety.

Moreover this will guarantee the car owner to have the most recent version of all functionalities in
his vehicle at any given time whereas charging the whole application at once could result in having
some obsolete ones.

The contribution of this paper consists in the presentation of an approach for allowing partial
and dynamic updates a posteriori, i.e. to prevent from reloading the whole application software for
a limited update in an AUTOSAR platform. This allows for incremental updates: only the required
functionalities are uploaded or upgraded.



Note that the objective is not only to allow for adding new function but also to update existing
one. The mechanisms used for both approach are identical.

It relies on a number of concepts and tool. Indeed, AUTOSAR requires a specific development
process to be followed and our approach will result in minor changes in this process. The latter are
handled with specific tools that we developed. The key concept for allowing updates is the introduction
of specific placeholders when designing original application, called containers, which can later be filled
in with new functionalities.

To complement these mechanisms for updates, specific safety features are also desirable. Usually
a number of specific mechanisms for safety are introduced when creating the automotive system.
Nevertheless, since we aim at introducing new concepts and eventually execute new code in the
system, it is also important to sum up the available features and add new ones if necessary. Indeed,
the final application should fulfil the requirements and methods of ISO 26262.

The paper is organized as follows: Section [2 presents briefly the key concepts, abstracted from the
AUTOSAR standard. We then present the overall approach itself in Section |3 describe shortly our
design for adaptation in Section and apply this approach to a case study in Section [4 Finally,
address related works in Section [6] and conclude.

2 Context

This section presents the different concepts required to define our methodology. It is based on the
AUTOSAR standard, that defines i) the different concepts of automotive embedded software archi-
tectures and 7i) AUTOSAR OS, mainly based on OSEK [4], which was the previous standard defining
the characteristics of OS used in vehicles.

The presentation of AUTOSAR and AUTOSAR OS in this section is oriented towards the identifi-
cation of the key elements for defining adaptation areas. It is certainly brief and incomplete but it only
aims at identifying the different dimensions of an application which will be necessary for modelling
AUTOSAR based applications and defining a reference for adaptation.

2.1 Architecture

AUTOSAR presents a layered architecture that allows abstracting away from the hardware. It consists
in 4 different levels. The bottom one is the hardware, on top of which stands the basic software. The
latter contains low-level drivers and services along with the operating system. Then there is the RTE
(Run-Time Environment), which acts as an ad-hoc middleware that handles communications in the
ECU (Electronic Control Unit). Finally the top layer contains the Software Components (SWC) that
use the services offered by the lower layers. The SWC corresponds to the functions realized by the
ECU often called the “applicative software”.

2.2 Structural Concepts

RTE (Run-Time Environment) It corresponds to glue code specifically generated for each ECU
in order to handle communications. Communication can either be between different SWCs or between
SWCs and the Basic Software.

SWC (Software Component) SWC do not have any existence in the final implementation: they
are made of runnables: piece of software that actually realizes functions. The runnables are actually
mapped onto the tasks of the OS for execution.



3

Communication There are two types of communication: Implicit for which data are read at the
beginning and written at the end of an execution instance and Ezplicit for which data are read when
needed and written when produced during the execution. All data are passed through the RTE.

2.3 Runnables
Based on their communication requirements, the runnables can be divided into 3 categories :

— Cat. 1A: Implicit Data.

— Cat. 1B: Explicit Data.

— Cat. 2: Eaxplicit Data and can use extra synchronization point in its execution (to wait for an
external event).

This distinction corresponds to the different timing behaviour. When using implicit data, the
runnable will complete in a finite amount of time. Explicit data, on the other hand will result in
calling an external function for which response time is not known by its caller. Finally when the
runnable can wait for an external event, it is hard to predict when this event will arise (e.g. if the
expected event is the user pressing the warn lights button).

2.4 Tasks

To be executed runnables need to be allocated into an OS task. There are two kinds of tasks basic and
extended. Basic tasks can only be in 3 states : running, suspended or ready. Therefore they cannot
wait for external events. Extended tasks have one extra state : waiting which allows them to wait for
an external event before resuming their execution.

The category of runnable will determine the kind of task the runnable can be mapped onto: Cat.
2 runnables can only be mapped onto extended tasks.

