
HAL Id: hal-02272183
https://hal.science/hal-02272183

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster Development of AUTOSAR compliant ECUs
through simulation

Andreas Junghanns, Jakob Mauss, Michael Seibt

To cite this version:
Andreas Junghanns, Jakob Mauss, Michael Seibt. Faster Development of AUTOSAR compliant ECUs
through simulation. Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse,
France. �hal-02272183�

https://hal.science/hal-02272183
https://hal.archives-ouvertes.fr

ERTS

2014 - Embedded Real Time Software and Systems, Toulouse, 05 - 07.02.2014

Faster Development of
AUTOSAR compliant ECUs through simulation

Andreas Junghanns, Jakob Mauss
QTronic GmbH

Alt-Moabit 92, D-10559 Berlin

Michael Seibt
Dassault Systèmes Deutschland GmbH
Joseph-Wild-Str.20, D-81829 München

Abstract - Virtualization allows the simulation of
automotive ECUs on a Windows PC executing in a
closed-loop with a vehicle simulation model. This
approach enables moving many development tasks
from road or test rigs and HiL (Hardware in the loop)
to PCs, where they can often be performed faster and
cheaper. Technical challenge: How to port ECU tasks
and basic software to Windows PC with reasonable
effort, so that key development tasks can be performed
on a PC, without the need of accessing real hardware
such as vehicle prototypes, test rigs or HiL facilities.
This paper presents a new solution for the use case of
ECUs developed within the emerging AUTOSAR
standard: First, the AUTOSAR authoring tool
AUTOSAR Builder (Dassault Systèmes) is used to
design the application software and system aspects of
a single ECU or an distributed embedded system
which is then stored as AUTOSAR XML descriptions.
The application code can either be developed in the
AUTOSAR Builder environment or auto-generated by
tools such as Embedded Coder (MathWorks),
TargetLink (dSPACE) or Ascet (ETAS). Once tested

in AUTOSAR Builder, selected software components
or compositions can be exported including an
AUTOSAR OS (Operating System) and RTE (Run-
Time Environment) as an FMU (Functional Mockup
Unit). FMU [4] is a new exchange format for models
that has been developed in the EU-funded
MODELISAR project (2008 - 2011) and since then
gained considerable acceptance across multiple
industries and tools. The FMU can then be imported
into the virtual ECU tool Silver (QTronic), where it
can be co-simulated with vehicle models originating
from a wide range of simulation tools, including
Dymola, SimulationX, MapleSim and AMESim.
Vehicle models are again provided as FMUs, or via
proprietary binary export formats, typically Windows
DLLs. Tools for measurement and calibration such as
CANape (Vector Informatik) or INCA (ETAS) can
then be connected to the virtual ECU running on PC,
to directly measure or tune its parameters, like an
engineer would do in a real car. Virtual ECUs are also
used to move testing activities from test rigs and HiLs
to Windows PC.

1

Fig 1: Development of automotive ECUs

ERTS

2014 - Embedded Real Time Software and Systems, Toulouse, 05 - 07.02.2014

1. Introduction
Software for automotive ECUs is jointly developed by
OEMs and their suppliers as shown in Fig. 1.
Typically, a team of function developers uses a model-
based tool chain to develop a model of the ECU and to
generate C code from that. The resulting C code is
then compiled for the target processor, and the
resulting ECU is validated and tested using test rigs,
HiL systems, and road tests. Test and validation
results are fed back to the developers, which closes the
development cycle. See [10] for details and typical
numbers.
This process, although standard in the automotive
industry today, has two major drawbacks:
• a single iteration takes days or weeks, that is,

feedback reaches developers late
• the process depends on prototype vehicles and test

rigs. These are typically rare resources during
development. Their limited availability causes
additional delays during development.

This paper presents a tool chain that supports an
improved development process. The key idea is to
provide development engineers with virtual ECUs,
which enables them to move many development tasks
from test rigs and HiLs to Windows PC. As
experience shows,this helps to shorten development
cycles (down to 5 minutes for an incremental build)
and to reduce the critical dependency to real hardware.
We focus here on AUTOSAR projects, although the
method does not depend on the framework (hand
coded, model-based, AUTOSAR) used to develop the
ECU.

