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User-driven geolocated event detection in social
media

Anes Bendimerad, Marc Plantevit, Céline Robardet, Sihem Amer-Yahia

F

Abstract—Event detection is one of the most important research topics
in social media analysis. Despite this interest, few researchers have ad-
dressed the problem of identifying geolocated events in an unsupervised
way, and none includes user interests during the process. In this paper,
we tackle the problem of local event detection from social media data.
We present a method to automatically identify events by evaluating the
burstiness of hashtags in a geographical area and a time interval, and
at the same time integrating user feedback. We devise two algorithms to
discover user-driven events. The first one relies on an exact enumeration
process, while the other directly samples the space of events. In our
empirical study, we provide evidence that geolocated events cannot
be detected by non location-aware methods. We also show that our
methods (i) outperform by a factor of two to several orders of magnitude
state-of-the-art methods designed to discover geolocated events, (ii) are
more robust to noise, (iii) and produce high quality events with respect
to user interests.

Index Terms—Event detection, social media analysis, pattern mining.

1 INTRODUCTION

Social microblogging (Twitter, Weibo, Instagram, etc.) gives
people the ability to interact at a worldwide scale by broad-
casting their interests, feelings, reactions to their daily life
and surrounding events. As such, they are an incredibly
rich mean to know the pulse of the world, or of a specific
neighborhood, in real time. Analyzing the abundant user-
generated content can provide high valued information.
Social media data have been analysed for several purposes,
e.g. to understand the concerns of a population [1], study
disease dynamics [2], or predict real-world outcomes [3].

Event detection has long been a research topic and has
received much attention in the data mining community over
the last decade [4–6]. Whereas real-life events are considered
as phenomena that unfold over space and time, from a
data mining point of view they are conventionally regarded
as a set of terms (e.g. hashtags, user mentions, words)
whose frequency bursts [7]. However, a bursting term is not
necessarily related to an event, and real-life events can be
blurred by pointless bursting terms. Several terms can also
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depict the same event, and thus detection methods must
address problems related to synonymy. Furthermore, some
methods are defined in supervised settings which require
huge effort to collect labeled examples [6], [8–12]. In this
paper, we address these pitfalls by considering geolocated
events. Focusing on terms that burst for a geographical area
meets the natural and intuitive notion of event. Extracting
such events remains challenging because geolocated events
depict small scale phenomena that are covered by much
fewer terms than global events (i.e., large scale events). For
instance, in a very large city like New York City, dozens of
events can take place simultaneously and it can be tricky to
find those that stimulate users’ curiosity.

This paper responds to these concerns by (1) proposing
efficient algorithms to detect geolocated events and (2)
integrating user interests into the extraction process through
interactions with the system. This is the first attempt to
the discovery of user-driven events. In our approach, posts
(e.g., tweets) are modeled as a labeled graph whose vertices
encode geographical areas and edges depict neighborhood
relationships. Time series of term occurrences are associated
to vertices. In this unsupervised framework, a geolocated
event is considered as a set of terms whose number of
occurrences is large enough in a connected subgraph and
a time interval. Events are then extracted in a time window
and the user has the possibility to tag those he/she likes.
This interactive process allows to extract events of interest
to users. User preferences are then integrated in the quality
measure used to define and rank events. This measure con-
veys user interest and promotes events that involve topics
or geographical areas the user is interested in.

Fig. 1 describes our approach. From a social network,
we extract time-stamped geolocated posts published during
a given period. This set of posts, B (e.g., tweets), is used
to generate a graph GH of term co-occurrences. A second
graph GV depicts adjacency relations between geographic
areas from which posts were emitted. Those graphs are used
to guide the event discovery process making it possible to
solve term synonymy problems as well as the spatial vari-
ability (size and location). Moreover, these graphs are the
support of an interactive process with the user and are used
to rank the identified events according to her preferences.
By liking or not events, the user selects some events that are
then used by the algorithm to derive locations and topics of
preference. These preferences are then used to give a greater
importance to events related to preferred geographical areas
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Fig. 1. Overview of the user-driven event detection system.

or terms of interest. If there is no interaction with the user,
only data-driven events are detected.

The main contributions of this paper are the following:
• Problem formulation. We define, in a unified view, the

problem of user-driven and data-driven geolocated
event discovery. We propose an event interestingness
measure that is guided by user interests.

• Algorithms and analysis. We propose two algo-
rithms to discover geolocated events in social me-
dia. SIGLER-Cov1 is based on the generate-and-test
paradigm. It efficiently exploits upper and lower
bounds that make it usable on large-scale microblog-
ging data such as Twitter. SIGLER-Samp directly com-
putes a sample of the geolocated events and retrieves
interesting geolocated events in a very short time.