3 Overall Approach

In this work the updates only focus on the application layer. As explained in section [2.2] components
in AUTOSAR are just a collection of runnable. Therefore we aim here at updating one runnable
to begin with. This way, updating several runnables could amount to updating a complete SWC.
We focus here on an incremental update: adding new functionalities or upgrading existing one (for
example, for a more up-to-date version) in an embedded application running in an ECU. Nevertheless
both these changes use the same update mechanisms and therefore upgrade are handled in the same
way as updates. Therefore they will not be differentiated in the rest of this paper.

3.1 Adaptation Area

Partial dynamic updates are not supported in AUTOSAR specifications: everything must be defined
at design time for generating the RTE. Therefore we have to integrate in the process the mechanisms
for future updates.

This is the reason why we introduced a new concept called Adaptation Areas. They correspond to
a set of specific properties that can define a space in the application. The concepts defined in section
help us design these areas. We will focus here on an adaptation area for one runnable since this is
the desired granularity for updates.

Characteristics for the adaptation areas are created on a structural level. The relevant features for
update are the following:



4

— Activation mode and Trigger: is the runnable periodic or sporadic and what kind of event will

trigger its execution?

— Category: this depends on the characteristics of the runnable : the kind of communication it uses
(implicit or explicit, see and the presence or absence of wait points.

— Data and Access mode: the runnable needs to communicate with its environment, this corresponds
to the data used for communication and their mode (implicit or explicit).

Figl[Th shows these various characteristics on a radar. Taking a value on each axis would allow to

define an adaptation area from a structural standpoint.

3.2 Container and parameters

We call container the implementation counterpart of the adaptation area. That is to say it is a physical
representation placed in the application with specific characteristics. Its role is to be later filled with

updates.

Containers are introduced in the application at design time and represent an empty space for future
updates. A specific container will corresponds to all the structural features defined by its adaptation
area. In addition to these features it will have to be integrated at implementation level (implementation
parameters). That is to say containers have to be scheduled for future execution, and time must be
planned ahead for them. A container is therefore located into a task and is executed at run-time. It

is initially empty.

Fig. 1a : Adaptation Areas

Activation mode
& Trigger

Activation mode
determines the kind of
task the runnable
shoud be allocated to.
[Periodic/Sporadic ]

Access mode of data is
linked to the category.

It is important to determine
which data the runnable
manipulates to place it in its
environment

ata &
Acess Mode

Category [1A: Implicit Data
1B : Explicit Data
2 : Wait point + Explicit Datal

Empty containers
placed in relevant

[
ﬁ tasks

Run-Time
Consumption
. Memory
Triggers Available
Tasks

Fig. 1b : Implementation Parameters

Fig. 1. Container Definition

Based on our study of the standard, we determined two level of design that have direct impact on




5

the containers : structural and implementation. Firstly containers aim at harbouring new runnables.
Therefore they will represent placeholder for a runnable with corresponding structural characteristics.
There characteristics are those of the adaptation areas described in section (activation mode, data
and access mode, activation mode and trigger).

Implementation characteristics also have an influence on the location of the empty container. In
particular, for the subsequent update memory consumption and Worst Case Execution Time (WCET)
need to be determined. This is necessary for integrating the update in an existing and running ap-
plication. Fig. shows the specific implementation characteristics for an automotive application.
Containers must fit in within these characteristics for being fully integrated. That is to say, containers
must have a defined run-time consumption (we use here their WCET), and they must belong to a
specific task with all its characteristics (period (if periodic) or event that activate it (if sporadic),
priority, preemptive or not) and that will activated by a trigger. The memory space then corresponds
to the available memory for containers after the application is loaded in the ECU. Note that when
adding an update inside a container run-time characteristics have to be taken into account : that is to
say we must know the desired schedule for the update so that it will execute at the appropriate time
regarding its surrounding runnables and the required communications.

Finally, based on both the structural and the implementation characteristics, the containers are
comprehensively defined and can be integrated in the application and loaded within it in the ECU.
Therefore the base application will execute exactly as if containers were not there.

As already mentioned, in this work we aim not only at allowing updates, i.e. the addition of
new functionalities in the ECU, but also upgrade. The latter corresponds to the replacement of an
existing functionality by a more up-to date version. Both these possibilities rely on the same underlying
implementation.