The remaining paper is structured as follows: In the
next section, we summarize various benefits of a
virtual ECU for automotive development, with
references to real applications. Section 3 explains how
to build a virtual ECU for development projects that
use the emerging AUTOSAR framework and section 4
demonstrates how to use the resulting virtual ECU on
Windows PC to speed up development.

2. Virtual ECUs in the development
process
Simulation has great potential to improve the
development process for ECUs. It helps to move
development tasks to PC, where they can often be
performed faster, cheaper or better in many respects.
In general, the speed-up generated with virtual ECUs
is the product of three independent factors
• Parallelization: Virtual ECUs help to split

development into parallel threads. With virtual
ECUs, many development tasks can be moved
from shared resources (vehicles, test rigs, HiL) to
PC, where engineers can work in parallel, without
blocking each other.

• Faster feedback on system level: On a PC, a
development engineer can rebuild the entire ECU

within 5 minutes after modification of a software
module, thanks to incremental build, and test drive
the result in a simulated environment. This helps
detecting problems early on the developer's PC,
and decreases the number of problems that show
up late, when integrating all modules. As
experience shows, such early checks speed up
development.

• Independence of real time simulation: A virtual
ECU might run on PC many times faster than in
real time. When used in combination with test
automation, a simple PC gives a higher test
throughput than a considerable more expensive
HiL test system. S. Gloss et. al. [1] reports how
this effect is exploited to test 200 variants of a
transmission controller.

Other points that illustrate the benefit of virtual ECUs:
• On a PC, an engineer can easily "freeze time", i. e.

stop simulation and inspect the call stack and all
variables of a virtual (i. e. simulated) ECU without
bandwidth limitation and repeat a simulation
deterministically as often as needed. In contrast, a
real ECU being used in a HiL environment or test
rig must run in real time. Stopping and stepping is
impossible then, or requires considerable extra
effort, e. g. based on the JTAG debug interface.
Exact reproduction of experiments is difficult or
impossible on a HiL or test rig, due to non-
deterministic effects.

• Having a PC-based solution, a calibration tool like
INCA (ETAS) or CANape (Vector) can be
connected to a virtual ECU via XCP to measure
into a running simulation and to tune
characteristics online. In this way, many
parameters of an ECU can be tuned using a
relatively cheap and highly available PC platform,
without blocking rare and more expensive
resources like physical prototypes and test rigs.

• A virtual ECU runs independent from real time
and can hence also easily be coupled with very
time consuming simulations, such as combustion
simulation. This is impossible for test rigs or HiL
systems, where all parts of the simulation must run
in real-time.

To exploit these and other benefits when developing
an ECU, the ECU must first be ported to a PC. This is
typically done based on the C code of the ECU, which
is either hand-coded, or generated by tools such as
Ascet (ETAS), TargetLink (dSPACE) or Embedded
Coder (MathWorks). For example, QTronic's virtual
ECU tool Silver [2] provides a framework to
• Compile given ECU tasks for Windows PC,
• Emulate the underlying RTOS and other services

(CAN, XCP),
• Execute the resulting virtual ECU in a closed-loop

with a simulated vehicle.

2

ERTS

2014 - Embedded Real Time Software and Systems, Toulouse, 05 - 07.02.2014

Typical applications are [1,2,3,4], where a virtual
ECU is used to develop the controller for an automatic
transmission. For closed-loop simulation, vehicle
models can be imported from many simulation tools
into Silver, including MATLAB/Simulink, Dymola,
SimulationX and MapleSim, e.g. through the FMI
(Functional Mockup Interface) format for model
exchange [5].
C code is not always available for implementing a
virtual ECU, for example when all or major parts of
the ECU have been developed by a supplier and the
OEM that is interested in building a virtual ECU has
therefore no access to the C source code. Silver
supports such cases with a chip simulator [6, 10]. The
chip simulator takes the binary code for the target
processor (currently TriCore or PowerPC) and
simulates the execution of the instructions by the
target processor on a Windows PC.

