
HAL Id: hal-02272197
https://hal.science/hal-02272197

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fault-Tolerant Software Architecture and its Formal
Specification for Embedded, Real-Time Interactive

Systems
Camille Fayollas, Philippe Palanque, Jean Charles Fabre, David Navarre,

Yannick Deleris, Arnaud Hamon

To cite this version:
Camille Fayollas, Philippe Palanque, Jean Charles Fabre, David Navarre, Yannick Deleris, et al.. A
Fault-Tolerant Software Architecture and its Formal Specification for Embedded, Real-Time Inter-
active Systems. Conference Embedded Real Time Software and Systems (ERTS 2014), 3AF Midi-
Pyrénées: the French Society of Aeronautic and Aerospace; SEE: the French Society for Electricity,
Electronics, and Information & Communication Technologies., Feb 2014, Toulouse, France. �hal-
02272197�

https://hal.science/hal-02272197
https://hal.archives-ouvertes.fr

A Fault-Tolerant Software Architecture and its Formal Specification
for Embedded, Real-Time Interactive Systems

C. Fayollas
2,3,

, P. Palanque
2
, J.-C. Fabre

3,4
, D. Navarre

2
, Y. Deleris

1
, A. Hamon

1,2

1
AIRBUS Operations, 316 Route de Bayonne, 31060, Toulouse, France

2
ICS-IRIT, University of Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France

3
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

4
Université de Toulouse, INP, LAAS, F-31400 Toulouse, France

(fayollas, navarre, palanque, hamon)@ irit.fr, yannick.deleris@airbus.com, Jean-Charles.Fabre@laas.fr

Abstract—Most of the work that has been done to build

reliable interactive systems has been focusing on avoiding the

occurrence of faults during the development of the system,

using for instance formal verification techniques. However,

empirical studies have demonstrated that software crashes

may occur at runtime, even if the development has been

extremely rigorous. One of the many sources of such crashes

is called natural faults triggered by alpha-particles from

radioactive contaminants in the chips or neutron from cosmic

radiation. A higher probability of occurrence of faults

concerns systems deployed in the high atmosphere (e.g.

aircrafts) or in space (e.g. manned spacecraft). Therefore

mechanisms are needed to deal with these faults and

guarantee that the system will work correctly even in the

presence of these faults. To deal with this issue, this paper

proposes a fault-tolerant software architecture and its formal

specification applied to embedded, real-time interactive

systems.

Keywords—Dependability, Widgets, Fault Tolerance,

Formal Description Techniques, Interactive cockpits, Fault-

Tolerant Architecture

I. INTRODUCTION

A safety-critical system is a system in which any failure
or error has the potential to lead to loss of lives or to injury
human beings [13] while a system is called critical when the
cost of a potential error is much higher than the cost of
development. Whether or not they are classified as safety-
critical or critical, interactive systems have made their way
into most of the command and control workstations
including satellite ground segments, military and civil
cockpits, air traffic control... The complexity and quantity of
data manipulated, the amount of systems to be controlled
and the high number of commands to be triggered in a short
period of time have pulled sophisticated interaction
techniques into most of them.

Building reliable interactive systems is a cumbersome
task due to their very specific nature. Their behavior is
usually event-driven making them belong to the reactive
systems category. Beyond that, the main trigger for these
events is the operator of the interactive systems usually
behaving in an unexpected and unpredictable way. On the
output side, information (e.g. the current state of the system)
has to be presented to the operator in such a way as it can be
perceived and interpreted correctly. Lastly, interactive
systems require addressing simultaneously hardware and

software aspects (e.g. input and output devices together with
their device drivers).

Due to these specificities standard software engineering
approaches cannot be reused for building reliable interactive
systems. To address this challenge a lot of work has been
carried out in the engineering interactive systems
community extending and refining approaches including
software architectures [7] formal description techniques and
verification ([16], [8] and [14]) or testing ([12], [10] and
[24]). Most of these works have been focusing on avoiding
the occurrence of faults by removing software defects prior
to operation i.e. during the development of the interactive
system. The use of such techniques is particularly adequate
when applied to safety-critical interactive systems (e.g.
aircraft cockpits) as return on investment and cost-benefits
trade-offs are covered by their safety-critical nature.

