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Abstract -  Virtualization  allows  the  simulation  of 
automotive ECUs on a Windows PC executing in a 
closed-loop  with  a  vehicle  simulation  model.  This 
approach  enables  moving  many  development  tasks 
from road or test rigs and HiL (Hardware in the loop) 
to PCs, where they can often be performed faster and 
cheaper. Technical challenge: How to port ECU tasks 
and basic  software  to  Windows PC with reasonable 
effort, so that key development tasks can be performed 
on a PC, without the need of accessing real hardware 
such as vehicle prototypes, test rigs or HiL facilities. 
This paper presents a new solution for the use case of 
ECUs  developed  within  the  emerging  AUTOSAR 
standard:  First,  the  AUTOSAR  authoring  tool 
AUTOSAR  Builder  (Dassault  Systèmes)  is  used  to 
design the application software and system aspects of 
a  single  ECU  or  an  distributed  embedded  system 
which is then stored as AUTOSAR XML descriptions. 
The application code can either be developed in the 
AUTOSAR Builder environment or auto-generated by 
tools  such  as  Embedded  Coder  (MathWorks), 
TargetLink (dSPACE) or Ascet (ETAS). Once tested 

in AUTOSAR Builder, selected software components 
or  compositions  can  be  exported  including  an 
AUTOSAR OS (Operating  System) and  RTE (Run-
Time Environment) as an FMU (Functional  Mockup 
Unit). FMU [4] is a new exchange format for models 
that  has  been  developed  in  the  EU-funded 
MODELISAR project  (2008 -  2011) and  since  then 
gained  considerable  acceptance  across  multiple 
industries and tools. The FMU can then be imported 
into the virtual ECU tool Silver (QTronic),  where it 
can be co-simulated with vehicle models originating 
from  a  wide  range  of  simulation  tools,  including 
Dymola,  SimulationX,  MapleSim  and  AMESim. 
Vehicle models are again provided as FMUs, or via 
proprietary binary export formats, typically Windows 
DLLs. Tools for measurement and calibration such as 
CANape  (Vector  Informatik)  or  INCA  (ETAS)  can 
then be connected to the virtual ECU running on PC, 
to  directly  measure  or  tune  its  parameters,  like  an 
engineer would do in a real car. Virtual ECUs are also 
used to move testing activities from test rigs and HiLs 
to Windows PC.
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Fig 1: Development of automotive ECUs
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1. Introduction
Software for automotive ECUs is jointly developed by 
OEMs  and  their  suppliers  as  shown  in  Fig.  1. 
Typically, a team of function developers uses a model-
based tool chain to develop a model of the ECU and to 
generate  C code from that.  The resulting C code is 
then  compiled  for  the  target  processor,  and  the 
resulting ECU is validated and tested using test rigs, 
HiL  systems,  and  road  tests.  Test  and  validation 
results are fed back to the developers, which closes the 
development  cycle.  See  [10]  for  details  and  typical 
numbers.
This  process,  although  standard  in  the  automotive 
industry today, has two major drawbacks: 
• a  single  iteration  takes  days  or  weeks,  that  is, 

feedback reaches developers late
• the process depends on prototype vehicles and test 

rigs.  These  are  typically  rare  resources  during 
development.  Their  limited  availability  causes 
additional delays during development. 

This  paper  presents  a  tool  chain  that  supports  an 
improved  development  process.  The  key  idea  is  to 
provide  development  engineers  with  virtual  ECUs, 
which enables them to move many development tasks 
from  test  rigs  and  HiLs  to  Windows  PC.  As 
experience  shows,this  helps  to  shorten  development 
cycles (down to 5 minutes for an incremental  build) 
and to reduce the critical dependency to real hardware. 
We focus here on AUTOSAR projects, although the 
method  does  not  depend  on  the  framework  (hand 
coded, model-based, AUTOSAR) used to develop the 
ECU.

The remaining paper is structured as follows: In the 
next  section,  we  summarize  various  benefits  of  a 
virtual  ECU  for  automotive  development,  with 
references to real applications. Section 3 explains how 
to build a virtual ECU for development projects that 
use the emerging AUTOSAR framework and section 4 
demonstrates how to use the resulting virtual ECU on 
Windows PC to speed up development.

2.  Virtual  ECUs  in  the  development 
process
Simulation  has  great  potential  to  improve  the 
development  process  for  ECUs.  It  helps  to  move 
development  tasks  to  PC,  where  they  can  often  be 
performed faster, cheaper or better in many respects. 
In general, the speed-up generated with virtual ECUs 
is the product of three independent factors
• Parallelization:  Virtual  ECUs  help  to  split 

development  into  parallel  threads.  With  virtual 
ECUs,  many  development  tasks  can  be  moved 
from shared resources (vehicles, test rigs, HiL) to 
PC, where engineers can work in parallel, without 
blocking each other.

