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Abstract 
Extraction of metallic ions by use of mixtures of water and ILs, possibly completed by mineral acids, 
salts and/or extracting agents, and leading to ionic-liquid-aqueous biphasic systems (IL-ABS), are 
critically reviewed. In this chapter, the extraction performance induced by temperature or 
concentration stimulus is considered. First, the IL-ABS basic physico-chemical properties are recalled, 
highlighting those of interest to metal extraction. Then, the main results are presented and discussed 
for systems ordered and categorized by IL types. Various extensions of the notion of IL-ABS are given 
and briefly discussed as an advocacy in favor of a continuous line between “real” ABS comprising ILs 
and other liquid-liquid extraction systems including one IL. 
 
Keywords: ionic liquids, metal extraction, aqueous biphasic systems 
 

9.1 Introduction 

Extraction of metals from aqueous phases is a huge problem connected to a large number of 

industrial applications: It is important not only for ore exploitation or for recycling of precious metals 

(found in “urban wastes” or in used nuclear fuels), but also in view of polluted waters 

characterization, to name a few. Furthermore, it concerns all metals, from Cs and Sr to d-elements, 

such as Cu, Co, Ni, Zn, Pb or Hg, as well as Au, Pt, Ir, lanthanides, and finally 5f-metals, such as U, Pu 

or Cm. Most of the time, the metal to be extracted is not the only element present in the aqueous 

feed, which often contains other metals and large amounts of mineral acids, such as nitric or 

hydrochloric acid, that have been used to dissolve the ores or the wastes to be recycled. As a 

consequence, metals in such aqueous acidified solutions exist as ions, either cations or anions, 

depending on their specific affinity towards the counter-anion of the acid and concentration of the 

latter. In the case of water depollution, samples may contain organic compounds, possibly bacteria 

or other biological entities that all may also complex metal ions. Needless to say, high extraction 

efficiencies and selectivity for the metal of interest are requested, together with cost-effectiveness, 

protocol easiness and limited operation times. To solve this problem, or better to say, these 

problems, liquid-liquid extraction has emerged years ago as the best industrial process ever [1], and 

since the industrial implementation of the PUREX process, first designed to extract U and Pu in the 

1940’s, liquid-liquid extraction of metals has successfully achieved all goals cited above.  

Typical liquid-liquid extractions from aqueous phases are based on the use of volatile organic 

compounds (VOCs), such as chloroform, dichloromethane, kerosene etc., as the second liquid phase, 
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and to which the metallic entities are extracted. Therefore, and in addition to costs linked to the 

design of always better extracting agents, one should consider, under the light of the European 

REACH regulation, for example, environmental costs. Under such a frame, liquid-liquid extraction is 

now looking for an ecologic revival.  

After the work of Dai and co-workers [2] evidencing an increase up to four orders of magnitude in 

Sr(II) extraction efficiency by replacing traditional solvents by some ionic liquids (ILs), these new 

solvents have offered fantastic opportunities as VOCs’ replacements in view of liquid-liquid 

extraction of metals, and there are now numerous academic studies that have demonstrated their 

advantages in terms of extraction efficiency of metals [3-5], and one critical review [6]. Interestingly 

enough, ILs have also rapidly proved to provide even better uses than mere VOCs replacement 

solvents. Actually, they can also act as pure liquid phases, i.e., without the use of any additional 

extracting agent as usually needed when using molecular solvents. Depending on systems and 

metals, such a surprising result can be obtained either with very simple and “classical” (i.e. 

commercially available) ILs [4] or with specifically synthesized ILs, the so-called Task-Specific ILs 

(TSILs), bearing complexing patterns such as phosphine oxide, amides, crow-ether or calixarenes [7-

11]. Such innovative liquid-liquid extraction procedures, however, correspond to higher costs, 

renewed synthetic studies and collateral problems linked to the high viscosity of ILs among other 

problems.  

In parallel to these evolutions of liquid-liquid extraction studies and practices, and in a rather 

disconnected way, the academic community has developed and brought to industrial applications 

the concept of aqueous biphasic systems (ABS), mainly for extraction/separation of biological 

molecules and a large variety of compounds (see other chapters of this book on this point). Although 

it may now appear evident that the use of ABS is not restricted to organic or biological samples, the 

idea of bringing the knowledge gained on ILs and on ABS in view of metal extraction has emerged 

only quite recently. To our opinion, this field of research will soon blossom and the rather limited 

number of papers available at the moment is just the beginning of a topic soon to expand 

tremendously.  

In this chapter, section 9.2 is devoted to notations and definitions of ILs and IL-based ABS concepts. 

Properties of IL-based ABS of interest to metal extraction are also recalled and discussed in details. 

Next, in section 9.3, papers on metal extraction by IL-ABS are critically reviewed. Literature is ordered 

based on IL types and not on the type of metal being extracted; however, the reader can find in Table 

9.1 a summary where the key entrance is metallic elements. For each case, we first recall why the 

system under review falls in the scope of the chapter and we thereafter present and discuss the 

extraction results and other data of relevance to the understanding of the fascinating IL-based ABS. 

Section 9.4, by gathering data dealing with systems close to IL-based ABS, hopefully demonstrates to 

the reader that there is actually a continuous line linking all these systems. 
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Table 9.1. List of the metallic ions extracted by use of IL-ABS. Elements are listed in alphabetical 

order and are displayed if DX,ℓ is ≥ 1. 

Metal, oxidation number IL-ABS ref. 

Ag(I) H2O&[C1C6im
+][BF4

-]&[Na+][PF6
-]&[H+][NO3

-] 
H2O&[C1C4im

+][Cl-]&[H+][NO3
-]& [K+]2[HPO4

2-] 
[12] 
[13] 

Au(III) H2O&[C1C8im
+][Cl-]&[H+][Cl-] 

H2O&[C1C8im
+][Br-]&[H+][Br-]  

H2O&[C8pyr+][Br-]&[H+][Br-] 

[14] 
[14] 
[14] 

Ce(IV) H2O&[C1C8im
+][Cl-]&[H+][NO3

-] [15] 

Cd(II) H2O&[TBA-][Br-]& [NH4
+]2[SO4

2-] [16] 

Co(II) H2O&Girard-IL 
H2O&[P444Ei

+][DEHP-] (i=1,2,3) 
[17] 
[18] 

Cr(III) H2O&Girard-IL [17] 

Cr(IV) H2O&[TBA-][Br-]&2[NH4
+][SO4

2-] [19] 

Cu(II) H2O&[Hbet+][Tf2N
-]&bet 

H2O&Girard-IL 
H2O&[P444Ei

+][DEHP-] (i=1,2,3) 

[16] 
[17] 
[18] 

Dy(III) H2O&[Hbet+][Tf2N
-]&bet [16] 

Er(III) H2O&[Hbet+][Tf2N
-]&bet [16] 

Fe(III) H2O&[C1C4im
+][FeCl4

-] [20] 

Ga(III) H2O&[Hbet+][Tf2N
-]&bet [16] 

Ho(III) H2O&[Hbet+][Tf2N
-]&bet [16] 

In(III) H2O&[Hbet+][Tf2N
-]&bet [16] 

Ir(IV) H2O&[C1C1C8pyrro+][Br-]&[H+][Cl-] [21] 

La(III) H2O&[Hbet+][Tf2N
-]&bet [16] 

Mn(II) H2O&[Hbet+][Tf2N
-]&bet [16] 

Nd(III) H2O&[Hbet+][Tf2N
-]&bet 

H2O&[chol+][Tf2N
-]&[chol+][hfac-]&[H+][NO3

-] 
[16, 22] 
[23] 

Ni(II) H2O&[Hbet+][Tf2N
-]&bet 

H2O&Girard-IL 
H2O&[P44414

+][Cl-]&[Na+][Cl-] 
H2O&[P444Ei

+][DEHP-] (i=1,2,3) 

[16] 
[17] 
[24] 
[18] 

Pb(II) H2O&[TBA+][Br-]&[NH4
+][SO4

2-] [16] 

Pd(II) H2O&[Hbet+][Tf2N
-]&[H+][NO3

-] 
H2O&[chol+][Tf2N

-]&[H+][NO3
-] 

[25] 
[25] 

Pr(III) H2O&[Hbet+][Tf2N
-]&bet [16, 22] 

Pt(IV) H2O&[C1C8pyrro+][Br-]&[H+][Cl-] [26] 

Rh(III) H2O&[Hbet+][Tf2N
-]&[H+][NO3

-] [25] 

Ru(III) H2O&[Hbet+][Tf2N
-]&[H+][NO3

-] 
H2O&[chol+][Tf2N

-]&[H+][NO3
-] 

[25] 
[25] 

Sc(III) H2O&[Hbet+][Tf2N
-]&bet 

H2O&[P444C1COOH+][Cl-]&[Na+][Cl-] 
[16] 
[27] 

Tc(VII) H2O&[C1C4im
+][Cl-]&[K+]3[PO4

3-] 
H2O&[C1C4im

+][Cl-]&[K+]2[HPO4
2-] 

H2O&[C1C4im
+][Cl-]&[K+]2[CO3

2-] 

[28] 
[28] 
[28] 

U(VI) H2O&[Hbet+][Tf2N
-]&[H+][NO3

-] [29] 

Y(III) H2O&[Hbet+][Tf2N
-]&bet [16] 

Zn(II) H2O&[Hbet+][Tf2N
-]&bet 

H2O&[P444Ei
+][DEHP-] (i=1,2,3) 

[16] 
[18] 
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9.2 IL-based ABS: definition, notations and main properties 

9.2.1 Definitions and notations 

Although all chapters of this book deal with IL-ABS, it is very important to precisely define what this 

term means, in order to border the scope of this chapter. As far as ILs are concerned, we will comply 

with the usual definition stating that an IL is a salt of which the melting temperature, under normal 

pressure conditions, is equal or below 100 °C. With regard to IL basic properties, the reader is 

referred to excellent books and reviews on this topic [30-34]. ILs’ cations and anions will be noted as 

[Cat+] and [Ani-], respectively, while IL will be given as [Cat+][Ani-], in order to highlight the ionic 

character of such solvents. As regards the most typical IL family, imidazolium cations will be denoted 

as [CnCmim]+ for n-alkyl-m-alkylimidazolium, while the anion [(CF3SO2)2N]- 

(bis(trifluoromethylsulfonyl)imide) has been by far the most investigated. All other compounds cited 

in this chapter are displayed in the chemical chart provided at the end. All ILs are salts but not all 

salts are ILs, depending on their melting temperature. Mineral acids and salts and will be denoted 

according to the IL notation adopted above, e.g. [H+][Cl-], [Co2+][Cl-]2 or [Na+]2[CO3
2-]. 