• Evaluation. We report a thorough empirical study
that provides both quantitative and qualitative perfor-
mances of our approach. First, we establish that data
driven geolocated events cannot be discovered by non
location-aware approaches. Second, we compare our
method with MED [5] and GeoBurst [13], the state-of-
the-art data driven geolocated event mining algorithms.
We demonstrate that SIGLER (1) is several orders of
magnitude faster than MED and three times faster than
GeoBurst, and (2) is more robust to noise compared
to both methods. Finally, the ability of our method to
extract interesting user-driven events is experimentally
validated. To that end, we ran experiments using a
crowdsourcing platform on several cities (e.g., New
York, Los Angeles, London) with different settings (e.g.,
unpaired and paired samples).

• Source code and datasets are publicly available: https:
//tinyurl.com/yywy2fqc.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 presents a unified frame-
work for data-driven and user-driven geolocated event de-
tection. Section 4 introduces the user-driven approach. Sec-
tion 5 presents our event detection algorithms: SIGLER-Cov,
an efficient event detection algorithm with coverage guaran-

1. SIGLER stands for SubjectIve GeoLocated Event discoveRy.

tee, and SIGLER-Samp that directly computes a sampling of
the output space of user-diven geolocated events. Section
6 provides experimental results. Section 7 concludes and
provides future directions.

2 RELATED WORK

This paper focuses on space-time event detection from social
media with user interaction during the detection process.
Detecting events in social media has raised great interest in
the last decade. Several papers propose to identify targeted
events using supervised [6], [9–12] or semi-supervised ap-
proaches [14], [15]. Such methods require a certain amount
of labeled data to detect domain specific events, as opposed
to the unsupervised problem considered in this paper.

In the seminal unsupervised approach [16], events are
detected using signal processing methods on word occur-
rence time series. As several bursty terms can be asso-
ciated to one real event (synonyms or correlated words),
clustering-based approaches [17–19] are used to group terms
with similar temporal patterns. In our experimental study,
we show that these approaches fail to detect geo-spatial
events. Other methods [4], [20] model the data as a heteroge-
neous interaction graph with content-related features asso-
ciated to the nodes. Non-parametric statistics or clustering
techniques are then applied on it to extract subgraphs. How-
ever, the subgraphs of strong interaction describe hardly
local events that are generally not related to direct interac-
tions within the graph. In fact, an event can be characterized
with a sparse interaction network corresponding to tweets
posted by people who mainly do not know each other. It is
important to note that as non location-aware event detection
methods fail to detect geolocated events, post-processing
such events in order to promote events according to the user
interest is not a solution.

Few approaches integrate spatial information during
the event detection process. Among them, Triovecevent [8]
discovers local events based on multimodal embedding.
However, this method is supervised and requires a trained
classifier to judge whether a detected cluster of tweets
is related to an event or not. Several demo papers [21–
24] present simple systems designed to identify groups of
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messages that have been posted close in time and space, and
assimilate them to events based on the co-occurrence of their
terms. A more sophisticated Multiscale Event Detection
(MED) method [5] computes the similarity between tweets
based on the time series of the occurrences of their common
terms considered at different temporal and spatial scales.
The most appropriate scale is used to derive a similarity
graph on top of which events are detected by a graph-
based clustering process. Another state-of-the-art approach
is GeoBurst [13]. It is based on an authority measure that
captures the geo-topic correlations among tweets. These
correlations make it possible to group the tweets using
some elaborate clustering techniques. In [13] the authors
show that GeoBurst provides better results than two other
local event detection approaches: EVENTWEET [25] and
WAVELET [26]. EVENTWEET is based on a clustering of
spatially and temporally bursting terms. WAVELET uses
wavelet analysis to extract events from geo-tagged Flickr
photos. Thus, MED and GeoBurst are the main competitive
approaches we consider in Section 6. We show the superior-
ity of our approach towards these two competitors in terms
of computation time and noise robustness.

Local event detection can be seen as a local modeling
problem. Indeed, local events are related to specific parts
of the data space. Discovering such peculiarities is the aim
of local pattern mining, especially subgroup discovery [27]
and exceptional model mining [28]. Our approach is rooted
in the local pattern mining framework.