In the domain of fault-tolerant systems empirical studies
have demonstrated (e.g. [23]) that software crashes may
occur even though the development of the system has been
extremely rigorous. One of the many sources of such
crashes is called natural faults [3] triggered by alpha-
particles from radioactive contaminants in the chips or
neutron from cosmic radiation. A higher probability of
occurrence of faults [28] concerns systems deployed in the
high atmosphere (e.g. aircrafts) or in space (e.g. manned
spacecraft [17]).

Such natural faults demonstrate the need to go beyond
classical fault avoidance at development time (mainly based
on formal description techniques and associated verification
methods) and to embed fault-tolerant approaches to handle
faults that may occur at operation time. In the area of
dependable systems such issues have been studied and
current state of the art in the field identifies four different
ways to increase a system’s reliability ([3] and [13]):

 Fault avoidance: preventing the occurrence of faults

by construction (usually using formal description

techniques and proving properties [25]).

 Fault removal: reducing the number of faults that can

occur (by verification of properties).

These first two mechanisms belong to the so-called zero-

defect approach aiming at acting in the development phase

for preventing faults from occurring.

2

 Fault forecasting: estimating the number, future

incidence and likely consequences of faults (usually by

statistical evaluation).

 Fault tolerance: avoiding service failure in the

presence of faults (usually by adding redundancy,

multiple versions and voting mechanisms).

This paper focuses on the natural faults which will occur
regardless the effort deployed during development phases.
To increase the system reliability concerning these faults
which occur during operations, this paper proposes a
software architecture in order to address fault-tolerance.
Fault-tolerance will be achieved by covering the following
aspects:

 Fault detection: identifying the presence of faults, the

type of the fault and possibly its source,

 Fault recovery: transforming the system state that

contains one or more faults into a state without fault.

Beyond the proposed software architectures, we present
how to use a model-based approach for describing, in a
complete and unambiguous way, the various elements of the
software architecture. Combining the zero-defect approach
with the fault-tolerant one we will describe how to add fault
detection and fault recovery mechanisms to interactive
systems. This work thus extends previous work in the area
of dependable computing by taking into account the
specificities of interactive systems and adapting previous
contribution to them.

As far as interaction technique is concerned, in this
paper we are focusing on standard indirect manipulation
techniques for which display and control take place through
a predefined set of widgets (e.g. buttons, labels …). Even
though a lot of more sophisticated interaction techniques are
proposed and evaluated by the HCI community such
indirect manipulation interaction style follows standards in
the area of safety-critical interactive systems such as
ARINC 661 specification for interactive civil cockpits [2].

Due to their standardized behavior and graphical
representation user interfaces based on widgets are faster to
design and easier to implement than the one offering direct
manipulation interactions. This is the reason why user
interfaces for critical command and control systems offer
menu and form-based interactions based on standard
widgets such as buttons, check boxes, radio boxes …
Implementation of such interfaces usually exploit
component based approaches [29] where the user interface
consists in an assembly of reused software components.

Such approaches present a set of advantage improving
reliability (as the components are reused and thus usually
widely tested), development cost efficiency (components are
produced by third parties and are uses “as is” by many
“clients”), development time efficiency (the designer
focuses only on the assembly of the components and not
their design) …

This paper is structured as follows. Next section is
dedicated to the generic architecture of component-based
interactive systems. Section III proposes a software

architecture for embedding fault-tolerance mechanisms in
interactive systems and more precisely in widgets. To avoid
faults in the design of the components enabling fault-
tolerance, they have been formally modeled using a Petri
nets-based formal description technique. In order to
exemplify the concepts and to demonstrate their
applicability, section IV presents their formal specification.
The last section concludes the paper.

