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Abstract

We propose a new subdivision scheme derived from the

Lounsbery’s regular 1:4 face split, allowing

multiresolution analysis of irregularly subdivided

triangular meshes by the wavelet transforms. Some

experimental results on real medical meshes prove the

efficiency of this approach in multiresolution schemes. In

addition we show the effectiveness of the proposed

algorithm for lossless compression.

1. Introduction

Multiresolution analysis of 3D objects is receiving a lot of

attention nowadays, due to the practical interest of 3D

modelling in a wider and wider range of applications.

Multiresolution analysis of these objects gives some

useful features : several levels of details can be built for

these objects, accelerating the rendering when there is no

need for sharp details, and allowing progressive

transmission. Another feature is that multiresolution

analysis can be an efficient way for data compression. A

survey of the existing methods used to simplify meshes

which is the first step for processing multiresolution

analysis, like vertex decimation [2], edge contraction [3]

and wavelet surfaces [4], was reported in [1]. We put our

attention on the third method, because wavelets are well-

suited for multiresolution analysis. In section 2, we will

shortly explain multiresolution analysis of meshes [3], and

show its drawbacks in practical implementation, which we

improved, as described in section 3. In section 4, we show

why our proposal is suitable for compression.  The next

part  (section 5) gives the results obtained with this new

scheme.

2. Lounsbery's wavelets based

multiresolution scheme

In wavelets decomposition, a mesh (for example a

tetrahedron, see figure 1.a) is quaternary subdivided

(figure 1.b) and deformed (figure 1.c), to make it fit the

surface to approximate. Subdividing the mesh consists in

splitting each triangular face into four faces. These steps

can be processed depending on the required resolution

levels.

Figure 1: the subdivision scheme
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Multiresolution analysis is computed with two analysis

filters A
j
 and B

j
 for each resolution level j. Reconstruction

is done with two synthesis filters P
j
 and Q

j
. These filters

are represented with matrix notation and, to ensure exact

reconstruction, must satisfy the following constraint:
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Let us call C
i
 the N(j)x3 matrix giving the coordinates of

each vertex of the mesh at the resolution level j. Then we

have the relations:
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D
j
 represents the wavelet coefficients of the mesh,

necessary to reconstruct C
j+1

 from C
j
. From a theoretical

point of view, each column of the P
j
 matrix (respectively

the Q
j
 matrix) represents a scaling function (respectively a

wavelet function). These functions are defined on a 3D

space fixed by the mesh topology.



 We apply the lifting scheme [6] which consists here in

constructing wavelet functions (starting from the hat

function, figure 2.a) orthogonal to the scaling functions

(which are hat functions too, but with a twice wider

support). Without the lifting scheme, Lounsbery's

multiresolution analysis would simply consist in

subsampling the mesh, but with the lifting, the mesh at

resolution level j is ensured to be the best approximation

in the mean square sense for the mesh at level j+1. The

main material for the lifting is the inner product between

two functions defined by Lounsbery as:
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∆(M) is the set of triangles τ of the mesh and Kj is a

constant for a given resolution level j. (Kj=4
-j
). Note that

in this inner product it is assumed that the triangular faces

of the mesh have the same area. The consequence of this

assumption is that a mesh at resolution level j will

effectively be the best approximation of the mesh at level

j+1 only if this constraint is fulfilled. We can see in figure

2.b) the effects of the lifting scheme on the hat function

showed in figure 2.a).

Figure 2: wavelets in 3D

a)      b)

Wavelet surfaces give a powerful tool for multiresolution

analysis. However, in the simplification process, the major

drawback is that faces are always merged four to one to

have a simpler mesh. If the mesh does not respect this

connectivity constraint, one has to process a resampling of

the mesh, which results in a mesh having more faces than

the original, as explained in details in [5]. The aim of this

work is to solve this problem by improving the

subdivision process, as described in the next section.

3. A proposal for irregular subdivision

In the proposed scheme, the subdivision process is

changed : each face of the mesh to subdivide is no more

systematically split into four faces, but can also be split

into three or two faces or remain unchanged. As an

example, four different cases of subdivision are shown in

figure 3. This approach allows to simplify meshes even if

some faces cannot be merged four to one.

Figure 3: some possible cases of subdivision

The simplification is done with an algorithm that merges

the faces of a mesh, considering rules established by the

subdivision process. Figure 4 shows an example, where 15

faces are reduced to 6, resulting from merging 4 :1 faces

for G2, 3 :1 faces for G3 and G6, 2 :1 faces for G1 and

G4 and keeping one face unchanged for G5.