By contrast, defining an ABS is somewhat more difficult. One general definition can be found in a 

previous review on ABS [35] as: “ABS consist of two immiscible aqueous-rich phases based on 

polymer-polymer, polymer-salt or salt-salt combinations. Although both solutes are water-soluble, 

they separate into two coexisting phases above a given concentration: one of the aqueous phases 

will be enriched in one of the solutes while in the other phase there is prevalence for the second 

polymer or salt”. It thus could be easily inferred from this definition that the IL-ABS of concern in this 

book are simply those ABS composed of (at least) one IL, whatever the type of the other solute. 

However, the definition above raises more questions. First, one should define what an ‘aqueous-rich 

phase’ means as the scale on which this notion is based is not specified. Usual scales are molar, 

weight or volume percentages but other scales are also meaningful (see below). Considering the very 

large molar per liter value of water (55 moles per liter) as compared to other liquid compounds, such 

as ILs (typically in the range of 2 to 8 moles per liter), while ILs’ molar weights are usually at least one 

order of magnitude above the 18 gmol-1 of water, it is clear that the molar scale favors water, while 

weight percentage highlights ILs contribution. In other words, for a biphasic sample containing water 

and IL, either the terms water-rich or IL-rich phase might be appropriate, depending on the chosen 

scale. Similarly, the notions of ‘enrichment’ or ‘prevalence’ of a solute in one of the phases should be 

accompanied by the indication of a scale. Second, the biphasic/monophasic changes that are the 

signature of ABS can also occur under a temperature stimulus (thermomorphic behavior) for a fixed 

chemical composition, a very important point to add to the definition cited above: systems displaying 

either an upper critical solution temperature, UCST (above this temperature, the system is 

monophasic, whatever its composition) or a lower critical solution temperature, LCST (temperature 

below which the system is monophasic whatever its composition) exist. An alternative way to induce 

a change from monophasic to biphasic regimes and vice-versa, by bubbling of CO2 and N2 gases, was 

demonstrated by Kohno et al. [36]. However, this is in fact due to changes in the pH of the sample, 

because CO2 converts in [CO3
2-] anions, while N2 bubbling expels CO2. Thus, we should categorize this 

state change as a concentration-induced change, which is however more easy to perform and more 

reversible than addition of salts/dilution that always vary concentrations and volumes to large 

extents.  
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Based on these remarks, we will therefore adopt a slightly different and somehow more restrictive 

definition of IL-based ABS for this chapter only. Under our understanding, IL-based ABS are systems 

which comply with the following five criteria: 

i) They contain water; 

ii) They contain at least one IL compound; 

iii) They do not contain any molecular compound, apart from acidic or zwitterionic ones; 

iv) They may contain other compounds in agreement with the above three criteria; 

v) Within the temperature range from solidification to boiling or decomposition of the 

sample (under normal pressure), they present a change from monophasic to biphasic state 

by an increase or decrease of either temperature or concentration of at least one of their 

components.  

Such a definition calls for some comments. First, by excluding most of the molecular compounds, we 

set apart systems containing polymers. This is clearly a restrictive choice of the author of this chapter 

as compared to the general policy of this book (in particular, see Chapter 4) but it was made in order 

to limit this review chapter to systems without usual neutral extracting agents, such as 

tributylphosphate, calixarenes or monoamides, to name a few. Second, it is important to note that 

this definition does not rely on notion of water-rich phase or any other type of whatsoever-rich 

phases. We are strongly in favor of using solely the terms upper and lower phases for describing the 

biphasic liquid state of ABS and IL-ABS. We will use subscripts “u” and “ℓ” to denote them, while the 

term “initial” and its corresponding subscript “in”, together with the terms “IL phase” and “aqueous 

phase” will refer to initial quantities and initial stock solutions, i.e. prior to mixing of the IL-ABS 

components. Another important point to be noted from this definition is that we consider mixtures 

of water and one IL to be IL-ABS, provided these present a UCST or a LCST phenomenon. This is in 

clear contrast with the definition given by Freire and co-workers [35] which limits ABS to a mixture of 

three compounds at minimum.  

As regards notation of IL-ABS of concern in this chapter, this is of importance although no consensus 

can be found at the moment in the literature. We will list all chemicals under the chemical form they 

have been used for sample preparation, starting with water, each of them separated by symbol “&”, 

for example: H2O&[H+][E-]&[H+][X-]&[K+]3[PO4
3-]&[C1C4im

+][Cl-], where [H+][E-] is an acidic extractant 

and [H+][X-] is a (mineral) acid. In case of necessity, quantities will be indicated in parenthesis after 

each component. Whenever possible, and in view of practical easiness (preparation protocol, for 

instance), we will use the mole amount of each compound, because interactions responsible for 

mono- to biphasic changes are clearly occurring at a molecular/ionic level. However, depending on 

the information available in each experimental section of the papers to be discussed, we may use 

molar scale or any other scale.  

9.2.2 Properties of interest of IL-ABS 

9.2.2.1 Two-components systems 

IL-ABS obviously offer limited possibilities to play with as compared to systems containing more than 

two components, but there are nonetheless important points to be recalled in view of the review to 

follow in section 9.3. The easiest way to represent the thermodynamic behavior of an IL-ABS simply 

composed of water and one IL is through the plot of the partial miscibility curve, as schematically 
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represented in Fig. 9.1a for an UCST type-system: the two-phase region is located inside the envelop 

and the UCST value is indicated on the y-axis. Conversely, Fig. 9.1b shows the schematic of a LCST 

type IL-ABS. For systems solely composed of water and one IL, a 2D plot is sufficient to fully describe 

their mono-/biphasic behavior, making use of the % scale (either in mass, volume or mole). For 

example, the system H2O&[C1C4im
+][BF4

-] displays a UCST equal to ca. 5°C while for a water amount 

equal to 20 wt%, the temperature at which this system turns from mono- to biphasic, critical 

temperature (Tc), is equal to -4°C [37, 38]. Note that a clear isotopic effect is observed on UCST 

temperatures, as deuterated water induces an increase of the transition temperature of ca. 3.5 °C at 

maximum [37]. Other examples of larger variations (up to 25 °C) in the turnover temperature can be 

found for phosphonium-based ILs and water mixtures [39]. Increases of a few degrees in UCST can 

also be obtained by applying pressure up to 800 bar [37].  

The rather symmetrical plot displayed in Fig. 9.1a (solid line) is only obtained for x-axis based on mass 

fractions. Changing the mole fraction leads to a distorted plot with a curve now shifted to the left 

hand side of the diagram. This is clearly shown in the work of Rebelo et al. [37] for the 

H2O&[C1C4im
+][BF4

-] system and is also schematically illustrated as a dashed line in Fig. 9.1a. This 

effect is the graphical translation of what has been written above concerning the scales applied to 

define “water-rich” phases. Other illustrations of the distortions that can be obtained by changing 

the scale in such plots can be found elsewhere [40, 41] and a very interesting discussion on the best 

way to plot such thermodynamic data can be found in the paper by Wagner et al [42]. In particular, it 

is clearly said that the mole, mass or volume fraction scales have equal validity for plotting miscibility 

curves. Deeper thermodynamical considerations would be in favor of the volume fraction but 

depending on the technique used to determine the state changes, other scales may be used, for 

example the refractive index or the Lorentz function of this number [42]. 

 

Figure 9.1 (a): Schematic plot of a miscibility curve with UCST behavior for an hypothetical system 

H2O&[Cat+][Ani-]. Solid line: plot under the mass fraction scale. Dashed line: plot under the mole 

fraction scale. (b): Schematic plot of a miscibility curve with LCST behavior for an hypothetical system 

H2O&[Cat+][Ani-].  

According to the excellent work of Kohno and co-workers [43], who studied the transition behavior 

of 48 IL-water systems (ILs based on phosphonium or ammonium cations) any system of the type 

H2O&[Cat+][Ani-] may display one of the three following behaviors as a function of temperature (T):  
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1) Totally miscible in the whole T range from 0 to 100 °C; 

2) Totally immiscible within this T range; 

3) Change from mono to biphasic state, either with UCST or LCST in that T range. 

ILs belonging to the first category are said “real” hydrophilic ILs, while those from the second 

category are qualified “real” hydrophobic ILs. This way to categorize systems also calls for some 

comments, as it is clear that the T range 0 – 100°C has been chosen on the basis of water behavior. 

However, should a system H2O&[Cat+][Ani-] be totally miscible whatever its composition in the range 

0 – 100 °C, this does not preclude it to experience a change from mono- to biphasic state either 

above 100 °C (LCST behavior) or below 0°C (UCST behavior). On another hand, “totally immiscible” is 

merely a question of detection limits and personal feeling: as ILs are composed of ions, interactions 

with water molecules unavoidably occur, leading to mixing, even if very limited.  

For the six systems studied by these authors which display a transition from mono- to biphasic state 

within the range 0 – 100 °C, the so-called (as written by the authors) “IL-rich phase” of the biphasic 

state contains from 4 to 22 H2O entities per IL cation-anion pair [43], so it has to be better considered 

as a water-rich phase under the molar percentage scale. Such systems are thus clearly IL-ABS under 

the definition of Freire and co-workers [35]. The system H2O&[chol+][Tf2N
-], which is of interest to 

this chapter [44], also clearly illustrates this point. [chol+][Tf2N
-] melts at T = 30°C and the system 

H2O&[chol+][Tf2N
-] has an UCST at 72.1 °C. The authors comment that “one should use the terms 

hydrophobic and hydrophilic ionic liquids with caution”, a statement perfectly in line with the work 

of Kohno and co-workers [43] discussed above. A comprehensive study of the H2O&[chol+][Tf2N
-] 

system in terms of the Ising theory can be found in the literature [44]. Other works also highlight the 

large proportion of water remaining in the lower phase of IL-ABS under their biphasic states: see [45] 

for ILs based on phosphonium and dicarboxylate (still 7.5 H2O entities per IL pair at the transition 

temperature), and refer to [46] for a detailed study of the liquid structure close to the transition 

temperature.  