The problem of taking user interest in pattern mining
was early identified in [29] and has seen a renewed interest
in the last decade. User-driven and interactive pattern min-
ing can be divided into three groups: (1) The approaches
based on a prior model. Among them, the prominent work
of de Bie [30] defines a general and statistically-founded
framework of exploratory data analysis. Information theory
is used to formalize the subjective interest as the diver-
gence to prior belief; (2) The approaches that integrate user
feedback interactively during the mining task [31–33]; (3)
The methods which aim to learn an explicit model of user
interests [34] and rank patterns in post-processing [35].
There is no approach in the literature that detects user-
driven events. The one proposed in this paper integrates
user feedback during the mining task by building a model
of user interest on the fly.

3 A UNIFIED FRAMEWORK FOR DATA-DRIVEN AND

USER-DRIVEN GEOLOCATED EVENTS

In this section, we introduce the problem of data and
user driven geolocated event discovery in a unified view.
Table 1 summarizes the definitions and notations used
along the paper. From microblogging social media, we
consider a set of posts B, a batch2, where each element
b is described by: (1) the set of terms that appear in b

(b.terms), (2) the time at which b was sent (b.time), (3)
the GPS coordinates of the post of b (b.loc). From such
a batch, we collect the following data: (1) H , the set of
terms H =

S
b2B

b.terms; (2) T = Jt1, tmK, the time

2. The posts emitted consecutively in a given period of time.

Symbols Definitions

B = {b1, b2, ...} The set of posts. Each post b 2 B is de-
scribed by (1) its terms b.terms, (2) the time
b.time at which it was sent, (3) and b.loc the
GPS coordinates of b.

H = {h1, h2, ...} The set of terms that occur in posts B.
T = Jt1, tmK The ordered set of m timestamps of the

posts.
GV = (V,E) A graph where the vertices of V are geo-

graphical areas and the edges of E connect
adjacent areas.

GH = (H,H ⇥H) A weighted term co-occurrence graph. The
weight W (hi, hj) is the number of posts in
which hi and hj co-occur.

f(h, v, t) The number of occurrences of a term h 2 H ,
for a vertex v 2 V and a time t 2 T .

score(h, v, t) The burstiness of the term h 2 H in the
space time (v, t).

H(v, t) H(v, t) = {h 2 H | score(h, v, t) > 0}.
The set of terms that burst in the space time
(v, t). For the sake of simplicity, we general-
ize H(S, I) =

T
v2S

T
t2I

H(v, t) for S 2 V

and I v T .
P = (S, I,K) A geolocated pattern defined with a set of

vertices S ✓ V , a time interval I v T , and
a set of terms K ✓ H . We use P = (S, I)
instead of P = (S, I,H(S, I)).

M,Mu M(P ) is the data-driven quality measure
of the pattern P , and Mu(P ) is the user-
driven quality measure of P .

� A threshold on the minimum quality
Mu(P ) required to consider P as an event.

R = {P1, P2, ...} A set of patterns.
cov(A,B) A function that measures how much the set

B covers the set A: cov(A,B) = |A\B|

|A|
.

cover(P1, P2) A function that measures how much the
pattern P2 covers the pattern P1.

minCov A minimum threshold on the cover value
to consider that a pattern covers enough
another one.

Qu(h, v) The user interest on the term h and the
vertex v. It is the average between Qu,H(h),
the user interest on h, and Qu,H(v) the
user interest on v. These functions take their
values in [1,maxPref], with maxPref > 1.

TABLE 1
Notations.

interval made of m timestamps3, and (3) V = {v1, ..., vn},
the districts obtained after discretizing the geographical
space in n areas. For example, the geographical area
defined by the square [minb2B b.loc.x,maxb2B b.loc.x] ⇥
[minb2B b.loc.y,maxb2B b.loc.y] can be divided along a grid
and each square is associated to an element of V . Let
area : R2

! V be the function that maps GPS coordinates
(x, y) to V . V is hereafter considered as the vertices of
a graph GV = (V,E) whose edges E connect vertices
corresponding to adjacent areas.

Our approach is based on the detection of strong varia-
tions in term occurrences for a vertex and a timestamp. To
this end, we consider the number of occurrences of a term

3. In our experiments, a timestamp corresponds to an interval of 3
hours.
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h 2 H , for a vertex v 2 V and a time t 2 T as function f :

f(h, v, t) = |{b 2 B | (h 2 b.terms) and (area(b.loc) = v)

and (b.time = t)}|.