3.3 Design for adaptation

In this work several hypothesis are made: firstly we are using a pre-wired approach. This means that
every degree of freedom is added at design time. Therefore when the update happens, verification
of availability should be performed, but the mechanisms are already integrated in the application.
Besides, RTE and Basic Software are considered as fixed as we only aimed at adding new software
functionalities. This means that it is not possible to add new communications channels within the
RTE or to get communications from other ECUs that are not intended to our ECU. Therefore, since
an update will need to communicate with its environment, it will reuse exising channels. This can lead
to problems that will be described subsequently.

AUTOSAR defines specific processes for creating automotive embedded software that complies
with the standard. For this reason, the changes done to the process have to be automated in order
to fit in the tool chain [5]. Fig. [2| shows a simplified development process for automotive embedded
software. It shows that, based on specifications, a global model for the software is derived. Then from
this model an AUTOSAR model is designed. Note that these two model usually represents software
distributed on several ECUs. Then for each ECU

We can see here that there are two steps that need modifying. The first one is upstream and
consists in adding the containers. This way since the next steps will rely on informations of the
Software Functional Model the containers will also exists in subsequent steps. Then an AUTOSAR
model, from which the lower layers of the architecture are generated, needs to be developed. In parallel
of this, a functional model is created for obtaining the Applicative Software. The second level of changes
occurs after the generation of lower level software. Indeed, implementation changes have to be made
for adding the actual low-level update mechanisms.

In order to comply with the tool-based AUTOSAR process, we defined new ones for performing
the previously described changes in the process. The first one will allow to add the containers in the



6

application. Then there is a set of tools for adding the specific mechanisms automatically. This set of
tools needs an access to the RTE source code.

It is worth noting that these tools can be used on different automotive application that comply
with the AUTOSAR standard.

Functional Needs

Adding Software
Containers unctional Mode

AUTOSAR Model

N

Lower Layer

Adding
Loader, Flash

Manager, Software (RTE, Applicative
Update Basic Software, OS Software
Manager, !

Indirections

TN  AUTOSAR
o JRROSC oo

AUTOSAR Runtime Environment (RTE)

Fig. 2. Simplified Development process for an automotive application

One of the main ideas for allowing effective changes at run-time is the addition of an extra level
of indirection between the runnable and its caller. This will enable us to change the runnable without
modifying the general structure. This is also the technique used for filling in the containers. This level
of indirection is added off-line when preparing the application.

During the lifetime of the system, after the ECU is uploaded with the base application and the con-
tainer, update can then take place. When an update occurs, a container with characteristics matching
those of the update runnable has to be found by the update manager for uploading. Update Man-
ager actually groups several functions. The first one is the loader that enables to upload the update
runnable into the ECU from an external source. The second one is the Flash Manager that will copy
the runnable in the appropriate location of the ECU. Finally the actual update manager handles
the on-line checks before allowing the update (e.g. finding a suitable container, checking the memory
space, etc) and the after the upload is performed (checking that the update was properly integrated
in the application).

4 Case Study

In order to test our approach we extracted from an ECU similar to BCM (Body Control Module)
a simple application that we modified. This application is used for controlling the blinkers in a car.
It reads from the sensors (turn switch sensors and warn light sensor), proceeds the received data
and sends a signal to the actuators in order to trigger the flashing of the light bulbs. In our case,
for demonstration purposes we used the buttons and LEDs provided by the extension board of the
microcontroller. The test target was a PowerPc type 5510.



7

We created containers placed into tasks that could later be used for updates. We identified two
main case study that we deemed interesting regarding the blinkers : adding impulse control blinker
and emergency brake warning. The first case can be described as follow : when a short impulse is
detected on the left or right turn switch sensor, then the blinker should blink 3 times. This can be
used for example when changing lane. The second case is more related to safety : when the driver
brakes suddenly, the warning should be trigger until the car restarts.

This two case study enable to experiment on the both approach : the first case will result in
upgrading an existing functionality in order to improve it and the second one will add new functionality
using a container.

Run-time impact of the update mechanisms is very limited : the first one is the dereference of
function pointers which is negligible, and the second one is the execution of the update manager
which is limited since it seldom executes. The update themselves have an impact on the runtime, but
this is taken into account at design time since specific time slots are left available for this purpose.