9.2.2.2 Three-components systems and above 

An impressive list of three-component systems together with detailed comments can be found in the 

review [35] by Freire and co-workers, and in other previous publications of this group [47, 48] so we 

will limit ourselves to stress a few points of decisive interest to our review chapter. In particular, the 

reader is referred to the work of Merchuk et al. [49], which clearly sets the experimental basis of 

such phenomenon although systems here studied are not IL-ABS (for kinetic aspects, see also, from 

the same author, Ref. [50]). The change from mono- to biphasic state by addition of a salt is also 

referred to “salt-in/salt-out effect” and salts are qualified kosmotropic/chaotropic, respectively. For 

these IL-ABS containing at least three different components, for example H2O&[C1C4im
+][Cl-]& 

[K+]3[PO4
3-] as studied (among others) by Gutowski and co-authors [51], a 3D (or more) plot would be 

necessary but authors most of the times limit themselves to 2D plots, displaying the mutual 

coexistence curve, called binodal curve, which delineates the regions of the composition diagram for 

which the system is either mono- or biphasic, at a fixed temperature. In such graphical 

representation, limits of the tie-lines give the exact compositions of the two phases, for a given 

global composition of the system and fixed T. Typical binodal curves and tie-lines are schematically 

presented in Fig. 9.2. Note that atypical binodal curves were also found in the literature [52].  
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Fig. 9.2: Schematic plot of a binodal curve for an IL-ABS system with three components: water, IL and 

a salt. Dotted lines are tie lines.  

It is of tremendous importance for the rest of this chapter to be aware that, starting from the 

simplest IL-ABS we defined as H2O&[Cat+][Ani-], addition of any compound may impact on their 

thermomorphic behavior. Apart from addition of common salts such as potassium phosphate, 

sodium sulfate or many others as illustrated in [35], striking examples of interest to this chapter 

concern addition of either extracting agent (in view of enhancement of the extraction efficiency), 

mineral acids (in order to avoid hydrolysis/precipitation of the metallic ion) and metallic salts 

themselves. For example, adding betaine to H2O&[Hbet+][Tf2N
-] induces a decrease of the UCST from 

55.5 °C (no betaine) to less than 40 °C (28.8 wt% of betaine) [22]. Addition of [H+][Cl-] increases the 

UCST (1 M added, increase of ≈ 12.5 °C; 2 M added, increase of ≈ 20 °C) [16, 53], while 1M [H+][ClO4
-] 

leads to a decrease of ca. 26°C [53] as compared to H2O&[Hbet+][Tf2N
-] (UCST at 55 °C). Also of 

tremendous relevance in view of metal extraction is the reported decrease of UCST of ca. 20 °C by 

addition of Nd(III) to H2O&[Hbet+][Tf2N
-] [54], which is accompanied by an increase of the overall 

mutual solubilities of water and IL. Other examples of changes in the UCST or LCST values by 

additions of various metallic salts ([Cs+][Cl-], [Li+][Cl-], [Na+][ClO4
-], [Na+][NO3

-] etc.) can be found in 

the literature [53]. Obviously, the comprehensive experimental study of binodal curves is impossible 

for systems of general formulation H2O&[Cat+][Ani-]&[E]&[H+][X-] to be reviewed in this chapter 

because most extraction studies involve batch experiments with variations of the acid concentration 

and/or of the extractant in rather large ranges. We thus commend the attempts made to derive 

intuitive prediction models of such phenomena [53, 55]. However, stricto sensu, should we limit this 

review to publications dealing with systems fully complying with the definition of IL-ABS we set and 

in particular with the fifth criterion, the number of papers to review would be dramatically limited, in 

part because of a lack of data on their mono/biphasic behavior. Considering these problems of 

classification, although we rely on our definition of IL-ABS as stated above, papers under review in 

this chapter have been selected because, (unless otherwise specified, see Section 9.4), a sub-part of 

the full system under study is known to display a change from monophasic to biphasic by either 

temperature or concentration variation.  
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Another very important point to be recalled all times is the differences in distribution ratios of all 

chemical entities between the two phases. This has been detailed above for water molecules but is 

also true for any of the other chemical moieties of the system. As clearly demonstrated in Gutowski’s 

work for H2O&[C1C4im
+][Cl-]&[K+]3[PO4

3-] [51], the distribution ratios for [C1C4im
+] and [Cl-] are not 

perfectly equal, pointing to independent behavior of each ion. In other words, it is not because 

[C1C4im
+] ions are introduced together with [Cl-] ions that they will perfectly distribute similarly 

between the two phases. This should not be overlooked. Thus, apart from the metallic entity, which 

is hopefully liable to massive transfer from one phase to the other, any other component of the 

system may be considered under the light of its extraction efficiency. This, however, necessitates the 

precise definition of “extraction” in such systems. Again, no real consensus exists at the moment, so 

we will apply a rather general, basic concept: Extraction of species X means that X distributes 

between the two phases. On a quantitative basis, most papers refer to distribution ratios of species 

X, which make reference to the concentration of that species in both the “aqueous” and the “IL” 

phases. On the basis of what has been discussed above, the terms upper and lower phase would be 

more meaningful. Furthermore, changes in the overall water content depending on T and chemical 

composition impose extensive experimental measurements of phase volumes and/or masses in 

order to apply the traditional distribution definition [22]. Therefore, in the following, whenever 

possible, we will better use the following expressions instead:  

Extraction efficiencies: 

EX,u = 100*amount of X in the upper phase (in mole)/initial total amount of X (in mole) 

EX,ℓ = 100*amount of X in the lower phase (in mole)/initial total amount of X (in mole) 

Distribution ratios: 

DX,u = amount of X in the upper phase (in mole)/amount of X in the lower phase (in mole) 

DX,ℓ = amount of X in the lower phase (in mole)/amount of X in the upper phase (in mole) 

In the next sections, the main topic of this chapter is attempted in more detail, by first critically 

discussing results on metal extraction by use of “real” IL-ABS. Systems experiencing T stimulus only 

will be reviewed first (Sections 9.3.1 to 9.3.3), starting from very simple systems (only two 

components) to systems including extractant and/or acid in addition to water, IL and metallic ions. 

Second, systems for which concentration changes have been applied, at a fixed temperature, will be 

presented (Sections 9.3.4 to 9.3.6). Section 9.3.6 discusses systems for which T and concentration 

stimulus are applied at the same time, while Section 9.3.8 summarizes results about metal stripping 

and recovery of ILs. Section 9.4 extends the topic to “border-line” systems. 

3. IL-ABS for metallic ions extraction 

3.1 The ionic liquid already contains the metallic ion to be extracted 

Although there is, to the best of our knowledge, only a single paper [20] falling in this category, we 

found the results obtained of high interest. In particular, the number of compounds is limited to two, 

water and one IL, but nevertheless contains everything needed for metal extraction. In this respect, 

this can be considered as a case study and an emblematic system. 
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Several ILs exist that contain a metallic ion, most often as the anionic part of the IL [56-58] but some 

(rare) examples can be found with a cationic metallic entity instead. Examples with both cationic and 

anionic components being metallic entities can also be found [59]. For most of these metal-

containing ILs (Mn, Fe, Co, Gd, Dy…), magnetic properties are mostly studied and very limited 

knowledge is found on their thermomorphic behavior in the literature, the only example being for 

H2O&[C1C4im
+][FeCl4

-] (glass transition of the IL at T = -88 °C [56]) which displays a LCST behavior [20, 

60]. For 25 wt% of IL, the change from mono- to biphasic state occurs at Tc = 50 °C, while at 20 wt% 

of IL, changes occurs at Tc = 90 °C. Below 20 wt% of IL, T is above 100°C and above 30 wt%, Tc is 

below 10 °C so the authors were not able to determine the complete miscibility curve [20]. Note that 

similar changes occur for H2O&[C1C12im
+][FeCl4

-] but we could not find any indication of melting point 

for this imidazolium compound. 

Experiments have been performed by mixing [C1Cnim+][FeCl4
-] and water for different chemical 

compositions, heating above T = 70 °C to reach, whenever possible, the biphasic state. 

Characterization of the “oily liquid recovered” after phase separation shows that this is indeed the 

original IL, [C1Cnim+][FeCl4
-]. Iron distribution between the upper and lower phases has been followed 

by ICP-OES and evidences a rather identical presence of Fe(III) in both phases: EFe,u = 56 % (n = 4) and 

61 % (n = 12). pH measurements indicate that Fe(III) ions undergo strong hydrolysis but no exact 

determination of the species found in the upper phase has been achieved. Surprisingly, the water 

distribution between the two phases seems to be very different from that of Fe(III), as no water IR 

signature could be found in the “oily” phase. Although these two systems may not come to an 

application, because of probable formation of hydrolyzed products, and because distribution ratios 

are too close to 1, the interest here rests on the so to say ideal number of components.  

Interestingly, [C1Cnim+][FeCl4
-] (n = 4, 12) are prepared by simply mixing [C1Cnim+][Cl-] and the salt 

FeCl3.6H2O [20]. We can therefore consider that the two-component IL-ABS H2O&[C1C12im
+][FeCl4

-] 

discussed above is equivalent to H2O&[C1C12im
+][Cl-]&[Fe3+]3[Cl-], which is clearly an IL-ABS according 

to our definition but contains three individual components. 

We would like also to mention another very unusual way to simulate a phase separation in such 

systems: as the IL under study possesses magnetic properties, the monophasic state can suffer very 

large concentration gradients by simply approaching a strong magnet close to the test tube. In this 

case, no meniscus is visible, so this does not correspond per se to a change from mono- to biphasic 

state, but this is a brilliant use of the IL properties [60].  

3.2 IL-ABS with betainium or choline cations and the [Tf2N
-] anion and other related systems 

Taken alone as a dry compound, [Hbet+][Tf2N
-] is a solid at room temperature and melts at ca. 54°C -

57°C [54, 58]. Thus, this compound fits within the ILs category, being also highly hygroscopic as it 

takes up to ca. 13 wt% of water at room temperature [22], is a highly viscous liquid, and, conversely, 

dissolves up to 15 wt% in water for equal volumes of water and IL put into contact at room 

temperature [16]. H2O&[HBet+][Tf2N
-] displays a UCST at ca. 55.5°C [54, 58]. Changes in initial pH 

values of the aqueous phase also induce changes from mono to biphasic state [58], but this is not 

really a reversible process because neutralization of [Li+][OH-], [Na+][OH-] or [K+][OH-] by any acid 

dilutes all the components and adds other ions to the system. Detailed partial miscibility curves, 

together with other physico-chemical properties of general interest (viscosity, density, thermal 

analysis etc.) for H2O&[Hbet+][Tf2N
-] can be found in [54] and [58].  
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The large water uptake and large solubilisation of [Hbet+][Tf2N
-] in water render the terms “IL phase” 

and “aqueous phase”, used in the papers under discussion, rather unsuitable. Although no 

information of densities is given, we will consider that the lower phase corresponds to the so-called 

“IL (rich) phase” of the papers, and, conversely, the upper phase is ascribed to the “aqueous phase”.  