As generally admitted [13], [36], a geolocated event reflects
that a large number of messages deal with the same subject
during the same time and place. Each topic is associated
with the set of its representative terms. For instance, in
Fig. 12, the first detected event in New York is the New

York Comic Con, associated with the terms (#nycc, #nycc2016,
etc.). These terms burst in a period of three days, and
around the location of Jacob K. Javits Convention Center
where the convention took place at that time. Thus, a term
is likely to correspond to an event in a space-time zone if
its number of occurrences is significantly greater than what
is observed in the other times for the same space zone.
To that end, we compute the mean µ(h, v) and standard
deviation �(h, v) of f over all the timestamps Jt1, tmK. If the
difference between f(h, v, t) and its average value is greater
than ✓ times the standard deviation, then the number of
occurrences of h is said to be significant for v and t. ✓ � 0
is a parameter that controls the sensibility of the method,
and whose default value is set to 1. Then, to reduce the
impact of very frequent terms, the significance of each term
is weighted by the normalized inverse document frequency

factor [16]: idf(h) = 1 �
log

�
f(h,V,T )

�

log
�
f(H,V,T )

� . Hence, the score

function is:

score(h, v, t) =
✓
f(h, v, t)�

�
µ(h, v) + ✓�(h, v)

�◆
⇥ idf(h),

with �(h, v) =
q

1
m�1

P
t2T

(f(h, v, t)� µ(h, v))2 and

µ(h, v) =
P

t2T
f(h,v,t)
m

. A term h is bursting for (v, t) if
its score value is positive. The set of bursting terms for a
space-time zone (v, t) is thus defined by:

H(v, t) = {h 2 H | score(h, v, t) > 0}.

For the sake of simplicity, given S 2 V and I v T , we
generalize H(S, I) =

T
v2S

T
t2I

H(v, t).
We consider a geolocated pattern P as a tuple (S, I,K)

where S ✓ V , I v T , and K ✓ H . We aim to identify
patterns P = (S, I,K) corresponding to events described
by a location S, a time interval I and a set of terms K .
The ability for P to represent an event is evaluated by the
measure M(P ):

M(P ) =
X

h2K

X

v2S

X

t2I

score(h, v, t).

The larger M(P ), the higher than expected the frequency
of the terms in (S, I). This means that when M(P ) is large,
the pattern P = (S, I,K) is likely to be an event. In our
problem formulation, we are only interested in patterns
P = (S, I,H(S, I)) where H(S, I) are terms that burst in
all the space-time (S, I). This makes it possible to filter out
a large part of noisy terms. In fact, it is not likely that a noisy
term bursts simultaneously in all the space-times of (S, I).
Consequently, in what follows, we are only considering
patterns P = (S, I,H(S, I)) and denote them P = (S, I)
(since K is uniquely determined by S and I).

In practice, the interest of an event strongly depends on
the end-user. Indeed, a user may be much more interested
in events related to some subjects (e.g., sport, music) or
may prefer events happening in some specific locations (e.g.,
near her residence). To take user interests into account, we
propose to integrate the proper interests of the user through
an interactive process. To this end, we define the quality
measure Mu(P ) that includes the user’s preferences as:

Mu(P ) =
X

h2H(S,I)

X

v2S

X

t2I

score(h, v, t)⇥Qu(h, v),

where Qu increases with the interest of u on h and v. Thus,
if P contains some terms h or vertices v that are of interest
according to user’s feedback, then Mu(P ) increases. When
no user feedback is available for a pair (h, v), Qu(h, v) is
equal to 1. We thoroughly discuss in Section 4 how the
function Qu is defined.

A user-driven geolocated event must be both spatially
compact and have a significant value on its quality measure:
Definition 1 (User-driven geolocated event). Given a set of

posts B, a set of timestamps T , a graph GV = (V,E),
and a threshold � > 0, a pattern P = (S, I), with S ✓ V

and I v T (an interval of T ), is a user-driven geolocated
event iff (1) GV [S] is connected and (2) Mu(P ) � �.

If the user does not provide any feedback, the measure Mu

is equal to M. In such particular case, we speak of data-

driven geolocated events.
Different geolocated events may overlap in terms, ge-

ographical area, and timestamps they share, depicting the
same real-life event. This has two main disadvantages: (1)
the size of the result set may be uselessly very large and
redundant, and (2) the method performance may degrade
due to the size of the output. Therefore, instead of finding
the complete set of events, our goal is to return a concise
summary that covers sufficiently all the events. To this end,
we use the coverage measure cov. This function, defined for
two sets or intervals A and B, measures how much the set B
covers the set A: cov(A,B) = |A\B|

|A|
. This coverage measure

has been used in several problems in order to avoid the
redundancy in the results [37], [38]. To measure how much
a pattern P2 = (S2, I2) covers a pattern P1 = (S1, I1), we
impose that P2 sufficiently covers P1 in all the dimensions.
The function cover is thus:

cover(P1, P2) = min{cov(S1, S2), cov(I1, I2),
cov(H(S1, I1),H(S2, I2))}.