II. ARCHITECTURE OF A COMPONENT-BASED

INTERACTIVE SYSTEM

Figure 1. Architecture of critical interactive systems (from

input devices to interactive applications) adapted from [7]

Figure 1 presents a revised version of the ARCH
software architecture introduced in [9]. We have used it to
explicit the functional architecture of most of the interactive
and user-driven systems. Logical Level and Presentation
Technique Interactive Components (the last two ones on the
right-hand side of the original ARCH model) have been
replaced by input and output devices, window manager and
widgets. Indeed, from a functional point of view, a
component-based interactive application (Figure 1, should
be ridden from left to right) may be seen as a five parts
system:

 Input and output devices: classically screens,

keyboards, mice… ; but they can be more complex

(e.g. combined devices such as the KCCU (Keyboard

Cursor Control Unit) in interactive cockpits). They

allow the interaction (at the hardware level) between

the human and the computer.

 Window manager: embedding devices drivers, it

manages the link between the input and output devices

and the rest of the application. For example, it is

responsible for the management of the graphical

cursors, the identification of the widget which is

targeted by user action on the input devices (called

picking), the dispatching of the input device events to

the corresponding widgets and the rendering of

graphical information on the output device.

 Widgets: the basic interactive components. They are

represented in a separate box in Figure 1 as we

consider here the widgets as independent components.

 Dialog controller: describes the application states and

behavior and how events received from the previous

components trigger state changes in the application and

3

how those state changes trigger rendering function

execution in the lower level components.

 Functional code adapter and functional core

components are embedding the non-interactive

functionalities of the system.

III. AN ARCHITECTURE FOR FAULT-TOLERANT WIDGETS

A. Main Hypotheses and Functional Failures Taken into

Account

This paper focuses on system-side dependability of
interactive system and considers human-error as out of
scope. This is indeed a very strong hypothesis but human
reliability aspects can be considered independent from the
ones addressed here and natural faults at operation time are
not influenced by operator’s behavior. As shown in
section II these aspects are pertinent and are required to be
dealt with adequately if the entire socio technical system is
to be considered.

We only tackle the functional failures of the widgets ;
the main part of the considered architecture in Figure 1.
Moreover, input and output devices, dialog controller and
functional core and the window manager are considered out
of the scope of this paper.

Our proposed software architecture aims at ensuring that
the interactive system processes correctly input events from
operators, and renders correctly parameters received from
the functional core. To be more concrete, we are targeting at
managing three possible functional failures:

 Erroneous display: Incorrect display of data received

from functional core (e.g. a widget receives a value to

render and displays another value);

 Erroneous control: Transmission of a different action

from the one done by the user (e.g. the user clicks on

button1 but the application sends an event from

button2);

 Inadvertent control: Transmission of an action

without any user’s action (e.g. an event click is sent to

the application without user action on the input

devices).

B. An Architecture for Fault-Tolerant Widgets

In this section, we describe a solution for building fault-
tolerant interactive applications. To this end, we propose to
apply and customize fault-tolerant architectures to the
widgets.

Various architectures are available in the dependable
computing community, each of them having drawbacks and
advantages. We present in detail how to use a self-checking
architecture to design widgets able to detect faults which
occur during their execution.

1) An Architecture for Self-Checking Widgets
The architecture presented in Figure 2 is a good

candidate for embedding fault-detection mechanisms into
widgets. According to this architecture, the self-checking is
made up of 5 connected sub-components:

 The façade is the envelope of the widget, coordinating

the flow of data amongst the other sub-components.

This encapsulation of the other inner components

makes it possible to hide (as much as possible) the

self-checking nature of the component to the rest of the

application (including other non-self-checking

widgets). This is an important characteristic if one has

to develop an applications embedding two types of

widgets (a self-checking one and a non-self-checking

one). As the self-checking mechanism requires a lot of

resources (both at design time and at execution time),

it should be used only for components involved in

critical interactions, implying the coexistence of both

fault-tolerant and non-fault-tolerant components within

the same application.

 The dispatcher: events and method calls received by

the self-checking widget are forwarded to the

dispatcher. The dispatcher then duplicates events and

sends them both to the functional and controller. It

manages all methods calls and events by means of a

queuing mechanism: each input is stored and processed

following the first-in/first-out principle. The

dispatcher has to deal with temporal constraints of

execution ensuring that functional and controller

receive event in a synchronous way.