Extraction experiments by use of H2O&[Hbet+][Tf2N
-] concern U(VI) [29], Pd(II), Rh(III) and Ru(III) [25] 

or Sc(III) and Fe(III) [61]. By addition of a complexing agent, betaine, the system becomes 

H2O&[Hbet+][Tf2N
-]&bet and extraction concerns Cu(II), Y(III), Dy(III), Er(III), Ho(III), La(III), Pr(III), 

Nd(III), Ga(III), In((III) and Sc(III) [16]. The extraction data in [22] are very similar and are limited to 

Nd(III) alone. Experiments have been performed under two very different protocols: The first one 

relates to traditional experimental procedures, as the aqueous and IL phases are contacted by 

vigorous shaking at room temperature, thus under the biphasic state [25, 29]. Although the existence 

of a thermomorphic phenomenon is clearly acknowledged by the authors, they did not take 

advantage of it. In the second extraction protocol, the samples were heated above the UCST (at 60 

°C) and then cooled back to room temperature [16]. The effect of some technical aspects (the 

temperature at which the system is cooled below the UCST to obtain phase separation, the duration 

of the heating part of the protocol above UCST, centrifugation for biphasic settlement ,etc.) has been 

studied but no comparison between the two protocols was made. As a matter of fact, comparison 

cannot be made by us between the two protocols based on these publications, because the metals 

under study are different and some of the systems investigated do not contain betaine, while others 

do. Finally, in a recent paper, Onghena and co-workers [61] do compare the two protocols, in view of 

Sc(III) and Fe(III) extraction, by use of H2O&[Hbet+][Tf2N
-]. 

The potential interest of reaching the homogeneous stage of the system and then, of inducing phase 

separation by decreasing the temperature below the UCST, is a question of both fundamental and 

industrial nature. As explained in [16], the homogeneous state may offer great advantages, because 

of beneficial kinetic effect onto the extraction process, but the physico-chemical reasons behind this 

are rather entangled. In particular, Onghena and co-workers note that stirring speeds up heat 

homogenization [61] and a higher temperature lowers viscosity [22]. At the same time, it is well-

known that stirring, whatever the temperature, accelerates extraction by a simple mechanical effect. 

Therefore, reaching the monophasic state for better mixing and finally performing phase separation 

at room temperature by a cooling process, or simply using vigorous stirring below UCST actually gave 

the same very efficient extraction of Sc(III) (E ≈ 100 %). Conversely, as pinpointed in [61], heating 

above 55 °C has its own cost so a minute balance of pro and cons should be made in view of 

industrial applications, but this is out of the scope of this review. Therefore, the burst of enthusiasm 

about the monophasic stage advantages found in [22] is somehow dampen in a more recent 

publication [61]. We are convinced that performing extraction by use of the UCST limit (above and 

below) accelerates the kinetics of the extraction but it is our understanding that is does not enhance 

the thermodynamical aspect of the extraction and thus the equilibrium E and D values. A detailed 

study of these two aspects would require choosing a system for which extraction is not quantitative, 

in order to accurately rate the possible impacts of the experimental parameters.  

In the absence of extractant or any additional compound, the extraction of Ln ions is said negligible 

by use of H2O&[Hbet+][Tf2N
-] [16]. No indication of means to prevent metal hydrolysis could be found 

in this work. In order to modify the extraction of metallic ions, two chemicals have been studied, 

betaine and nitric acid. The zwitterionic betaine (13 wt%) efficiently extracts a large variety of 
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elements towards the lower phase, from Cu(II) (DCu,ℓ ≈ 30) to Sc(III) (DSc,ℓ ≈ 600) [16]. The lanthanides 

Dy, Er, Ho, La, Pr and Nd all display DLn,ℓ ≈ 10, Mn, Ni and Zn roughly distribute equally between the 

two phases (DX,u ≈ 1.7 for the three elements), while Ag mainly remains in the upper phase (DX,u ≈ 

6.7). It is interesting to note that the betaine compound has been dissolved in the aqueous phase 

before contact with the IL phase, which is a rather unusual procedure in traditional liquid-liquid 

extraction. The Nd distribution ratio increases as a function of betaine concentration but the authors 

note that betaine needs to be in very large excess as compared to the metallic ion in order to get 

high efficiencies (ratio of 200, ENd,ℓ = 99 %). As already pinpointed in Section 9.2, addition of large 

amounts of betaine has a strong impact onto the UCST. On another hand, nitric acid also modifies 

significantly the extraction efficiencies (in the absence of betaine) for other metallic ions: Pd(II), 

Rh(III), Ru(III), with EX,ℓ values ranging from 100 to 95 %, 70 to 40 % and 40 to 20% respectively, as 

nitric acid amount is increased [25]. Such values lead to separation factors for Pd/Ru and Pd/Rh in 

the range 50 – 5000. Similar decrease was observed for U(VI), with values EU,ℓ from 62 to 0% as nitric 

acid concentration varies from 10-2 M to 2 M. Therefore, for U(VI), Pd(II) Rh(III) and Ru(III), a 

compromise should be found between high EX,ℓ values and troubles arising from hydrolysis so the 

authors suggest [H+]init ≈ 0.3 M [25]. Finally, EX,ℓ values for Al(III) and Na(I) remain negligible in the 

whole nitric acid range investigated [29].  

A mechanism has been proposed for Pd(II) extraction in the absence of betaine but presence of nitric 

acid [25, 29] and is also suggested for U(VI) extraction [29], based on an ion exchange between the 

upper and lower phase as: 

Pd2+
u + 2Hbet+

ℓ    2H+
u + [Pd(bet)2]

2+
ℓ       (eq. 9.1) 

Note that in the work of Sasaki et al. [25], subscripts in the chemical equilibrium proposed refer to 

the “aqueous” and “IL” phase so we have just changed these to the “u” and “ℓ” subscripts we refer 

to. This equation is in line with the observed decrease in DPd,ℓ as the initial nitric acid concentration in 

the system is increased, because H+ increase would disfavor the formation of [Pd(bet)2]
2+ in the lower 

phase, by enhancing the protonation of bet into Hbet+ (pKa = 1.83). As no measurement of the 

equilibrium pH of the upper phase has been done, this plausible explanation remains nevertheless to 

be firmly assessed.  

In the presence of betaine and absence of nitric acid, the Binnemans group [22] independently 

proposed a mechanism to describe their data on Nd(III) extraction, based on the following extraction 

equilibrium: 

Nd3+
u + n betu + 3Tf2N

-
u + x H2Ou  Nd(bet)n(H2O)x (Tf2N)3ℓ    (eq. 9.2) 

Here again, instead of species in aqueous and organic phases, we have assigned to the upper and 

lower phases. Based on a slope analysis of D as a function of the initial betaine concentration, the 

authors [22] suggested the extracted species to be [Nd2(bet)3(H2O)x]
3+, with the addition that 

“electrical neutrality can be achieved by [Tf2N
-] or nitrate ions”. This would require 6 negatively 

charged species to join the structure, as the exact charge of the complex is formally +6, because 

betaine is a zwitterion, therefore an overall neutral entity1. Additionally, experimental results 

                                                           
1
 Therefore equation 9.2 is not balanced in charge.  
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performed with [Pr3+][Br-]3, [Nd3+] [NO3
-]3 and [Nd3+] [Cl-]3 all point to an ion exchange mechanism, as 

suggested by the authors [22], without involvement of the metal counter-anion. 

It is our opinion that although the systems studied by the Japanese [25] and the Belgium [16] groups 

differ slightly, one single mechanism should be able to describe both data sets. In particular, we 

found the protonation process of betaine as acidity is increased, as discussed in [25], a reasonable 

assumption. Furthermore, there is no evidence of extraction of a Nd neutral species and the global 

charge of the Nd complex remains unknown at the moment. We thus propose an alternative 

mechanism as: 

Nd3+
u + x H2Ou + 3 Hbet+

ℓ  [Nd(bet)3(H2O)x]ℓ + 3 H+
u     (eq. 9.3) 

Such a mechanism is formally identical to eq. 9.2 and we think it should be valid for any of the other 

Ln(III) ions. 

An impressive demonstration of an entire recycling process is given in [62], based on the 

thermomorphic system H2O&[Hbet+][Tf2N
-] and applied to the recycling of rare earths from NdFeB 

magnets. Real magnets were first roasted, thus turned to oxides and milled to generate particles of 

size in the range 6 – 310 µm. The thermomorphic system H2O&[Hbet+][Tf2N
-] (operating 

temperature: 80 °C) easily dissolves such particles (except for a small residue, depending on the size 

of the particles) and by cooling the monophasic system down to room temperature, iron is mainly 

present in the lower phase (“IL phase”), while the rare earths (Nd, Dy) and Co are mainly present in 

the upper phase. Transferring iron from the lower to the upper phase can be achieved by addition (1 

M) of potassium salts of [Cl-] and [C2O4
2-], while [ClO4

-] and [NO3
-] counter-anions only increase the 

affinity of Nd, Dy and Co for the upper phase, without modifying the iron preference for the lower 

phase. Precipitation of the rare earths and cobalt with oxalic acid followed by a treatment with 

aqueous ammonia (which dissolves cobalt oxalate only) and calcination of the purified rare earth 

oxalates allowed the recovery of rare earths as very pure oxides (purity > 99.9 wt%) ready for the 

production of new magnets. In addition of being the first demonstration of a fully integrated process 

from milling of used magnets until production of new pure oxides by use of IL-ABS, this study makes 

benefit of two properties of the H2O&[Hbet+][Tf2N
-] system: its thermomorphic behavior and its 

ability to dissolve oxides [58, 63]. The latter aspect avoids the classical leaching step in acidic 

solutions, at the expense of a possibly costly roasting procedure.  

The system H2O&[chol+][Tf2N
-] is closely related to H2O&[Hbet+][Tf2N

-]. The compound [chol+][Tf2N
-] 

is an IL (melting temperature = 30 °C) and displays an UCST at 72 °C [44]. At room temperature and 

for equal volumes of water and [chol+][Tf2N
-], 10 wt% of water dissolves in the lower phase while 12 

wt% of IL is found in the upper phase, a situation very similar to the H2O&[Hbet+][Tf2N
-] systems. 

Other similarities can be observed, such as small changes of the UCST by addition of either [H+][NO3
-] 

or extractant (increase of ca. 1 °C at low concentration of added compound, then decrease of a few 

degrees). Changes are also observed in the UCST value by addition of [Nd3+][NO3
-]3 [23].  

The same two groups have investigated different protocols and different metallic ions. Binnemans 

and co-workers [23] studied the system H2O&[chol+][Tf2N
-]&[chol+][hfac-]&[H+][NO3

-]&[Nd3+]3[NO3
-]. 