To get a set of patterns that cover all user-driven geolocated
events while eliminating some redundancy, we propose to
only retrieve a coverage guaranteed event summary.
Definition 2 (Coverage guaranteed event summary). Given a

threshold minCov 2 [0, 1], a coverage guaranteed event
summary R1 of the set of all geolocated events R fulfills
the following property:

8P 2 R, 9P
0
2 R1, such that cover(P, P 0) � minCov.

The last drawback that may appear is that two concomi-
tant events in time and space are merged by our approach.
To ensure that an event-pattern is semantically coherent –
that is its related terms correspond to the same real life event
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– a post-processing of the event patterns is performed. In
Section 5.3, we explain how we apply a Louvain clustering
[39] on terms to achieve this goal. The similarity between
terms is computed based on their co-occurrences, since
event-related terms tend to co-occur in the posts.

We propose two approaches to detect geolocated events:
SIGLER-Cov that computes a coverage guaranteed event
summary R1, and SIGLER-Samp that samples the pattern
space according to the value of Mu. These approaches
are formally defined in Section 5. The following section
details the computation of the user-driver weight used in
the quality measure Mu(P ).

4 INTEGRATION OF USER FEEDBACK INTO QUAL-

ITY MEASURE

Let us now consider how to incorporate user interest
into the geolocated event discovery process. Once a set
of events has been identified, a user u appraises the
detected events and indicates if she likes it. In doing so,
she constructs a partial order on the patterns that is used
to favor the discovery of the forthcoming geolocated events
toward those of interest for u. User interest is expressed
by Qu(h, v) = Qu,H(GH ,h)+Qu,V (GV ,v)

2 , the average of two
interest measures on terms and vertices:

1) Qu,H : (GH , h) takes as parameters a weighted graph
GH on terms and a term h. It assigns a value in
[1,maxPref], with maxPref > 1 a user-defined pa-
rameter, based on (1) the neighborhood of h in GH and
(2) a partial order on terms of H derived from the user
event ranking. The closer h is to other liked terms in
GH , or the more recently it has been liked, the more
Qu,H(GH , h) is close to maxPref. Otherwise, it tends
to 1.

2) Qu,V : (GV , v) takes as parameters the graph GV and
a vertex v 2 V . It takes its value in [1,maxPref] and
the closer v is to other liked vertices in GV , or the more
recently it has been liked, the more Qu,V (GV , v) is close
to maxPref.

maxPref > 1 represents the maximum value that Qu can
reach. The choice of maxPref depends on how much we
want to take into account the user preferences into the
process. In the following, we use the value maxPref = 3,
empirically chosen as the one that maximizes the number
of liked events on NYC dataset (see the description of the
experiment in section 6.3).

Both functions Qu,H(GH , h) and Qu,V (GV , v) are con-
structed above a weighted graph GX = (X,Y,W ) with X

a set of vertices, Y a set of edges and W the function that
associates a weight to the edges (W : Y ! N).

• Qu,H is evaluated on GH , the term co-occurrence
graph, such that X = H , Y = H ⇥ H and 8hi, hj 2

H, W (hi, hj) equals the number of posts in which hi

and hj appear simultaneously:

W (hi, hj) = |{b 2 B | hi 2 b.terms and hj 2 b.terms}|.

Related terms may co-occur in several posts and thus
will tend to be connected by a shorter path whose sum
of weights is high in GH .

Fig. 2. Examples of liked events {P1, P2, ..., Pz}, and the values of rank
for terms associated to these events.

• Qu,V is evaluated on the graph GV , with X = V , Y =
E and W : E ! 1.

In a similar way to PageRank score [40], we valuate the
vertices of the graph such that (1) a high score associated
to a vertex is transferred to its neighbors, with whom it is
connected with a high weight, and (2) this effect decreases
all the more as the neighboring vertex is far from the source
vertex in the graph. However, unlike PageRank score,
which is based on a random walk, we use a concentric
model from the vertex to be valued. The vertex score is only
influenced by the weights of its neighbors and not by their
degrees:

QX(GX , x) = ↵
P

(x,x0)2Y

W (x,x0)
deg(x) ⇥QX(GX , x

0)+ (1�

↵) 1
|X|

, with deg(x) =
P

(x,x0)2Y
W (x, x0). The first term,

P
(x,x0)2Y

W (x,x0)
deg(x) ⇥ Q(GX , x

0), is simply the weighted av-
erage of qualities QX(GX , x

0) of the neighbor vertices. The
second term, 1

|X|
, is a constant corresponding to the prob-

ability to directly reach a vertex. ↵ 2]0, 1[, whose default
value is 0.7, is a balancing parameter between the two terms.