• Faster  feedback  on  system  level:  On  a  PC,  a 
development engineer can rebuild the entire ECU 

within 5 minutes after modification of a software 
module, thanks to incremental build, and test drive 
the result in a simulated environment. This helps 
detecting  problems  early  on  the  developer's  PC, 
and decreases the number of problems that show 
up  late,  when  integrating  all  modules.  As 
experience  shows,  such  early  checks  speed  up 
development. 

• Independence of real time simulation: A virtual 
ECU might run on PC many times faster than in 
real  time.  When  used  in  combination  with  test 
automation,  a  simple  PC  gives  a  higher  test 
throughput  than  a  considerable  more  expensive 
HiL test  system. S. Gloss et.  al.  [1] reports how 
this  effect  is  exploited  to  test  200  variants  of  a 
transmission controller.

Other points that illustrate the benefit of virtual ECUs:
• On a PC, an engineer can easily "freeze time", i. e. 

stop simulation and inspect the call stack and all 
variables of a virtual (i. e. simulated) ECU without 
bandwidth  limitation  and  repeat  a  simulation 
deterministically as often as needed. In contrast, a 
real ECU being used in a HiL environment or test 
rig must run in real time. Stopping and stepping is 
impossible  then,  or  requires  considerable  extra 
effort,  e.  g.  based on the JTAG debug interface. 
Exact  reproduction  of  experiments  is  difficult  or 
impossible  on  a  HiL  or  test  rig,  due  to  non-
deterministic effects.

• Having a PC-based solution, a calibration tool like 
INCA  (ETAS)  or  CANape  (Vector)  can  be 
connected to a virtual ECU via XCP to measure 
into  a  running  simulation  and  to  tune 
characteristics  online.  In  this  way,  many 
parameters  of  an  ECU  can  be  tuned  using  a 
relatively cheap and highly available PC platform, 
without  blocking  rare  and  more  expensive 
resources like physical prototypes and test rigs.

• A virtual  ECU runs  independent  from real  time 
and  can  hence  also  easily  be  coupled  with  very 
time consuming simulations,  such as combustion 
simulation. This is impossible for test rigs or HiL 
systems, where all parts of the simulation must run 
in real-time.

To exploit these and other benefits when developing 
an ECU, the ECU must first be ported to a PC. This is 
typically done based on the C code of the ECU, which 
is  either  hand-coded,  or  generated  by tools  such  as 
Ascet  (ETAS),  TargetLink  (dSPACE)  or  Embedded 
Coder (MathWorks).  For  example,  QTronic's  virtual 
ECU tool Silver [2] provides a framework to 
• Compile given ECU tasks for Windows PC,
• Emulate the underlying RTOS and other services 

(CAN, XCP),
• Execute the resulting virtual ECU in a closed-loop 

with a simulated vehicle. 
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Typical  applications  are  [1,2,3,4],  where  a  virtual 
ECU is used to develop the controller for an automatic 
transmission.  For  closed-loop  simulation,  vehicle 
models can be imported from many simulation tools 
into  Silver,  including  MATLAB/Simulink,  Dymola, 
SimulationX  and  MapleSim,  e.g.  through  the  FMI 
(Functional  Mockup  Interface)  format  for  model 
exchange [5].
C  code  is  not  always  available  for  implementing  a 
virtual ECU, for example when all or major parts of 
the ECU have been developed by a supplier and the 
OEM that is interested in building a virtual ECU has 
therefore  no  access  to  the  C  source  code.  Silver 
supports such cases with a chip simulator [6, 10]. The 
chip  simulator  takes  the  binary  code  for  the  target 
processor  (currently  TriCore  or  PowerPC)  and 
simulates  the  execution  of  the  instructions  by  the 
target processor on a Windows PC. 

3.  Designing  and  testing  a  Virtual  ECU 
with AUTOSAR Builder
An  AUTOSAR  authoring  tool  such  as  AUTOSAR 
Builder  allows  the  modeling  of  a  single  ECU or  a 
distributed  embedded  system  based  on  templates 
defined  by  the  AUTOSAR standard.  To  ensure  the 
validity and completeness of an AUTOSAR 

description, consistency or design rule checks have to 
be applied iteratively. Once this step has been passed, 
unit-testing  can  be  performed  by  simulating  single 
Software  Components  (SWCs)  or  even  full 
compositions  (CSWCs)  that  also  take  a  real 
AUTOSAR  OS  and  RTE  into  account.  The 
application  code  (which  can  be  manually  coded  or 
auto-generated)  needs  to  be  provided  as  source  or 
compiled.  In  addition  the  test  vectors  need  to  be 
defined  through  a  dedicated  environment  or  can  be 
imported. Everything else, including the OS and the 
RTE  configuration  and  the  Testbench  is  generated 
automatically. Once the SWCs or CSWCs have passed 
the tests in simulation, they can be exported as FMUs 
including the AUTOSAR OS and RTE.