The compound [chol+][hfac-] is an IL but here it is used as an extractant, with the additional 

advantage that it is less volatile than Hhfac. No experiment was performed by this group in the 

absence of extractant and a low nitric acid concentration was used to prevent Nd hydrolysis (pHinit = 
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2) [23]. Extraction was performed by heating the two phases above the UCST (T = 80 °C). By contrast, 

Sasaki and co-workers focused on the impact of large initial nitric acid concentrations, without any 

extractant and extraction of Pd(II), Ru(III) and Rh(III) was performed under the biphasic state (T = 

25°C) [25].  

As previously discussed for the H2O&[Hbet+][Tf2N
-] system, Nd(III) extraction experiments 

demonstrate the advantage of mixing the two phases above the UCST, in terms of kinetics but 

identical E values are obtained under the two regimes (monophasic or biphasic) [23]. Transfer of Nd 

to the lower phase increases as a function of extractant, and ENd,ℓ reaches nearly 100 % above 

[chol+][hfac-] = 60 mmol.kg-1 2. Increase in the extractant concentration leads to a concomitant 

increase of the pH of the upper phase, which is ascribed by the authors to the protonation of the 

anion [hfac-]. Interesting tests were performed in order to determine the maximum loading capacity 

of the extracted species, which is estimated at 43 mmol.kg-1. Above this value, a precipitate appears. 

On another hand, addition of [H+][NO3
-] alone (no extractant), does not show a large impact onto 

Pd(II) and Rh(III) extraction in the range of initial acidities 0.3 – 2 M, as all D values remain 

approximatively constant and in the range 0.1 – 5 [25]. 

Cationic exchange is proposed by the two groups [23, 25] to account for their data. Sasaki et al. [25] 

describe the extraction process according to: 

Pd2+
u + 2 chol+ℓ  Pd2+

ℓ + 2 chol+u       (eq. 9.4) 

Cationic exchange is also proposed for the Nd experiments in the presence of extractant, but no 

equilibrium is written, mainly because the exact stoichiometry of the extracted species cannot be 

determined. Some experimental evidence [23] would be in favor of four [hfac-] entities per Nd ion 

but the protonation of the [hfac-] introduces a bias in the slope analysis thus hampering a firm 

assessment. However, addition of [chol+][Cl-] to the upper phase induces a decrease in ENd,ℓ (from 70 

% to 52 % in the range 0 - 70 mmol.kg-1 of [chol+][Cl-]). This is ascribed to [chol+] migration towards 

the upper phase upon Nd(III) transfer to the lower phase. Based on these experimental results and 

on the detailed discussion found in [23], we therefore suggest a possible extraction mechanism as: 

Nd3+
u + 4hfac-

ℓ + 3 chol+ℓ  [Nd(hfac)4]
-
ℓ + 3 chol+u     (eq. 9.5) 

Note that equations 9.1, 9.2, 9.4 and 9.5 are all based on cationic exchange between the metallic and 

the IL’s cations. Cationic exchange could be further supported by analytical examination of the upper 

and lower phase compositions before and after metal extraction.  

The cholinium cation is non-toxic and biodegradable and has been recommended in a study on 

antibiotic extraction as a greener approach to extraction [48]. Unfortunately, the IL compound 

[chol+][hfac-] is not stable upon heating and storage: 14 days of storage reduces the extraction 

efficiency to less than a half of the initial efficiency, a tendency is also observed if stored at ca. 6 °C, 

and the compound is known to decompose upon heating [23]. These facts render the system rather 

limited for industrial applications.  

Some narrow studies have been performed with the related system H2O&[TMPA+][Tf2N
-]&[H+][NO3

-]: 

U(VI) is poorly extracted [29] and so are Pd(II), Rh(III) and Ru(III) [25]. 

                                                           
2
 This concentration corresponds to the initial concentration in the single IL phase.  
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Thermomorphic behaviors of carboxyl-functionalized ILs based either on the morpholinium cation or 

betaine derivatives [63], with UCST equal to 52 °C (morpholinium cation) and 55°C or 64 °C, have 

been reported. Metal extraction experiments were not performed but the authors easily dissolved 

many metal oxides and hydroxides in such ILs. So, using these ILs for IL-ABS based metal extraction is 

quite a reasonable perspective.  

9.3.3 Use of ionic liquid analogues of Girard’s reagents 

Blesic and co-workers performed the synthesis of a series of new ionic liquid compounds, based on 

the classical [Tf2N
-] anion and several variations upon the Girard’s reagent pattern [17]. Although the 

Girard’s reagents have melting points around ca. 200°C, and are thus not ionic liquids, the six ionic 

liquid versions of these salts display melting points in the range from -55°C to -36°C. Their mixtures 

with water behave as USCT systems, with Tc values varying from ca. 5°C to 95°C depending on the IL 

nature and relative proportions of water and ILs. Preliminary extraction experiments have been 

performed by contacting aqueous solution of either Ni(II), Cu(II), Co(II) or Cr(III) ions (initial aqueous 

concentration: ca. 10 mM; counter-anions: [CH3CO2
-]) with one of the Girard ILs. The authors took 

advantage of the USCT phenomenon and performed extraction by heating above the USCT value (T = 

60 °C) and then cooled down the samples below (T = 20 °C) to derive the D values. No indication 

could be found in the paper on the respective volumes of the aqueous and IL phases put into contact 

so we thus just recall the D values as published. All four metallic ions are individually extracted, 

quantitatively for Ni and Cu (D values at ca. 780 and > 2x104, respectively), very well for Co (D = 36) 

and much less for Cr(III) (D ≈ 5) [17].  

9.3.4 Systems using tetrabutylammonium bromide 

Three publications (two of them by the same group) concern the system H2O&[TBA-][Br-]& 

[NH4
+]2[SO4

2-], where [TBA-][Br-] is at the upper limit of the definition we set for an IL (Tmelt = 100 °C), 

and in which extractions were performed at a constant temperature by addition of one salt in order 

to induce the mono-/biphasic state change. 

In a first step, Akama and co-workers have examined the chemical conditions leading to the ABS 

behavior and observed that several quaternary ammonium salts and other usual salts ([Na+][Cl-], 

[Na+][NO3
-] or [NH4

+][Cl-]) also enable the mono-/biphasic changes but concluded that the 

combination of [TBA+][Br-] and [NH4
+]2[SO4

2-] is the most suitable one[64]. For example, a two-phase 

state is obtained at T = 20°C for [TBA+][Br-] concentration in the range 0.3 – 1 M (5 mL of solution), 

together with [NH4
+]2[SO4

2-] from 0.1 to 1.7 g. Starting from an initial monophasic aqueous solution 

volume of 5 mL, variation of the concentrations of the two salts induce large changes in the volume 

of the upper phase, from 0 mL (monophasic state) to 4 mL (biphasic state). Note that such a plot 

(volume of upper phase as a function of global composition) is another way to display the 

information related to the miscibility curve, although less convenient. The authors [64] have also 

determined the amounts of the main ions composing the IL-ABS, namely [TBA+], [NH4
+], [SO4

2-] and 

[Br-], in the upper and lower phase (see Table 9.2). Their general experimental procedure indicates 

adjustment of the initial pH value at pH = 3, but unfortunately they do not comment on the 

equilibrium pH values to be observed in the upper and lower phases, although H+ ions are known to 

distribute in a complex way in other water/IL biphasic systems [65]. Apart from uncertainties in the 

analytical method, this could be part of the reason explaining the observed charge balance 

discrepancy in the upper phase and the 10 % difference in the measured and expected values for 
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[NH4
+] amounts. As a consequence, calculated EX,u and Ex,ℓ values we have added in Table 9.2 should 

be considered with caution but these data would indicate, as previously stressed, that although 

[TBA+] and [Br-] have been introduced in identical molar amounts, owing to their identical charges, 

they distribute quite differently between the two phases: the equilibrium amount (in mmol) of [TBA+] 

in the lower phase is three times less than that of [Br-].  

In a second step, the same group of authors have investigated the transfer from one phase to 

another of Cd(II), Pb(II), Co(II), Cu(II), Fe(III), Zn(II) in [64] and Cr(VI), Cr(III) (introduced as potassium 

salt) [19]. They have studied, in view of Cd(II) extraction, the impact of parameters such as sample 

volume, amount of metallic ion, and initial pH value of the aqueous phase in presence of interfering 

metallic ions (Co(II), Cu(II), Fe(III) and Zn(II)). Note that these authors [64] use the terms “upper” and 

“lower” phases exactly as we do and indicate densities to be 1.05 and 1.14 at T = 20°C, respectively. 

They indicate that low pH values (below 0.5) render the IL-ABS quite unstable and their data show a 

strong dependence of individual extractions on the initial pH values (ECd,ℓ = 100 % for pH > 2; EPb,ℓ > 

80 % for pH < 4). Chemical conditions for the efficient and selective extraction of Cd(II) (Cd recovery: 

above 90 % and up to 99 %) in the presence of large amounts of Zn(II) have been determined. In case 

of Cr(VI) extraction, the initial pH value was shown to be a decisive parameter while Cr(III) was never 

extracted to the upper phase in significant amounts whatever the chemical conditions investigated 

[64]. We hypothesize that the difference in extraction ability from Cr(III) to Cr(IV) is mainly due to 

differences in charge and charge densities of the entities under study, that modify their solvation 

abilities. Tests have been performed in order to discriminate Cr(VI) from Cr(III) in spiked wastewater 

samples, and appeared to be satisfactory.  

 

Table 9.2. Amounts (in mmol) of the various ions composing the IL-ABS H2O&[TBA+][Br-

]&[NH4
+]2[SO4

2-] in the upper and lower phase, as measured by Akama and co-workers [64] and as 

calculated from the initial amounts used. Corresponding values of EX,u and EX,ℓ as calculated from 

these data (values of E are displayed only if above 50%).  

 
[TBA+] [Br-] [NH4

+] [SO4
2-] 

upper phase (mmol) 2.5 1.0 0.9 0.5 

lower phase (mmol) 0.6 1.8 17.0 7.9 

total measured (mmol) 3.1 2.8 17.9 8.4 

total expected (mmol) 3.0 3.0 16.6 8.3 

EX,u (%) 83.3    

EX,ℓ (%) 
 

60.0 102.4 95.2 

 

An extraction mechanism has been proposed for the Cr(VI) extraction case [19], which is based on 

transfer of the neutral species [HCrO4
-.TBA+] from the lower to the upper phase. Although this 

proposal is in qualitative agreement with the slope analysis evidencing a dependency close to one H+ 

per Cr(VI) entity, the involvement of [TBA+] is not demonstrated yet. Two other mechanisms could be 

envisioned at the moment and would require further studies to be confirmed or ruled out: 

involvement of the chromium counter-ions, [K+], instead of [TBA+], or anionic exchange involving 

concomitant transfer (from upper to lower phase) of one [Br-] ion.  
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As an opening to fascinating technological developments, we refer to the excellent work of Choi and 

co-workers [66], who investigated extraction of Ru (introduced as “ruthenium red”, Ru(NH3)5Ru-O-

Ru(NH3)4-O-Ru(NH3)5]Cl6) in a microfluidic system by use of the system studied by Akama and 

collaborators: H2O&[TBA+][Br-]& [NH4
+]2[SO4

2-]. Another example of microfluidic extraction technique 

and results (for biological samples) can be found in [67] and a deeper presentation of the technique 

itself, together with insights into the theoretical aspects of microfluidic extraction with ABS is done in 

[68].  