We propose to integrate the user preferences in
the second term by replacing the constant value
with the function Bu(x), a weight that amplifies the
importance of the vertices involved in recently liked events:

QXu
(GX , x) = ↵

X

(x,x0)2Y

W (x, x0)

deg(x)
QXu

(GX , x
0) + (1� ↵)Bu(x)

Bu(x) depends on the direct relation between x and
the liked events. Let rank(x) be the number of events that
have been liked since the last event that (1) contained x

and (2) was liked by the user. Fig. 2 shows the values of
rank for terms that appear in an ordered set of liked events
{P0, ..., Pz}. P0 is the latest liked event, thus rank(h1) = 0.
The user liked Pz , but she liked z events after that, so
rank(h5) = z. Particularly, if a term or a vertex x does not
belong to any liked event, then rank(x) = +1. We define
Bu(x) as Bu(x) = 1 + maxPref�1

1+log2(1+rank(x))
. We can observe

that Bu(x) 2 [1,maxPref], and if rank(x) = +1, then
Bu(x) = 1. It increases if x is related to a recently liked event
(if rank(x) = 0, Bu(x) = maxPref). The log2 function is
used to smooth the effect of past liked events.

QXu
(GX , x) can be rewritten as the matrix equation

A.QXu
= B with (1) aij = 1 if i = j, and aij = �↵

W (xi,xj)
deg(xi)

otherwise; (2) bi = (1 � ↵)Bu(xi). This equation can be
solved thanks to the Jaccobi method, as the convergence
condition below is satisfied.
Proposition 1. The matrix A is strictly diagonally dominant.
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(a) (b)

Fig. 3. A toy example that illustrates (a) the subgraph enumeration, and
(b) the scores of terms in some vertices.

Proof 1. As
P

i 6=j
|aij | = ↵

P
i 6=j

W (xi,xj)
deg(xi)

= ↵ < 1 and
|aii| = 1, we have |aii| >

P
i 6=j

|aij |. ⇤

5 COMPUTING GEOLOCATED EVENTS

We first present SIGLER-Cov, an algorithm that computes a
set of patterns R1 whose quality Mu exceeds the threshold
�. In addition, R1 is a coverage guaranteed event summary
(see Definitions 1 and 2). Then, we present SIGLER-Samp, a
sampling event detection approach. Finally, we explain the
post-processing step as introduced before.

5.1 Event Detection with Coverage Guarantee

We propose to extract user-driven geolocated events using
a generate and test approach. It first enumerates a time
interval I , and then explores the connected subgraphs S

corresponding to areas where posts were sent during I . The
quality measure Mu(S, I) evaluates whether the terms of
the posts sent from GV [S] during I are characteristic of this
time frame. As the number of such generated events is very
large, especially the number of possible subgraphs, we pro-
pose several pruning techniques that makes the extraction
feasible on real-life generated sets of posts.

Algorithm 1 enumerates all the intervals [ti, tj ] included
in T = Jt1, tmK thanks to the two loops in lines 2 and 4.
For each interval I , it explores the connected subgraphs
of GV [C] – the graph induced by the vertices for which
there exists at least a term that bursts during the interval
I – calling the function SGEnumerate presented in Al-
gorithm 2. This backtracking algorithm uses two sets of
vertices: S ✓ V , the current enumerated subgraph induced
by S, and C ✓ V \S the vertices that are still to be explored.
Initially, S = ; and C contains all the vertices for which
there exists a bursting term in I . Algorithm 2 enumerates
vertices from C\N(S), with N(S) the neighbors of vertices
of S: N(S) = {v 2 V \ S | 9u 2 S : (u, v) 2 E}. Once
the candidate set C is empty, P is tested to only be retained
if it satisfies definitions 1 and 2 (lines 11 to 15). Fig. 3 (a)
shows an example of sets S, N(S) and C . In the next step
of this example, SGEnumerate will choose v7 or v8 (in the
intersection of C and N(S)) and add it to S. We can notice
that some vertices do not belong to C (e.g., v4) because they
have already been enumerated and removed from C .

We use three pruning mechanisms without which the al-
gorithm does not scale. The first one – the anti-monotonicity
of H(P ) – is used line 6 of Algorithm 1 to prune vertices
given a time interval. This property is defined up to the
intuitive partial order ✓: P1 ✓ P2 if and only if S1 ✓ S2 and
I1 ✓ I2.