Memory-wise the update will be stored in available memory, therefore limiting their impact. Mem-
ory consumption is also increased by the meta-data necessary for each container and existing runnables,
and by the size of the update manager. The latter is fixed and therefore when the application grows
its impact will be increasingly negligible. The meta data represent a very limited amount of mem-
ory, but will grow linearly with the application (more runnable and more containers will mean more
meta-data).

5 Safety mechanisms

The added update mechanisms and the actual updates that are inserted afterwards in the application
could lead to undesired events. Thus, their consequences should be studied beforehand and features
added for guaranteeing that the updates will not harm the system.

There are two levels of tests for the updates. The first level is off-line for making sure that it
fulfils the correct properties and that its functional behaviour is consistent. The second one is on-line
for verifying the update in its context and making sure that the update runnable can be fit in the
application.

It is worth noting that the new version of the system, including the update must be validated by
the manufacturer testing process off-line. However, some runtime problems may affect these additional
application features. It is thus reasonable to encapsulate the updates by means of fault containment
wrappers.

Tests should be first performed at upload time: the system should check its ability to receive the
new runnable. Not only memory-wise, but also from a structural and a run-time point of view. The
memory criterion is the simplest one: is there enough available space in the ECU for loading the
update. Then the structural one corresponds to the presence of an empty container that has matching
characteristics. Finally on a run-time point of view, we must make sure that the WCET of this update
can be fit in the schedule.

One of the important mechanism that should be studied is the reuse of existing communication
mechanisms. Channel can be used either to read data or to write them. For reading purposes, if
two runnables have to read the same data in order to make a decision, this data should not only
be consistent for both of them, but also available. That is to say the reading of the data should
not be destructive and the synchronization should be appropriate. When it comes to writing, the
main concern is data racing : if two runnables are using the same channel, arbitration is necessary to
determine which should be using the channel. This arbitration can for example be implemented using
a third-party as an arbitrator.



8
6 Related Work

The field of component-based architectures and dynamic updates of software has been researched for a
long time: McIllroy was the first to describe it in 1969 |6] and ever since component-oriented software
have been extensively developed in various fields. Indeed, it provides with more adaptable software
that will enable cheaper maintenance, better ability to cope with complexity, to increase the quality
and evolution of the software [7].

Regarding methods for dynamic updates based on components, there are three major types of
approaches: routine-based update, component-based update and updates at the granularity the whole
program.

Routine-based update corresponds to a finer granularity as it typically updates individual functions
or objects. For example Ksplice [8] uses a system of patches for hot updates on operating system’s
kernels without reboot, and replaces entire functions. Our approach does not focus on the operating
system but instead on the applicative and middleware level. Ginseng [9] explores the same concepts:
using patches for dynamic updates of C programs, in order to perform fine-grained updates while
insuring a continuity for the state of the program. Yet, this approach requires access to the source
code of the application and AUTOSAR allows both source code and object code with appropriate
XML description for SWC. Besides, this approach was not designed for embedded systems either.
Nevertheless the underlying concept that we want to explore for allowing dynamic update in an
automotive embedded context are similar. That is to say we need to make the code dynamically
updatable. It is worth noting that the AUTOSAR methodology is built around a tool-chain [5], which
means that dynamic update will require to add an extra step.

In [10], Li et al. present an OSGI-based automotive specification. OSGI is a component-based
platform that enables to download, install and uninstall bundle(service application). However their
approach does not comply with the AUTOSAR specification and it relies on the Java language. Besides
it focuses on the infotainment part of the automotive system. Another component-based approach
for embedded systems is described in [11]. However in their approach they introduce a component
manager that is itself an updatable component, to handle dynamic update and wiring for the other
component. They present update algorithm, state transfer and specific update points in the execution
of the program.

On the other hand, in [12], several methods for dynamic updates in component-oriented embedded
systems are presented. Yet, none of them is specifically designed for automotive embedded systems.

In [11], the authors present a framework that enables dynamic update for component-based em-
bedded system. However in their approach they introduce a component manager that is itself an
updatable component, to handle dynamic update and wiring for the other component. They present
update algorithm, state transfer and specific update points in the execution of the program.

Safety-wise various approaches exist when it comes to adding safety mechanisms either in auto-
motive [13] [14] or more generally for component-based system [15]. However, we need here an ad-hoc
approach that can reuse some of these mechanisms but for in a targeted way for guaranteeing the
safety of the added updates.