 The functional is the classical widget. The functional

sends its outputs both to the self-checking widget and

the comparator.

 The controller is a second version of some of the

functionalities of the widget. It only implements the

functionalities that have to be supervised by the

controller. Its behavior is simpler than the one of the

functional and is thus more reliable. The controller

sends its output to the comparator.

 The comparator is in charge of comparing the

functional and controller outputs. There are two kinds

of comparisons to perform: one related to parameters

modification and the other related to event notification.

When the comparator receives an output from the

functional (resp. the controller) it waits for the

corresponding output from the controller (resp. the

functional). Following the reception of these two

outputs, two types of errors can occur: one of the

outputs is ill-timed (too late or too early) with respect

to the defined temporal window or the outputs hold

different values. In case of error, the comparator sends

an error event) to the self-checking widget.

Figure 2. Self-Checking architecture for fault detection.

4

One of the key aspects of the proposed architecture is
that it allows the segregation of the five sub-components
(e.g. each sub-component may be executed on different
processor with different resources). Indeed, a self-checking
mechanism is not enough to ensure fault-tolerance if a fault
occurring on one component might interfere with the
behavior of another component. This would be the case if all
the components of the architecture were executed in the
same partition. ARINC 653 [1] defines such partitioning in
the domain of civil aviation and our contribution is
compatible with that standard.

IV. FORMAL SPECIFICATION OF THE FAULT-TOLERANT

INTERACTIVE COMPONENTS

It is clear that the proposed self-checking widget
architecture relies heavily on the dependability of all its
components. Indeed, all the components and mechanisms
related to error detection must be reliable. Therefore, in a
self-checking widget, the components enabling the fault-
detection (e.g. the dispatcher, the controller, the
comparator and the façade) are supposed to be defect-free.
We propose to ensure the integrity of the components
enabling the fault-detection by the use of the ICO
(Interactive Cooperative Objects) formal description
technique to describe them in a complete and unambiguous
way. In this section, we introduce a self-checking widget
specification using the ICO formalism with the example of
the self-checking PicturePushButton. We choose the
example of the PicturePushButton as it is a widely used
widget and is also representative of most interactive widgets
defined in ARINC 661 as most interactive widgets share
common properties such as visibility, enabling… Although
this example might look rather simple at first glance, we can
see that its behavioural description (presented on Figure. 3)
is rather complex. All five components of the self-checking
PicturePushButton (façade, dispatcher, functional,,
controller and comparator) are described using the ICO
formalism.

A. ICO, a Formal description Technique

Interactive Cooperative Objects (ICO) is a formal
description technique dedicated to the specification and
verification of interactive systems [20]. It uses concepts
borrowed from the object-oriented approach (dynamic
instantiation, classification, encapsulation, inheritance,
client/server relationship) to describe the structural or static
aspects of interactive systems, and uses high-level Petri
nets [19] to describe their dynamic or behavioural aspects. It
is an extension of the Cooperative Objects formalisms that

has been designed to describe behavioural aspects of
objects-based distributed systems [9] and [10].

The formalism is able to handle the specific aspects of
interactive systems. In a nutshell, the ICO formalism:

 Is Petri net based, suitable to specify the behavior of

event driven-interactive systems and concurrent

human-computer interactions and to describe the inner

states of the Interactive Application.

 Enables the handling of more complex data structure

(typed places and tokens, transitions with actions and

preconditions, variable names on arcs).

 Allows objects of this type to react to external events

according to their inner state and to produce events

 Defines an object as the set of four elements: a

Cooperative Object which describes the behavior of

the object, a presentation part, and two functions (the

activation function and the rendering function) that

make the link between the cooperative objet and the

presentation part (events from input devices and output

on the LCD screens).

B. ICO Modelling of the Self-Checking Widget

1) Classical Widget
In previous work [4], we have proposed the use of the

ICO formal description technique for describing in a
complete and unambiguous way standard widgets.

Figure. 3 shows the ICO model of a non-self-checking
PPB (we only put here the snapshot of the model as the
detail of its behavior is not interesting per se for the purpose
of the paper). The parts of this behavior that are relevant for
the fault-tolerant mechanism are explained when required in
the following section but the entire behavioral description of
the PPB can be found in [4].