Algorithm 1: SIGLER-Cov(�, minCov, R1)
Input: � the quality threshold, minCov the coverage

threshold
Output: R1 a set of coverage guaranteed geolocated

events
1 R1  ;

2 for i 1 to m do

3 C  V
4 for j  i to m do

5 I  [ti, tj ]
6 C  {v 2 C | H({v}, I) 6= ;}
7 SGEnumerate(I , ;, C,R1, �, minCov)

Algorithm 2: SGEnumerate(I , S, C , R1, �,minCov)
Input: I a time interval, S the current explored

subgraph, C the candidate sets, � the quality
threshold, minCov the coverage threshold

Output: R1 the set of events
1 P  (S, I)
2 if C \N(S) 6= ; then

3 if UB(S [ C, I,H(P )) � � then

4 for Pr 2 R1 do

5 if LB(P,C, Pr) � minCov then

6 return

7 Choose a vertex v 2 C \N(S)
8 SGEnumerate(I , S [ {v}, C \ {v}, �, minCov)
9 SGEnumerate(I , S, C \ {v}, �, minCov)

10 else

11 if Mu(P ) � � then

12 for Pr 2 R1 do

13 if cover(P, Pr) � minCov then

14 return

15 R1  R1 [ {P}

Proposition 2 (anti-monotony of H(P )). Considering two
patterns P1 = (S1, I1) and P2 = (S2, I2), if P1 ✓ P2

then H(P2) ✓ H(P1).

Proof 2. If h 2 H(P2), then 8v 2 S2, 8t 2 I2, score(h, v, t) >
0. As S1 ✓ S2 and I1 ✓ I2, thus, 8v 2 S1, 8t 2 I1,
score(h, v, t) > 0, and thus h 2 H(P1). ⇤

In Fig. 3 (b), the bursting terms of S0 = {v1} are: H(S0
, t) =

{a, b, d}. If S
0 is expanded with a vertex x, the new set

H(S0
[ {x}, t) is necessarily included in the previous one.

For example, H({v1, v2}, t) = {a, b}.
The second pruning mechanism is based on the com-

putation of an upper-bound of Mu(P ) (used line 3 in
Algorithm 2).

Definition 3 (Upper-bound on Mu). Let S ✓ V , I v T , and
J ✓ H . UB is defined as:

UB(S, I, J) =
X

v2S

X

t2I

X

h2J

max
�
score(h, v, t)⇥Qu(h, v), 0

�

We denote by �(I, S, C) the set of all patterns that can
be reached when expanding S by adding vertices from C :
�(I, S, C) = {(S0

, I) | S
0
✓ S [ C and S ✓ S

0
}, that is to

say, the patterns that are generated from SGEnumerate(I ,
S,C,R1, �,minCov). The following property states that
UB(S [C, I,H(S, I)) upper bounds Mu for all subsequent
patterns:
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Proposition 3. Let S ✓ V , I v T , and C ✓ V \S. For all pat-
terns P 0 = (S0

, I) 2 �(I, S, C), UB(S [C, I,H(S, I)) �
Mu(S0

, I).

Proof 3. Since S
0
✓ S [ C and H(P 0) ✓ H(P ), we have

UB(S [ C, I,H(P )) =
X

v2S0

X

t2I

X

h2H(P 0)

max
�
score(h, v, t)⇥Qu(h, v), 0

�

+
X

v2S[C

X

t2I

X

h2H(P )\H(P 0)

max
�
score(h, v, t)⇥Qu(h, v), 0

�

+
X

v2S[C\S0

X

t2I

X

h2H(P 0)

max
�
score(h, v, t)⇥Qu(h, v), 0

�

�

X

v2S0

X

t2I

X

h2H(P 0)

max
�
score(h, v, t)⇥Qu(h, v), 0

�

�

X

v2S0

X

t2I

X

h2H(P 0)

score(h, v, t)⇥Qu(h, v) = Mu(P
0) ⇤

The last pruning technique is built on the coverage mea-
sure. As stated in Definition 2, there may exist several cov-
erage guarantee summaries of geolocated events. Whereas
it might be interesting to have a summary of smallest
cardinality, the problem of finding the set of minimal size is
NP hard. A practical approach consists in constructing the
summary during the enumeration. We also use the coverage
measure to prune large parts of the subgraph search space
thanks to a lower bound LB (lines 4 to 6 in Algorithm 2)
that will be defined next. The intuition behind is to prune a
search space �(I, S, C) if it is covered by an already found
pattern Pr .
Proposition 4. Given a geolocated event pattern Pr =

(Sr, Ir) and a pattern P
0 = (S0

, I) in �(I, S, C), we have
cov(S0

, Sr) � cov(S [ (C \ Sr), Sr).