In the microfluidic extraction studies [66], the IL-ABS was prepared under chemical conditions 

leading to the biphasic state. After equilibration by vigorous shaking, the two phases were separated 

and fed into the two inlets of the microfluidic device. In such experimental set-up, the notions of 

“upper” and “lower” phases have no meaning anymore as the system is basically 1D and should be 

replaced by the terms “continuous” and “dispersed” phases. The phase displaying the lower density 

and the higher viscosity (corresponding to the upper phase in a batch experiment in classical test 

tubes or beakers) was used as the continuous phase. In the first part of the device, the two phases 

are under laminar flow and therefore do not mix. Droplets are generated by a pulsed potential 

difference (150 V, 200 ms). In the tube section where the droplets move in the bulk of the 

continuous phase, ruthenium red was introduced through the third inlet, as undissolved 

microparticles in the continuous phase [66]. This ruthenium compound has been chosen because it is 

highly soluble in the dispersed phase and because of its bright color, which allows an easy detection 

of mass transfer by the naked eye or any suitable electronic device (digital camera). In such 

microfluidic devices, kinetics is of tremendous importance: Ruthenium diffuses from the inlet to the 

main flow, then dissolves on the droplet surface and simultaneously transfers from the droplet 

surface to the droplet bulk until saturation. Extraction is also controlled by the number, size and 

guidance of the droplets, all these parameters being monitored through the potential pulse history. 

Consequently, droplets and/or continuous phase of controlled Ru concentrations can be obtained 

and this can be adjusted through time, in view of analytical needs, reaction protocols, etc. Solving the 

diffusion 1D equations allows recovering the kinetic data quite satisfactorily [66].  

9.3.5 IL-ABS with imidazolium-based ILs 

Three different works which use imidazolium-based ILs for extraction purposes of metallic ions were 

found in the literature [12, 13, 28]. Bridges and collaborators have studied the extraction of a rather 

uncommon metallic anion, [TcO4
-], in view of nuclear waste processing from Hanford and Savannah 

River repositories, by use of the well-known IL [C1C4im
+][Cl-] [28]. The three systems they used, 

H2O&[C1C4im
+][Cl-]&[K+]3[PO4

3-], H2O&[C1C4im
+][Cl-]&[K+]2[HPO4

2-] and H2O&[C1C4im+][Cl-]&[K+]2[CO3
2-], 

are all well-identified IL-ABS [69]. In this study, the amount of IL was varied from 30 to 70 wt% in the 

initial aqueous phase, while the amount of the other salt was kept equal to 40 wt% in the other initial 

aqueous phase. Identical volumes of each were mixed to obtain the biphasic state. The Tc(VII) 

distribution ratio is readily defined as DTc,u. For all three IL-ABS, DTc,u increases as a function of the tie-

line length from ca. 2 to ≈ 700 [28].  

Another interesting work concerns the system H2O&[C1C6im
+][BF4

-]&[Na+][PF6
-] for Ag(I) extraction 

(introduced as its nitrate salt) [12]. [C1C6im
+][BF4

-] is also a well-known IL and H2O&[C1C6im
+][BF4

-] 

displays an UCST at 58 °C [40], so the presence of [Na+][PF6
-] is not mandatory to observe a mono-

/biphasic change. Although they could have used the temperature stimulus, the authors [12] used 
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the [Na+][PF6
-] salt to monitor the mono-/biphasic state changes, without any comment on that 

choice. Furthermore, two additional compounds are present in the studied system, as an acetate 

buffer, in order to control pH in dedicated experiments, and thio-Michler ketone. This last chemical 

was not used for extraction enhancement but as a chelating agent for UV-Vis determination of Ag. 

Therefore, although we denied systems containing molecular compounds to be IL-ABS we 

nevertheless consider this system to be perfectly in the scope of this chapter. Finally, as far as [PF6
-] 

or [BF4
-] containing systems are concerned, it has been repeatedly acknowledged that such ions 

suffer hydrolysis when contacted with water and this point is clearly discussed in the publication 

presenting the phase diagrams of H2O&[C1C6im
+][BF4

-] [40]. Apart from decomposition and [H+][F-] 

gaseous emission, the production of [F-] also is detrimental to glassware. Furthermore, on the view 

point of IL-ABS, hydrolysis of the [PF6
-] induces large changes in relative volumes of the two phases 

and changes in the critical temperature. For all these reasons, the author of this chapter strongly 

recommends, as many others, avoiding such chemicals. Disregarding these experimental and 

environmental problems, the paper under review presents a rather comprehensive study of factors 

influencing Ag(I) extraction: pH, IL-ABS composition, addition of a third salt as [Na+][NO3
-], 

temperature and centrifugation conditions. Under the best operation conditions obtained, Ag(I) 

extraction reaches 100 % and the system studied is very selective against a broad variety of other 

elements (Li, Pb, Al, Zn, Mn, Hg, etc.). The method and the system were used for analysis of real 

samples (photographic wastes and river water) [12].  

Recently, the related system H2O&[C1C4im
+][Cl-]&[H+][NO3

-]&[K+]2[HPO4
2-] has also been used for 

silver extraction [13], but in a very different perspective: in this publication, the aim is the separation 

of a low amount of 109Cd (carrier free) arising from the  irradiation of a silver target, after 

dissolution of the latter in nitric acid. As previously mentioned, H2O&[C1C4im
+][Cl-]&[K+]2[HPO4

2-] is an 

IL-ABS. In view of the applications, the paper focuses on practical details needed to achieve the 

highest separation factor. The optimized conditions found by the authors are: 6 M nitric acid 

concentration in the IL-ABS, 60% of IL (w/v), and 10 minutes settling time. With such operating 

conditions, a separation factor above 100 was obtained, with a recovery of 109Cd in the range of 90% 

(Ag(I) transfers to the lower phase and Cd(II) is found in the upper phase).   

9.3.6 New systems with imidazolium, pyrrolidinium and pyridinium cations 

In a series of three successive publications, the following ten systems have been investigated for the 

extraction of the three different precious metallic ions, namely Au(III) [14], Pt(IV) [26] and Ir(IV) [21]:  

- H2O&[C1C8im
+][Cl-]&[H+][Cl-]&[K+][AuCl4

-],  

- H2O&[C1C8im
+][Br-]&[H+][Br-]&[K+][AuBr4

-],  

- H2O&[C8pyr+][Br-]&[H+][Br-]&[K+][AuBr4
-],  

- H2O&[C1C8pyrro+][Br-]&[H+][Br-]&[K+][AuBr4
-],  

- H2O&[C1C8im
+][Cl-]&[H+][Cl-]&[H+]2[PtCl6

-],  

- H2O&[C1C8pyrro+][Br-]&[H+][Cl-]&[H+]2[PtCl6
-],  

- H2O&[C12(C1im)2
2+]2[Br-]&[H+][Cl-]&[H+]2[PtCl6

-], 
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- H2O&[C1C8im
+][Br-]&[H+][Cl-]&[K+]2[IrCl6

2-], 

- H2O&[C1C1C8pyrid+][Br-]&[H+][Cl-]&[K+]2[IrCl6
2-], 

- H2O&[C1C1C8im
+][Br-]&[H+][Cl-]&[K+]2[IrCl6

2-]  

For all these systems, addition of the IL compound to the aqueous phase containing a mineral acid 

and the metallic ion leads to a biphasic system, either liquid-liquid or solid-liquid: compounds 

obtained with [C1C1C8pyrro+] and Au(III), [C1C1C8im
+] or [C12(C1im)2

2+] and Pt(IV), [C1C1C8im
+] or 

[C1C1C8im
+] and Ir(IV) are solids, some of them sticking very well to the walls of the polyethylene test 

tubes, while all other compounds are liquids (with higher densities than the other phase, therefore 

becoming the lower phase) under the chemical conditions used. However, as noted by us [14], liquid 

lower phases could be the result of very hygroscopic solids (that we may also call water-rich phase). 

Note that none of the water content has been analyzed for any of the obtained compound.  

As far as we know from the literature, none of these systems had been shown to present a change 

from mono- to biphasic state before these three publications [14, 21, 26]. Although no reference has 

been made in the above mentioned publications to ABS as such, all these systems correspond to IL-

ABS under our definition. Interestingly, these systems are one of the very rare examples of IL-ABS 

containing large amounts (1 M or above) of a mineral acid as one of the key constituents, while most 

of the known IL-ABS deal with alkaline, neutral or slightly acidic mixtures [70]. These acidic conditions 

are clearly an advantage in view of metal extraction, in order to avoid hydrolysis and/or precipitation.  

Extraction of the three metals towards the lower phase strongly depends on the global mineral acid 

concentration and on the exact nature of the IL compound but for all three metals, chemical 

conditions leading to very high extraction efficiencies could be found (Ex,ℓ > 90 %). The authors [14] 

note that these experiments correspond to a metathesis procedure leading to the formation of an 

insoluble IL (i.e. insoluble in an aqueous acidic phase), which is actually a very classical way to 

synthesize ILs and thus they proposed a mechanism as: 

Cat+ + MX4
-  CatMXp   (M = Au)     (eq. 9.6) 

2 Cat+ + MX6
2-  Cat2MXp  (M = Pt, Ir)     (eq. 9.7) 

where X = Cl or Br, accordingly. Characterization of the collected fractions (lower phases) by NMR or 

IR (Pt and Ir cases, collected fractions for Au were too small) confirmed the presence of the IL cation 

and UV-vis spectra confirmed the presence of the halide metallic entity. Equations 9.6 and 9.7 are 

ascribable to a precipitation mechanism and the authors used this term all along, whatever the exact 

state (liquid or solid) of the lower phase obtained3. The authors [14] consequently developed a 

simple mathematical treatment, based on the classical definition of a solubility product to determine 

the Ks values of each compound. Although this formalism well describes the results obtained, a 

model based on anionic exchange could also be considered for the liquid-liquid biphasic systems as 

(adaptation to the Ir and Pt cases is straightforward): 

                                                           
3
 This corresponds to the counter-intuitive (but stimulating) notion of precipitation of a liquid, that could 

possibly be lying as an upper phase. This observation can also be found in the recent paper [53] Dupont D, 
Depuydt D, Binnemans K, (2015) Overview of the effect of salts on biphasic ionic liquid/water solvent 
extraction systems: anion exchange, mutual solubility and thermomorphic properties. J. Phys. Chem. B 
119:6747-6757. 
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X-
ℓ + AuCl4

-
u  X-

u + AuCl4
-
ℓ        (eq. 9.8) 

In the case of the liquid lower phases we consider both models to be formally identical.  