Fig 3 shows a screen shot of AUTOSAR Builder, with 
an AUTOSAR software component  EGS1 (a simple 
controller  for  a  6-speed  automatic  transmission) 
loaded. AUTOSAR Builder provides means to export 
this controller as an FMU for Co-Simulation or Model 
Exchange [5].

3

Fig 2: Simulation of an AUTOSAR Software Component in Silver



ERTS
 
2014 - Embedded Real Time Software and Systems, Toulouse, 05 - 07.02.2014

4. Running a simulation in Silver
A virtual ECU exported from AUTOSAR Builder as 
FMU  can  be  loaded  into  the  Silver  runtime 
environment, which runs on Windows. Fig. 2 shows a 
screen shot of Silver with the transmission controller 
EGS  exported  with  AUTOSAR  Builder  loaded  as 
virtual ECU. Besides the virtual ECU, also a vehicle 
model  developed  in  Dymola  /  Modelica  has  been 
loaded  into  Silver,  which  enables  closed-loop 
execution  of  the  transmission  controller.  The  tree 
shown  on  the  left  of  the  Silver  window  shows  all 
loaded modules, and their input and output variables. 
In  real  projects,  this  tree  might  contain  hundred 
thousands  of  scalar  variables.  Silver  has  been 
optimized to efficiently deal with such large models. 
The top-right part of the Silver window contains the 
plotters, gauges, sliders, and push buttons configured 
by  the  development  engineer  to  interact  with  the 
vehicle model. In  the case shown here,  the engineer 
can start  the engine,  switch the PRND lever to  any 
position, accelerate and brake using sliders, and watch 
the  temperatures  of  the  transmission  brakes  and 
clutches, and other key variables of the vehicle.

Once loaded into Silver, the services shown in Fig. 4 
are available to implement various engineering tasks. 
Example uses cases are:
• Connect INCA (ETAS) or CANape (Vector) to the 

virtual  ECU  via  the  extended  CAN  calibration 
protocol (XCP, an ASAM standard) to diagnose a 
running simulation and to tune software

parameters  during  simulation.  This  approach 
allows the expertise of calibration engineers with 
INCA or CANape to be also available in the PC 
environment.

• Import a vehicle model from simulation tools such 
as  Dymola,  SimulationX,  MapleSim,  AMESim, 
Simulink, GT-Power, or axisuite.

• Connect a test automation solution to Silver, to test 
the ECU on a PC as shown in [1] and [11].

• Connect  Visual  Studio  Debugger  to  the  virtual 
ECU, define code or data breakpoint and debug the 
virtual ECU at the code level, e.g. to fix problems 
found by test automation. Virtual ECUs running in 
a  fully  simulated  environment  on  PC  are 
particularly  attractive  here,  because  the  corres-
ponding step-debug functionality is much harder or 
impossible to achieve in a real-time environment.

• Drive  the  virtual  vehicle  interactively  on  PC  to 
explore  behaviour  of  the  virtual  ECU,  without 
limitations of how much or what can be measured 
during simulation.

• Drive  the  simulation  using  measured  data, 
available as MDF, DAT or CSV file. This can be 
used to  implement  open-loop tests  of  the virtual 
ECU. In simple cases, this does not even require a 
vehicle  model:  the  virtual  ECU  is  then  directly 
driven by measurements.

• Drive the simulation using a Python script. Python 
scripting can be used to implement reactive tests 
(including  e.  g.  'do  until'  test  steps)  or  an 
optimization  loop  that  automatically  calibrates 
ECU  software  parameters  using  mathematical 
optimization.

4

Fig 3: AUTOSAR Builder in simulation mode
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5. Conclusion
As demonstrated  above,  virtual  ECUs help to  move 
development  tasks  to  a  PC,  which  speeds  up 
automotive  embedded  systems  development 
tremendously.  We  have  demonstrated  a  technical 
realization  of  virtual  ECUs  for  the  special  case  of 
AUTOSAR.  Silver  supports  the  same  idea  also  for 
ECUs  that  run  software  generated  with  non-
AUTOSAR  tool  chains.  Use  of  virtual  ECUs  is 
increasing but not yet wide-spread in the automotive 
industry today. We expect to see significant growth of 
automotive applications in the coming years,  mainly 
driven by the speed  up of  development  that  can  be 
achieved as outlined in this paper.
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