3. Designing and testing a Virtual ECU
with AUTOSAR Builder
An AUTOSAR authoring tool such as AUTOSAR
Builder allows the modeling of a single ECU or a
distributed embedded system based on templates
defined by the AUTOSAR standard. To ensure the
validity and completeness of an AUTOSAR

description, consistency or design rule checks have to
be applied iteratively. Once this step has been passed,
unit-testing can be performed by simulating single
Software Components (SWCs) or even full
compositions (CSWCs) that also take a real
AUTOSAR OS and RTE into account. The
application code (which can be manually coded or
auto-generated) needs to be provided as source or
compiled. In addition the test vectors need to be
defined through a dedicated environment or can be
imported. Everything else, including the OS and the
RTE configuration and the Testbench is generated
automatically. Once the SWCs or CSWCs have passed
the tests in simulation, they can be exported as FMUs
including the AUTOSAR OS and RTE.

Fig 3 shows a screen shot of AUTOSAR Builder, with
an AUTOSAR software component EGS1 (a simple
controller for a 6-speed automatic transmission)
loaded. AUTOSAR Builder provides means to export
this controller as an FMU for Co-Simulation or Model
Exchange [5].

3

Fig 2: Simulation of an AUTOSAR Software Component in Silver

ERTS

2014 - Embedded Real Time Software and Systems, Toulouse, 05 - 07.02.2014

4. Running a simulation in Silver
A virtual ECU exported from AUTOSAR Builder as
FMU can be loaded into the Silver runtime
environment, which runs on Windows. Fig. 2 shows a
screen shot of Silver with the transmission controller
EGS exported with AUTOSAR Builder loaded as
virtual ECU. Besides the virtual ECU, also a vehicle
model developed in Dymola / Modelica has been
loaded into Silver, which enables closed-loop
execution of the transmission controller. The tree
shown on the left of the Silver window shows all
loaded modules, and their input and output variables.
In real projects, this tree might contain hundred
thousands of scalar variables. Silver has been
optimized to efficiently deal with such large models.
The top-right part of the Silver window contains the
plotters, gauges, sliders, and push buttons configured
by the development engineer to interact with the
vehicle model. In the case shown here, the engineer
can start the engine, switch the PRND lever to any
position, accelerate and brake using sliders, and watch
the temperatures of the transmission brakes and
clutches, and other key variables of the vehicle.

Once loaded into Silver, the services shown in Fig. 4
are available to implement various engineering tasks.
Example uses cases are:
• Connect INCA (ETAS) or CANape (Vector) to the

virtual ECU via the extended CAN calibration
protocol (XCP, an ASAM standard) to diagnose a
running simulation and to tune software

parameters during simulation. This approach
allows the expertise of calibration engineers with
INCA or CANape to be also available in the PC
environment.

• Import a vehicle model from simulation tools such
as Dymola, SimulationX, MapleSim, AMESim,
Simulink, GT-Power, or axisuite.

• Connect a test automation solution to Silver, to test
the ECU on a PC as shown in [1] and [11].

• Connect Visual Studio Debugger to the virtual
ECU, define code or data breakpoint and debug the
virtual ECU at the code level, e.g. to fix problems
found by test automation. Virtual ECUs running in
a fully simulated environment on PC are
particularly attractive here, because the corres-
ponding step-debug functionality is much harder or
impossible to achieve in a real-time environment.

• Drive the virtual vehicle interactively on PC to
explore behaviour of the virtual ECU, without
limitations of how much or what can be measured
during simulation.

• Drive the simulation using measured data,
available as MDF, DAT or CSV file. This can be
used to implement open-loop tests of the virtual
ECU. In simple cases, this does not even require a
vehicle model: the virtual ECU is then directly
driven by measurements.

• Drive the simulation using a Python script. Python
scripting can be used to implement reactive tests
(including e. g. 'do until' test steps) or an
optimization loop that automatically calibrates
ECU software parameters using mathematical
optimization.