The model of Figure. 3 presents the various states the
PPB can be in (e.g. visible, enable), the set of method calls
he can process (e.g. processMouseClick, setLabelString),
the set of events it can trigger (e.g.
A661_EVT_SELECTION) and when such events are
triggered (e.g. if the PPB is visible, enable and receives a
method call processMouseClick the event
A661_EVT_SELECTION is triggered).

5

Figure. 3. ICO model of a PicturePushButton

6

2) Adding Fault-Tolerance
Adding fault-tolerance mechanism to the

PicturePushButton is the result of the merge of the five
subparts of the self-checking component architecture
presented in Figure 2 (the façade, the dispatcher, the
functional, the controller and the comparator). As said
previously, all five components of the self-checking
PicturePushButton are described using the ICO formalism.

As explained in section III, the functional is the
classical widget as illustrated by Figure. 3 and the behavior
of the controller must be close to the one of the functional
as it has to provide the same outputs (events and parameters
modifications) to be checked for conformity by the
comparator. Figure. 5 presents the ICO model of the
controller of the self-checking PicturePushButton. We don’t
detail the behavior here but it is clearly different and simpler
than the function described in Figure. 3. Thanks to the
formal description performed using ICO, behavioral
equivalence can be checked using results from the Petri nets
theory such as the ones presented in [11]. These aspects are
not relevant for the current paper but are of prime
importance for the engineering of fault-tolerant interactive
systems.

The façade being very simple to design as it is only a
sort of wrapper allowing the application to discuss with the
widget ; the main challenge is then to design the dispatcher
and the comparator. The dispatcher and the comparator of
the self-checking PicturePushButton are two really large and
complicated models, they cannot be presented in this paper
due to lack of readability of the figure. However, the
modeling of these two components has exhibited three
generic patterns, one enabling the building of the
dispatcher; the others two enabling the building of the
comparator. We introduce here the specification of these
generic patterns that can be seen as underlying building
bricks of the components enabling the fault detection.

a) Dispatching Pattern

Figure 4 shows the pattern responsible for the
dispatching of one input setParameterX(). To be able to
communicate using a synchronous communication
mechanism, the model needs a reference to the receivers i.e.
the functional and the controller. These references are
stored in the places named resp. functional and controller.
The input is received as a token in the place called
SIP_setParameterX, and the value it holds is then associated
to a queuing number (produced by the transition

setParameterX) and stored in place queueParameterX.
When the number of the next parameter to handle (this
value is stored in place nextToFireParameterX) matches the
value in place queueParameterX, the input value is sent to
both functional and controller components by the firing
transition dispatchParameterX and waits for confirmation.
Finally, when the dispatcher has received both functional
and controller acknowledgements (a token with the right
queuing number must be held by places ParameterX_F and
ParameterX_C), it is ready to process a new input, if any.

Figure 4. Dispatch of the input requesting the modification

of the value of ParameterX of the PPB

This pattern is applicable to any kind of input services
proposed by any widget (some small modifications may be
needed on these patterns function of the service studied), for
instance, the dispatcher of the self-checking
PicturePushButton is composed of 14 of these patterns; one
for each service proposed by the widget.

7

Figure. 5. ICO model of the controller of the self-checking PicturePushButton

8

Figure 6. Comparison of ParameterX values

a) Comparator Patterns

We identified two generic patterns for the comparator:
(: (i) one for service execution (see Figure 6) ; (ii) one for
event sending (see Figure 7).

Comparison of service execution
The pattern presented in Figure 6 manages the

comparison of the processing of a request of a parameter
modification of the PicturePushButton. Four cases are
possible and are represented by the four transitions at the
center of Figure 6:

1. The value sent by the controller and the functional

are the same, then transition ParameterX_Ok is fired

and the comparator does not send an error notification

(right-hand side of the figure).

2. The values received from both controller and

functional are different, then transition

ErrorParameterX is fired and the comparator raises as

output an event "ErrorParameterX" that will be received

by the application to which the widget belongs.