Such experiments lead to a new metal-containing ILs quite similar to the [C1C4im
+][FeCl4

-] which has 

been presented in Section 9.3.1 above. They are also very similar to the synthesis of the liquid 

compound [C1C8im
+]2[Ce(NO3)6

2-] by adding [C1C8im
+][Cl-] to a strongly acidic aqueous solution 

([H+][NO3
-] > 7 M) in which [Ce4+] [NO3

-]4 has been dissolved: Upon addition of the IL, a red viscous 

liquid forms at the bottom [15] and the authors propose an anionic exchange similar to eq. 9.8 to be 

the rationale for that reaction. Another work in relation with this is the synthesis of imidazolium ILs 

bearing aminodiacetic moieties as di-tert-butyl ester [71]. One of them, put in contact with a water 

solution containing Cu(II) leads to a cupper complex forming a separate different phase.  

9.3.7 Use of phosphonium-based ILs 

This section presents extraction data for an IL-ABS system for which both T and salt concentration 

are used in conjunction to induce phase changes. Phosphonium-based ILs are relatively new comers 

in the field of metallic ion extraction [72], as compared to imidazolium-based ILs. Under the 

commercial generic names of Cyphos (Cytec), they are in particular available as chloride, bromide 

and dicyanamide salts, thus being fluorine-free ILs. Addition of [Na+][Cl-], a cheap and efficient 

salting-out agent, induces a thermomorphic behavior for H2O&[P44414
+][Cl-]. The turnover 

temperature can vary from 40°C down to 0°C as the sodium chloride amount is increased from 2 to 

11 wt% [24]. Other examples of mono/biphasic changes upon composition of the phosphonium-IL 

/water mixtures, for non-commercial compounds, can be found in [73]. 

To the best of our knowledge, extraction of metallic ions using such phosphonium-based ILs in IL-ABS 

was performed only by the Binnemans group so far [18, 61]. Such experiments concern Co, Ni, Cu 

and Zn, on the one hand, and Sc on another hand. Using the system H2O&[P44414
+][Cl-](40 

wt%)&[Na+][Cl-] (5 to 11 wt%), Ni(II) was efficiently separated from Co(II) (1g.kg-1 each), the latter 

being extracted to the “IL-rich phase” (i.e. most probably the upper phase of the biphasic system, as 

phosphonium-ILs are most of the time less dense than aqueous solutions). In this case, the system 

was cooled below the LCST temperature (monophasic state) and then heated up (biphasic state) but 

no information on the two operating temperatures could be found. A separation factor of ca. 500 

was obtained. This is an interesting example of extraction which benefits both from the addition of a 

salting-out agent and of the thermal stimulus in order to obtain and drive the biphasic/monophasic 

changes. This is useful for complete and fast mixing, first and, second, phase separation. By contrast, 

systems as H2O&[P444Ei
+][DEHP-] (i=1,2,3) do not require salt addition to display tractable 

mono/biphasic changes upon temperature (Tc from 60°C to 20°C depending on the exact IL nature, 

LCST type behavior) but do not allow for neither a Co/Ni efficient separation, nor for separation of 

Cu(II) and Zn(II), all four elements being extracted with D values in the range 4 – 25 [18]. Another 

drawback of these systems is, as stressed above, a large effect of metal concentration onto the 

turnover temperature, which can be reduced by ca. 20°C. As discussed by the authors, this effect is 

interesting on the view point of energy consumption and practical easiness but limits the metal 

loading to 8000 ppm, in order to prevent a temperature change below 0°C.  

The system H2O(500 mg)&[P444C1COOH+][Cl-](500 mg)&[Na+][Cl-](8 wt%) was also used for studying 

Sc(III) extraction (introduced as its chloride salt, at concentration equal to 5 mmol.kg-1) [27]. Again, 
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addition of the metallic ion of interest impacts the binodal curve. Scandium is efficiently extracted 

from aqueous phases and the effect of contact time and pH (in the range 0 – 3.3, in order to avoid Sc 

hydrolysis) was examined. However, increasing the initial amount of Sc above ca. 10 mmol.kg-1 

decreases the extraction efficiency, due to saturation of the receiving phase. Insights into the 

extraction mechanism are given, substantiated by NMR and IR measurements. Note that in an IL 

phase, the exact state, either associated or not, of any charged species is difficult to ascertain [74] 

and the same fundamental question arises in “IL-rich phases”. We thus suggest that the formation of 

the neutral species [P444C1COO)3Sc]Cl3, as proposed by the authors [27], is as valid as our suggestion 

of the formation of [P444C1COO)3Sc]3+ + [Cl-]3 is, because the differences between the two proposals 

are merely a question of considering or not a coordination sphere. Stripping experiments have been 

successfully performed, by use of the classical route of oxalic acid addition, inducing oxalate 

precipitates.  

 

9.3.8 Stripping and recycling 

The final aim of any extraction process is to concentrate the metal under any suitable form (oxide, 

salt, neat metal, etc.) in a monophasic aqueous phase while the IL is recovered in view of recycling. 

Starting from the individual phases of IL-ABS, which both contain large amounts of water and IL, this 

can be named “metal recovery” or “metal stripping”, in reference to traditional extraction process, or 

“IL recovery”. The use of IL-ABS is clearly a disadvantage, because, as pinpointed by the Binnemans’ 

group [22], IL-ABS are based on the high solubility of IL into aqueous phases and vice-versa. 

Although, in a successful (i.e. efficient) extraction, the metal has been massively transferred from one 

phase to the other, by contrast, the IL is distributed between two phases, which implies multiple 

stripping procedures for its recovery. The recovery of the extractant is an additional problem to cope 

with, especially considering the large changes in composition of the IL-ABS as a function of all its 

components, as previously discussed. Furthermore, all other metallic ions present in the starting 

aqueous phase may interfere with the recovery procedures. These problems are not too often 

tackled in fundamental studies and we commend the work and efforts of the Binnemans group [27, 

61, 75] on these points. In the following, we simply gather some results on the general problem of 

metal, extractant and IL as found in the papers discussed above.  

For any recovery procedure requiring acids, the use of [H+][Tf2N
-] is limited by the unusual 

thermomorphic behavior of H2O&[H+][Tf2N
-], as observed [76] and discussed [77] in previous papers. 

As for back-extraction of metallic ions, this subject is scrutinized in many papers. Various back-

transfer protocols have been tested, depending on metal and samples. Contacting the IL-rich phase 

with acidic aqueous solution may be efficient [17], but precipitation using oxalic acid is also very 

common [18, 27, 61, 62]. More specific means, as reduction from Tc(VII) to Tc(V) by addition of 

[Sn2+][Cl-]2 have also been tested in the literature but appear to be far from perfect [28]. Most of the 

time, stripping procedures lead to further losses of the IL components, in a way rather difficult to 

predict, as this depends, among other parameters, on the nature and amount of acid, but also on the 

metal concentration, a problem discussed in the studies with the H2O&[Hbet+][Tf2N
-] system [23]. In 

some other cases, precipitation of the metallic salt regenerates the IL compound at the same time 

[27, 62]. 
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In the case an extracting agent has been used, closing the cycle often requests to change its 

protonation state, which has been modified during the course of the IL-ABS extraction. Washing with 

water is often used for that purpose [18].  

Finally, in view of recovering ionic liquids from aqueous samples, the use of [Al3+]2[SO4
2-]3 and 

[Al3+][K+][SO4
2-]2 has been successfully tested [78]. The system H2O&[Cat+][Ani-]&[Al3+]2[SO4

2-]3 (or 

Al3+][K+][SO4
2-]2) is in fact an IL-ABS which does not extract aluminum but generates a biphasic state 

upon aluminum salt addition, thus cleaning the aqueous phase from its undesired IL content. The ILs 

under investigation belong to the imidazolium, phosphonium and pyridinium families. Percentages of 

IL recovery were all above 90% [78]. This is an unexpected use of an IL-ABS which is not efficient for 

Al recovery but is still of interest to a closed cycle.  

 

9.4 Could (should) all extraction systems with H2O and ILs be considered as IL-ABS? 

This question may appear rather provocative, of course, but it is our opinion that there is a 

continuous link between IL-ABS as reviewed above and any extraction system composed of (at least) 

water and one IL, plus a metallic entity to be extracted. In order to better sustain this paradigm, we 

will first present in the two sub-sections to follow, typical examples of what we consider as two 

missing links between “real” IL-ABS and any other systems of the type H2O&[Cat+][Ani-]. Then, in the 

third sub-section, few general comments are provided. 

9.4.1 Extraction with [C1Cnim
+][Tf2N

-] or [C1C4im
+][PF6

-] 

Systems of the type H2O&[C1Cnim+][Tf2N
-] (n = 2, 3, 4, 5, 6, 7, 8) also display an UCST behavior [79], 

but, owing to the physico-chemical properties of these ILs, the miscibility curve could not be 

obtained in the full range of IL contents: In the range of IL mole fraction 0.001 – 0.7, all systems are 

biphasic from ca. 17 °C up to 47 °C, which, most of the time, corresponds to a workable T range for 

laboratory scale experiments. Moreover, as the measured two parts of the miscibility curve are very 

steep, the biphasic state could be evidenced either for very low (< 10-3 mole fraction) or rather high 

(> 0.7 mole fraction) amounts of ILs in this accessible T range. To fix ideas, for the rather common 

[C1C4im
+][Tf2N

-] IL, at T = 25 °C, contacting 5 mL of pure water and that IL leads to a biphasic state for 

IL volumes from ca. 70 µL to 219 mL. Rather similar values are obtained for the other ILs (n = 2 to 8). 