7 Conclusion

This paper presents a brief overview the AUTOSAR-related concepts relevant for allowing dynamic
update of software in an AUTOSAR application. We also presented the model we built for designing
adaptation areas and the associated containers, which are implementation counterparts of adaptation
areas. These container correspond to placeholders in the application for future updates. Details of the
design for adaptation and applying the concepts on a specific example were also treated in the last
sections of this paper. In this work, we use a “pre-wired” approach, that is to say we define a priori,



9

when conceiving the application, some adaptation containers that can afterwards be filled in with new
runnables.

Then when all the dimensions for the desired container are known, it can be integrated in the
actual embedded application and latter used for storing and executing update runnables. It is relevant
to place several container presenting different characteristics in the application to perform several
updates.

In this paper, we focused on the concepts that are necessary for dynamic update and a model
for empty containers that can be placed into wisely chosen location for allowing posterior dynamic
updates. The adaptation engine that will perform the actual update is beyond the scope of this
paper. Nevertheless, this engine should handle several contingencies such as keeping track of the
available containers, detecting new updates available and loading them or modifying the application
for executing the updates.

It is also important to highlight that dynamic updates have to be carefully monitored for safety
purposes: the update should not prevent the system from working properly. We present here briefly
the contingencies that are related to the use of containers for the updates.

References

1. AUTOSAR Development Cooperation, http://www.autosar.org.

2. S. Furst, J. Mossinger, S. Bunzel, T. Weber, F. Kirschke-Biller, P. Heitkmper, G. Kinkelin, K. Nishikawa,
and K. Lange, “Autosar - a worldwide standard is on the road,” International VDI Congress Electronic
Systems for Vehicles, 2009.

3. S. Mollman, “From cars to tvs, apps are spreading to the real world,” CNN, October 2009,
http://edition.cnn.com/2009/TECH/10/08/apps.realworld/.

4. OSEK Group, “Osek/vdx operating system (release 2.2.3),” 2005, http://portal.osek-vdx.org/.

5. S. Voget and P. Favrais, “Autosar and the automotive tool chain,” Methodology, 2010.

6. M. D. Mcllroy, “Mass-produced software components,” Proc. NATO Conf. on Software Engineering,
Garmisch, Germany, 1968.

7. 1. Crnkovic, “Component-based software engineering - new challenges in software development,” in Infor-
mation Technology Interfaces, 2008. ITI 2003. Proceedings of the 25th International Conference on, june
2003, pp. 9 — 18.

8. J. Arnold and M. F. Kaashoek, “Ksplice: automatic rebootless kernel updates,” in In Proceedings of the
4th ACM FEuropean conference on Computer systems, 2009, pp. 187 — 198.

9. I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical dynamic software updating for C,” in Proceedings
of the ACM Conference on Programming Language Design and Implementation (PLDI), June 2006, pp.
72-83.

10. Y. Li, F. Wang, F. He, and Z. Li, “Osgi-based service gateway architecture for intelligent automobiles,”
in Intelligent Vehicles Symposium, 2005. Proceedings. IEEE, june 2005, pp. 861 — 865.

11. M. Wahler, S. Richter, and M. Oriol, “Dynamic software updates for real-time systems,” in Proceedings
of the 2nd International Workshop on Hot Topics in Software Upgrades, ser. HotSWUp '09. New York,
NY, USA: ACM, 2009, pp. 2:1-2:6.

12. B. Y. Vandewoude Yves, “An overview and assessment of dynamic update methods for component-oriented
embedded systems,,” in proceedings of The international Conference on Software Engineering Research
and Practice, Las Vegas USA, 2002, pp. 521-527.

13. C. Lu, J.-C. Fabre, and M.-O. Killijian, “An approach for improving Fault-Tolerance in Automotive
Modular Embedded Software,” in 17th International Conference on Real-Time and Network Systems,
Paris, France, 2009, pp. 132-147.

14. T. Piper, S. Winter, P. Manns, and N. Suri, “Instrumenting autosar for dependability assessment: A
guidance framework,” in DSN, 2012, pp. 1-12.

15. M. Stoicescu, J.-C. Fabre, and M. Roy, “From design for adaptation to component-based resilient com-
puting,” in PRDC, 2012, pp. 1-10.


http://portal.osek-vdx.org/

	Dynamic software updates vs AUTOSAR