3/4. A more severe failure might occur in the controller

or in the functional making one of them impossible to

send a value to the comparator. In such cases the

corresponding timed transitions ErrorParameterX_C or

ErrorParameterX_F is fired which results in triggering

of the event "ErrorParameterX".

The case in which neither the functional nor the

controller send a result is not considered here due to the
segregation. Indeed, as both functional and controller have
been developed independently and are executed in different
partitions the probability of occurrence of such a case is
below the 10

-9
 required for safety critical functions.

Comparison of event sending
The pattern presented in Figure 7 exhibits a very similar

behavior as the one presented in Figure 6 and is applied to
event processing. The only difference is related to the fact
that the event does not carry any value and thus if it is
received, its value is correct.

The comparator of the self-checking PicturePushButton
is composed of 8 service execution comparison patterns and
1 event sending comparison pattern.

Figure 7. Comparison of an Event sending

V. CONCLUSION

In this paper we have presented that interactive
applications in the context of safety critical systems (such as
in interactive cockpits) raise specific issues about fault-
tolerance. As interactions between the operator and the
system takes place through standardized interactive
components called widgets there is a need to enrich them
with fault-tolerant mechanisms. We have proposed a new
architecture and a model-based description of the
components of an ARINC 661 widget that includes both a
functional and a controller implementing runtime checks of
the specified behavior of a widget. Despite the fact that the
interaction techniques are rather limited (only WIMP ones)
this contribution can be seen as a milestone for developing
robust architectures for interactive cockpits.

The core of such an architecture (that includes such self-
checking interactive component) is clearly its binding with
the formal description technique thus providing a complete
and unambiguous specification of such mechanisms.

This model-based approach is the backbone of a more
ambitious project of providing notations, processes and
tools for the engineering of dependable and fault-tolerancet

9

interactive applications. We are currently working on
extending this self-checking mechanism to more
components of the interactive system.

ACKNOWLEDGMENTS

This work is partly funded by Airbus under the contract
CIFRE PBO D08028747-788/2008.

REFERENCES

[1] ARINC 653 Avionics Application Software Standard Interface.
ARINC Specification 653. Airlines Electronic Engineering
Committee July 15, 2003

[2] ARINC 661 Cockpit Display System Interfaces to User Systems.
ARINC Specification 661. Airlines Electronic Engineering
Committee 2002.

[3] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C. Basic
concepts and taxonomy of dependable and secure computing. In
IEEE Trans. on Dependable and Secure Computing, vol.1, no.1, pp.
11- 33, Jan.-March 2004

[4] Barboni, E., Conversy, S., Navarre, D., Palanque, P. Model-Based
Engineering of Widgets, User Applications and Servers Compliant
with ARINC 661 Specification. DSVIS 2006. LNCS n°4323, pp. 25–
38.

[5] Basnyat, S, Palanque, P, Schupp, B, Wright, P (2007) Formal socio-
technical barrier modelling for safety-critical interactive systems
design (2007) Safety Science, Vol 45, Issue 5, June 2007, ISSN:
0925-7535

[6] Basnyat S., Chozos N. and Palanque P. Multidisciplinary perspective
on accident investigation. Reliability Engineering & System Safety
Volume 91, n° 12, 2006, Pages 1502-1520

[7] Bass, L., Little, R., Pellegrino, R., Reed, S., Seacord, R., Sheppard,
S., and Szezur, M. R. "The Arch Model: Seeheim Revisited." User
Interface Developpers' Workshop. Version 1.0 (1991).

[8] Bastide, R., Palanque, P., Navarre, D., A Tool-Supported Design
Framework for Safety Critical Interactive Systems, Interacting with
computers, 2003, vol. 15/3, pp. 309–328.

[9] Bastide, R., Sy, O., Palanque, P. A formal notation and tool for the
engineering of CORBA systems. Concurrency: practice and
experience (Wiley) Vol. 12, pp. 1379-1403, 2000.

[10] Bastide, R., Sy, O., Palanque, P., Navarre, D. Formal specification of
CORBA services: experience and lessons learned. ACM Conf. on
Object-Oriented Prog. Sys. Lang. and Applications (OOPSLA'2000).
ACM Press, p105-117.