Owing to the price of ILs and to the difficulty in handling very low volumes, most workable extraction 

studies based on H2O&[C1C4im
+][Tf2N

-] thus correspond to a very stable biphasic system composed of 

equal volumes of water and IL. Note that in the publications of concern, acids (nitric, hydrochloric 

etc.) and/or acidic extractants could be added to the system to avoid metal hydrolysis and enhance 

extraction efficiencies, respectively. Those additional compounds may modify the borders of the 

miscibility curve, as could also large amounts of metal added do, as already stressed in Section 9.2, 

but as a matter of fact monophasic states have not been observed by any of the authors, so we may 

conclude that acids, extractants and metallic ions do not dramatically reduce the biphasic envelop of 

the miscibility curve. Consequently, as far as we know from a broad literature survey (for reviews in 

the field, see [3, 4]), none of the numerous works performed with the general extraction systems 

H2O&E&[C1Cnim+][Tf2N
-]&[H+][X-] for metal extraction mention the existence of an UCST behavior, 

starting from our own publications in the field [80-82]. In our defense, it is most probable that very 
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high temperatures would be needed to obtain a monophasic system, which would limit a lot the 

advantages of that protocol.  

Similar very broad biphasic state is obtained for the system H2O&[C1C4im
+][PF6

-] [41], in the T range ≈ 

10 °C – 87 °C so the same conclusions as above are derived: apart from a few noticeable exceptions 

(see below), none of the publications dealing with H2O&[C1C4im
+][PF6

-] mention the UCST behavior of 

the system they are working on. However, considering the instability of [PF6
-] towards hydrolysis as 

already discussed, again, we would not recommend this system for metal extraction. Exceptions 

concern only systems in which the amount of [C1C4im
+][PF6

-] is very low, owing to cost of the 

compound. Keywords of these publications refer to liquid phase microextraction [83] or micro 

volume [84]. These two works present extraction of Pb(II) and Ni(II) [83, 84]. In these experiments, 

volumes are in the range of less than 10 µL for IL versus 3 mL of aqueous phase [83] or 500 µL of IL 

contacted with 10 mL of aqueous solution [84]. 

9.4.2 Imidazolium nonafluorobutanesulfonate ABS 

Only two papers [85, 86] take advantage of [H2O]&[C1Cnim+][NfO-] (n = 4, 5, 6) mixtures for metal 

extraction (La, Eu, and Li, Na, Cs, Ca and Sr). In one case, only nitric acid was added [86], while a 

mixture of [Na+][ClO4
-] and [H+][ClO4

-], together with the acidic extractant [H+][TTA-] is used in the 

other case. To the best of our knowledge, these systems have not proved yet to experience changes 

from monophasic to biphasic state as a function of T or concentration (fifth criterion in Section 9.2). 

Therefore, strictly speaking, they cannot be considered as real IL-ABS under our definition but we 

consider them to be emblematic of the general ideas and results when using IL-ABS. In fact, it is our 

opinion that they are a perfect illustration of the gradation evoked in the introduction of Section 9.4. 

Jensen and co-workers [85] observed large changes in volumes when equilibrating neat, dry 

[C1C4im
+][NfO-] and aqueous (perchloric/perchlorate) phases, giving birth to the system 

H2O&[C1C4im
+][NfO-]&[H+][ClO4

-]&[Na+][ClO4
-]. As no indication of phase inversion could be found in 

both papers, we will assume that the lower phase corresponds to what is called an « IL phase » in 

[85] and [86]. An expansion of ca. 40% of the volume of the formerly dry IL phase is indicated, 

accompanied by a substantial decrease of the volume of the other phase [85] but it has to be noted 

that the starting volumes of both phases are not specified in this paper. However, based on standard 

procedures, we may assume the preparation protocol to be based on identical volumes of IL and 

aqueous phase before contact. At equilibrium, the authors note that “the water content of neat IL 

phase is equal to 20.7 wt% (10.9 mole H2O per liter)”, which corresponds to ca. “6.4 H2O molecules 

per C1C4im
+ NfO- pair” [85]. It is clear that the so-called neat IL phase obtained by this protocol (with 

or without [H+][TTA-]) should be better considered as an aqueous phase containing large amounts of 

[C1C4im
+] and [NfO-]. This perfectly corresponds to the notion of “two immiscible aqueous-rich 

phases” of Freire and co-workers [35] and is also in line with the results of Kohno et al. [43] detailed 

in Section 9.2. Furthermore, addition of 0.5 M of [H+][TTA-] modifies significantly the water amount in 

the lower phase, with a decrease to 14.2 w%, a phenomenon which resembles previous observations 

on the impact of Hbet and [H+][Cl-] [16, 22]. In the other publication dealing with [C1C4im
+][NfO-] and 

nitric acid [86], the water content of the [C1C4im
+][NfO-] IL phase is said to be equal to 15.8 wt% 

(starting volumes of the aqueous and IL phase are identical), a value in line with that obtained by 

Jensen and co-workers [85] for perchlorate salt/perchloric acid combination. We thus may expect 

similar volume changes. 
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The question of water distribution is acknowledged by Jensen et al. [85], who state that “water-

saturated [C1C4im
+][NfO-] would seem to have more in common with conventional concentrated salt 

solutions than (…) molecular organic solvents” so that “in liquid-liquid extraction systems 

[C1C4im
+][NfO-] appears to resemble an aqueous biphasic extraction system”. We fully agree with 

that statement. However, these authors did not attempt to measure a pH equilibrium value in the 

lower phase neither did they attempt any experiments by varying the temperature.  

9.4.3 Discussion 

From the examples discussed above, it is clear that thermomorphic behavior and changes from mono 

to biphasic state of systems containing at least water and one IL are a rather common phenomenon 

and this book is a clear proof of this statement. By contrast to what could be thought it is not true 

that ILs for use in solvent extraction should be immiscible with water: all the examples here provided 

contradict this statement.  

From some striking experiments discussed above [22], it seems that using the thermomorphic 

behavior of systems in view of metal extraction offers great advantages in terms of efficiency, 

easiness and duration, and therefore, cost. Gathering the knowledge of the scientific community 

dealing with thermomorphic behavior and salt-in/salt-out effects, on the one hand, and that working 

on metal extraction by use of ILs, on the other hand, would be very fruitful and a first attempt to link 

the fundamental aspects of the two domains was done previously by us [77]. However, examples 

given in Section 9.4 highlight the regrettable poor connections existing at the moment and it is one of 

the aims of this review chapter to bring links between them. We hope that the review of this chapter 

will bring the two communities closer by showing that “real” ABS have a lot aspects (if not all) in 

common with “classical” water-IL liquid-liquid extraction systems: water content and transfer of ions 

from one phase to the other are physico-chemical characteristics found in both types of systems. 

Addition of large amounts of acid and/or metal salts and/or extractant perturbs miscibility curves in a 

way quite similar in nature (if not in quantitative values) as addition of kosmotropic salts does.  

 

9.5. Conclusions 

Despite the obvious considerations on green aspects brought about by the use of large amounts of 

water and of ILs as non-volatile and non-flammable salts, one should not overlook some problems to 

be solved: IL-ABS of the type reviewed here are most probably difficult to handle on an industrial 

scale because of the large changes in respective volumes of the phases and variations of UCST/LSCT 

as a function of all component concentrations. Actually, an industrial goal is certainly to feed the 

system with a highly metal-loaded aqueous phase and to recover a highly metal-loaded lower phase. 

Another trouble may arise from the distribution of the IL components between the upper and lower 

phases which render their recovery problematic. 

On a more fundamental perspective, elucidation of the extraction mechanism clearly requires a 

comprehensive analytical determination of ions, molecular compounds and water fluxes between 

the two phases. This is a great experimental challenge but it will not be of general help to our 

understanding of IL-ABS unless tremendous efforts are put also in the search for tractable theoretical 

approaches, able to describe and predict UCST/LCST and distribution ratios of all components in 
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order to first design and conceive and then apply and use novel systems. Some attempts, which 

discussion is out of the scope of this review chapter, can be found in [40, 87, 88].  

We would like to end this chapter by further opening the door to other systems, again under the idea 

that the apparent barriers and frontiers existing between them and “real” IL-ABS are merely a 

question of personal feeling of the reader and are thus not as strict as could be envisioned at first 

glance. First, in this list of possible extensions, we would like to cite extraction of several lanthanides 

(La, Ce, Pr, Nd, Sm, Eu, Dy Er and Lu) by use of molten calcium hydrate and [A336+][NO3
-] [89]. Such 

systems are “border-line” in the sense that molten hydrates although containing water, by definition, 

cannot be considered as aqueous solutions. Nevertheless, distribution ratios in the range 100 – 700 

were obtained. Second, many other thermomorphic systems involving ILs exist. Of special though is 

the use of carbon dioxide, as a perfect “green solvent” (provided it is captured from the atmosphere 

and not produced on purpose). Scurto and co-workers demonstrated the feasibility of three-level 

systems (two meniscuses, for mixtures of IL, water and CO2 plus air interface) [90] and this could be 

put in parallel with metal extraction experiments by use of supercritical CO2 and ILs [91]. Another 

elegant idea, although may be relatively costly, is the replacement of water by a second IL. Successful 

extraction of Co(II) from biphasic systems composed of two “immiscible” ILs have already been 

performed [92]. Another wide field that remains to be explored for metal extraction is that of 

thermomorphic systems between one IL and one organic solvent (no water). Although this could be 

considered as a step backwards on an ecological perspective, some alcohols are not too detrimental 

to the environment. Numerous examples are e found for hexanol [93], butanol [87], propanol, 

butanol and pentanol [94], and other series of alcohols [42], among which octanol [95], for various 

ILs : [C1C6im
+][BF4

-] [42] but also [C1C4im
+]CF3SO2

-] [95], [C1Cnim+][PF6
-] [87] or rather unusual ILs [93]. 

Experiments can already be found for Co(II) in systems composed of either ethanol, propanol or 

butanol and nitrile-bearing functionalized ILs, which display UCST values in the range 25 °C – 100 °C 

[96]. Other thermomorphic systems comprise [C1Cnim+][Tf2N
-] (n = 2, 4, 6, 8, 10) and arenes [97], 

while CHCl3 or mixtures (CCl4 + CHCl3) combined with [C1Cnim+][Tf2N
-] (n = 4, 5) display rather unusual 

miscibility curves [98]. Going a step further, we think more complex systems are also worth of notice: 

Systems with four phases (three meniscuses at the same time before liquid/air interface, two ILs and 

two organic solvents) have been studied by the Seddon group [99], showing that, as already stressed 

for one-meniscus systems, ions distribute independently from each other [92]. Finally, the circle 

comes back around with extraction experiments for rare-earth group separation by use of water, 

polymer, ammonium sulfate and an organic solvent, Cyanex 272 [100]: this system mixes “old-

fashioned ABS” (water, PEG and salt), and “new comers” as ILs and organic solvents. Although 

extraction ratios are not very high, there are good chances that efficiencies will be enhanced by 

optimization of the overall system.  

As one can see, the scientific playground is very broad. Enjoy!  
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