Figure 4: an example of surface simplification

G1

G2 G3

G6
G5

G4

One important consequence of the simplification rules is

that a vertex can be removed during the simplification

process only if its valence is equal to 4, 5 or 6. Clearly the

efficiency of our algorithm depends on the number of

removable vertices in the mesh. Fortunately, meshes

usually have such vertices, and during the simplification,

the valence of the vertices tends to decrease. As an

example, the vertex V1 shown in figure 4 has a valence of

7, which makes it impossible to remove, but after one

simplification step, its valence is reduced to 5, and the

algorithm will be able to remove it in a further step.

Briefly, the simplification algorithm starts by merging 4

faces to 1, building a set of merged faces, and tries to

expand this set by merging faces around it. Figure 5 shows

the beginning of the expansion of the merged faces set (in

gray), merging sequentially 4:1 faces, 3:1 faces and 2:1

faces.

Figure 5: expansion of the simplified mesh set
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The algorithm stops when no more faces have to be

simplified. In order to prevent the algorithm from being

unable to simplify some faces with respect to the

subdivision rules, a modification of the mesh is allowed. It

consists in an edge permutation between two neighbour

faces, as shown in figure 6. Of course this modification

has to be stored, to recover the original mesh after

subdivision and guarantee the reversibility of the

simplification process.

Figure 6: an edge permutation between two faces

We notice that this modification will introduce a quality

loss during multiresolution analysis, but the difference

between the original mesh and the altered mesh is small

and experimental results show that this local error is

negligible compared to the approximation error. Finally,

the algorithm is very efficient for simplifying a large set of

meshes.

 The last thing to do is to compute the approximation of

the high resolution mesh with the simplified one that is to

calculate the analysis filters A
j
 and B

j
. This can be done

with Lounsbery’s scheme. A difference has to be noticed,

due to the change of the subdivision process. The inner

product (5) has to be reformulated and becomes:
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Kj(τ) is no longer a constant and changes with each face

of the mesh. For example, a face in a low resolution mesh

that will split in 3 faces will have Kj(τ)=3 and the three

resulting faces will have Kj+1(τ)=1, taking into account the

differences between the triangle areas : the first face cited

above will approximately be three times larger than the

three last.

4. Compression

The proposed method has powerful features for

compressing meshes, for two reasons:

• The wavelet decomposition, used to compute the

vertices coordinates, transforms coordinates into

wavelet coefficients which histogram is concentrated

around the zero value, making them well suited for

entropy coding.

• Starting from the lowest resolution level, there is no

need to store or transmit the faces descriptions to

reconstruct higher levels, only the subdivisions have to

be, which lets the amount of information needed to

reconstruct the connectivity of the mesh close to 3 bits

per face.

In the experimental results section, the lowest resolution

mesh is coded using the algorithm described in [8].

5. Results

Table 1 shows the results on a heart mesh simplification

using the proposed method. The high resolution mesh is a

regular tesselation similar to that proposed in [7]. Its

vertices coordinates are coded with a 7 bits/vertex

precision. The number of bytes noted in table 1 is the

amount of information needed to reconstruct the mesh to

the concerned resolution level starting from the nearest

lower resolution level.

Table 2 gives some more results on different 3D meshes:

brain, body and lung. We notice that at the middle

resolution levels, used in practical implementation, the

approximation quality remains rather good in terms of

local shape and size.

Table 1: multiresolution representation of a 3D left

ventricle of a heart mesh

Level 6

1008 faces

413 bytes

Level 5

446 faces

226 bytes

Level 4

208 faces

123 bytes

Level 3

94 faces

65 bytes

Level 2

46 faces

36 bytes

Level 1

22 faces

22 bytes

Level 0

8 faces

40 bytes

Summary:

Original file: 4730 bytes

Compressed files: 925 bytes

Ratio : 5.1 : 1



Table 2: complementary results

Original mesh

3584 faces

8 levels

Level 4

524 faces

Original file:

19493 bytes

Compressed

file:

3246 bytes

Ratio:

6.1 : 1

Original mesh

4454 faces

10 levels

Level 5

306 faces

Original file :

25894 bytes

Compressed

file:

4062 bytes

Ratio :

6.4 : 1

Original mesh

1916 faces

10 levels

Level 5

168 faces

Original file:

9705 bytes

Compressed

file :

1801 bytes

Ratio :

5.4 : 1

6. Conclusion

We proposed a new scheme allowing to process

multiresolution analysis on arbitrary meshes. In sharp

contrast with [4] where a resampling of the original mesh

is necessary, our scheme processes directly on the original

mesh. The proposed method has many potential

applications such as mesh compression, progressive

transmission and fast rendering of 3D images.
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