4

Fig 3: AUTOSAR Builder in simulation mode

ERTS

2014 - Embedded Real Time Software and Systems, Toulouse, 05 - 07.02.2014

5. Conclusion
As demonstrated above, virtual ECUs help to move
development tasks to a PC, which speeds up
automotive embedded systems development
tremendously. We have demonstrated a technical
realization of virtual ECUs for the special case of
AUTOSAR. Silver supports the same idea also for
ECUs that run software generated with non-
AUTOSAR tool chains. Use of virtual ECUs is
increasing but not yet wide-spread in the automotive
industry today. We expect to see significant growth of
automotive applications in the coming years, mainly
driven by the speed up of development that can be
achieved as outlined in this paper.

References
[1] S. Gloss, M. Slezák, A. Patzer: Systematic

validation of over 200 transmission variants.
ATZ elektronik 4/2013. August 2013.
http://www.qtronic.de/doc/
ATZe_04_2013_en.pdf

[2] A. Junghanns, R. Serway, T. Liebezeit, M.
Bonin: Building Virtual ECUs Quickly and
Economically, ATZ elektronik 03/2012, June
2012. http://www.qtronic.de/doc/
ATZe_2012_en.pdf

[3] H. Brückmann, J. Strenkert, U. Keller, B.
Wiesner, A. Junghanns: Model-based
Development of a Dual-Clutch Transmission
using Rapid Prototyping and SiL. International
VDI Congress Transmissions in Vehicles 2009,

Friedrichshafen, Germany, 30.06.-01-07.2009.
http://qtronic.de/doc/DCT_2009.pdf

[4] M. Tatar, R. Schaich, T. Breitinger: Automated
test of the AMG Speedshift DCT control
software. 9th International CTI Symposium
Innovative Automotive Transmissions, Berlin,
2010. http://qtronic.de/doc/
TestWeaver_CTI_2010_paper.pdf

[5] T. Blochwitz, M. Otter et. al.: Functional
Mockup Interface 2.0: The Standard for Tool
independent Exchange of Simulation Models.
9th International Modelica Conference, Munich,
2012. http://www.ep.liu.se/ecp/076/017/
ecp12076017.pdf

[6] M. Simons, M. Feier, J. Mauss: Using Chip
Simulation to optimize Engine Control. 7th
Conference on Design of Experiments (DoE) in
Engine Development, Berlin, 2013.
http://qtronic.de/doc/
doe2013_chip_simulation.pdf

[7] http:// www.autosar.org
[8] M. Seibt, A. Gauthier, Denis Laroudie: Start

“virtual” to make it “real”.
Hanser Automotive, 02/2013

[9] http://www.3ds.com/products/catia/
portfolio/geensoft/autosar-builder/
xtmc=autosar_builder&xtcr=3

[10] J. Mauss: Chip simulation used to run
automotive software on PC. ERTS-2014,
Toulouse, 05 - 07.02.2014.

[11] M. Tatar, J. Mauss: Systematic Test and
Validation of Complex Embedded Systems,
ERTS-2014, Toulouse, 05 - 07.02.2014.

5

Fig 4: The Silver runtime environment for virtual ECUs

http://qtronic.de/doc/DCT_2009.pdf
http://www.3ds.com/products/catia/portfolio/geensoft/autosar-builder/?xtmc=autosar_builder&xtcr=3
http://www.3ds.com/products/catia/portfolio/geensoft/autosar-builder/?xtmc=autosar_builder&xtcr=3
http://www.3ds.com/products/catia/portfolio/geensoft/autosar-builder/?xtmc=autosar_builder&xtcr=3
http://www.qtronic.de/doc/ATZe_2012_en.pdf
http://www.qtronic.de/doc/ATZe_2012_en.pdf
http://www.autosar.org/
http://qtronic.de/doc/doe2013_chip_simulation.pdf
http://qtronic.de/doc/doe2013_chip_simulation.pdf
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf
http://qtronic.de/doc/TestWeaver_CTI_2010_paper.pdf
http://qtronic.de/doc/TestWeaver_CTI_2010_paper.pdf
http://www.qtronic.de/doc/ATZe_04_2013_en.pdf
http://www.qtronic.de/doc/ATZe_04_2013_en.pdf

	References