[11] Bourguet-Rouger, A (1988). External Behavior Equivalence
Between two Petri Nets. Concurrency 88, LNCS 335, Springer-
Verlag, 1988, pp. 237-258

[12] Bowen J. and Reeves S.. 2011. UI-driven test-first development of
interactive systems. In Proceedings of the 3rd ACM SIGCHI
symposium on Engineering interactive computing systems (EICS
'11). ACM, New York, NY, USA, 165-174.

[13] Bowen J. and Stavridou V. Formal Methods, Safety-Critical Systems
and Standards. Software Engineering Journal, 8(4):189–209, July
1993.

[14] Campos, J and Harrison, M. D. Formally verifying interactive
systems: A review. 4th Eurographics workshop on Design,
Specification and Verification of Interactive Systems DSVIS '97.
109-124. 1997. Springer Verlag.

[15] Dearden, A. M and Harrison, M. D. Formalising human error
resistance and human error tolerance. Proceedings of the Fifth
International Conference on Human-Machine Interaction and
Artificial Intelligence in Aerospace. 1995. EURISCO

[16] Harrison M. & Dix A. A state model of direct manipulation. In M.
Harrison and H. Thimbleby (eds.) Formal Methods in Human
Computer Interactionpages 129-151, Cambridge University
Press1990.

[17] Hecht H. and Fiorentino E. Reliability assessment of spacecraft
electronics. In Annual Reliability and Maintainability Symp., pages
341–346. IEEE, 1987.

[18] Hollnagel, E. Barriers and Accident Prevention. 2004. Ashgage.

[19] Genrich, H.J. Predicate/Transitions Nets. High-Levels Petri Nets:
Theory and Application, Jensen, K., Rozenberg, G. (eds.), pp. 3–43.
Springer, Heidelberg (1991)

[20] Navarre, D., Palanque, P., Bastide, R. A Tool-Supported Design
Framework for Safety Critical Interactive Systems, Interacting with
computers, 2003, vol. 15/3, pp. 309–328.

[21] Navarre, D., Palanque, P., Ladry, J., and Barboni, E. ICOs: A model-
based user interface description technique dedicated to interactive
systems addressing usability, reliability and scalability, ACM
TOCHI, 2009, V. 16, 4, pp. 1-56

[22] Neema S., Bapty T., Shetty S. & Nordstrom S. 2004. Autonomic
fault mitigation in embedded systems. Eng. Appl. Artif. Intell. 17, 7
(October 2004), 711-725.

[23] Nicolescu B., Peronnard P., Velazco R., and Savaria Y. 2003.
Efficiency of Transient Bit-Flips Detection by Software Means: A
Complete Study. In Proceedings of the 18th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT
'03). IEEE Computer Society, Washington, DC, USA, 377-384.

[24] Palanque P., Barboni E., Martinie C., Navarre D., and Winckler M.
2011. A model-based approach for supporting engineering usability
evaluation of interaction techniques. In Proceedings of the 3rd ACM
SIGCHI symposium on Engineering interactive computing systems
(EICS '11). ACM, New York, NY, USA, 21-30

[25] Pnueli A Applications of Temporal Logic to the Specification and
Verification of Reactive Systems: A Survey of Current Trends.
LNCS n° 224 p.510-584. Springer Verlag 1986.

[26] Polet, P, Vanderhaegen, F, and Wieringa, P. Theory of safety related
violation of system barriers. Cognition Technology & Work, 4, 3,
171-179. 2002.

[27] Reason, J. (1990). Human Error, Cambridge University Press

[28] Schroeder B., E. Pinheiro, and W.-D. Weber. DRAM errors in the
wild: a large-scale field study. In ACM SIGMETRICS, pages 193–
204, Seattle, WA, June 2009.

[29] Szyperski C., Gruntz D. & Murer S. Component Software - Beyond
Object-Oriented Programming. 2nd Edition Addison-Wesley / ACM
Press, 2002 (608 pages) ISBN 0-201-74572-0