Proof 4. As S0 = S [ C
0 s.t C 0

✓ C , we have: cov(S0
, Sr) =

|S
0
\Sr|

|S0| = |S\Sr|+|C
0
\Sr|

|S|+|C0\Sr|+|C0\Sr|
�

|S\Sr|+|C
0
\Sr|

|S|+|C\Sr|+|C0\Sr|
. We

define g(x) = |S\Sr|+x

|S|+|C\Sr|+x
, with x = |C

0
\Sr|. Knowing

that the derivative g
0(x) = |S|+|C\Sr|�|S\Sr|

(|S|+|C\Sr|+x)2 � 0, g(x)
takes its lower value when x is minimal, that is when
x = 0. Thus g(x) � |S\Sr|

|S|+|C\Sr|
= cov(S [ (C \ Sr), Sr)

and we conclude that cov(S0
, Sr) � cov(S[(C\Sr), Sr).

⇤

For instance, in Fig. 3, Sr covers S and a part of C .
cov(S [ {v9, v10}, Sr) = 3

5 is a lower bound of cov(S0
, Sr)

for all (S0
, I) 2 �(I, S, C). In fact, S [ {v9, v10} contains

only the vertices of C that are not in Sr , which minimizes
the coverage of Sr .
Definition 4. Let H(P ) \ H(Pr) = {h1, . . . , hq} – the set

of terms of P covered by those of Pr – be ordered by
hi UB hj iff UB(S [C, I, {hi}) � UB(S [C, I, {hj}).
We consider the minimal set {h1, . . . , hq?} of terms that
can be added to H(P ) \ H(Pr) while still satisfying the
upper-bound:

q
? = argmin

r2{1...q}

UB(S[C, I,H(P )\H(Pr)[{h1, · · · , hr}) � �

and define H
? as H(P ) \ H(Pr) [ {h1, · · ·hq?}. In other

words, H?
✓ H(P ) is the set of terms that overlaps the

least with H(Pr) while verifying the condition UB(S [

C, I,H
?) � �

Proposition 5. For each pattern P
0 = (S0

, I) 2 �(I, S, C)
such that Mu(P 0) � �, we have cov(H(P 0),H(Pr)) �

cov(H?
,H(Pr)).

Proof 5. We know that |H(P 0) \ H(Pr)| � q
?, otherwise

UB(S0
, I,H(P 0)) < � and Mu(P 0) < �. We can rewrite

cov(H(P 0),H(Pr)) = |H(P 0)\H(Pr)|
|H(P 0)\H(Pr)|+|H(P 0)\H(Pr)|

=
q
?+x

|H(P 0)\H(Pr)|+q?+x
with x � 0. Let’s denote g(x) =

q
?+x

|H(P )\H(Pr)|+q?+x
. We have cov(H(P 0),H(Pr)) � g(x)

as H(P 0) ✓ H(P ). Knowing that the derivative g
0(x) =

|H(P )\H(Pr)|
(|H(P )\H(Pr)|+q?+x)2 � 0, then g(x) takes its lower
value when x = 0. Thus, g(x) �

q
?

|H(P )\H(Pr)|+q?
=

cov(H?
,H(Pr)) and we conclude the proof. ⇤

Definition 5. We define the function LB as

LB(P,C, Pr) = min{cov(S [ (C \ Sr), Sr), cov(I, Ir),
cov(H?

,H(Pr))}

Proposition 6. For each pattern P
0 = (S0

, I) 2 �(I, S, C)
such that Mu(P 0) � �, we have cover(P 0

, Pr) �

LB(P,C, Pr).

Proof 6. It is sufficient to prove that : cov(S0
, Sr) � cov(S [

(C \ Sr), Sr) and cov(H(P 0),H(Pr)) � cov(H?
,H(Pr))

and cov(I, Ir) � cov(I, Ir) The first two equations are
respectively guaranteed with Propositions 4 and 5, and
the third one is trivial. ⇤
The exploration of the search space �(I, S, C) is stopped

if there exists Pr 2 R1 such that LB(P,C, Pr) � minCov,
because all the subsequent patterns are covered by it.

5.2 Pattern Sampling Based Event Detection

In this section, we explore another approach to discover ge-
olocated events: Pattern sampling [32]. Given a time budget,
the proposed algorithm SIGLER-Samp mines events using
a random exploration of the search space that favors events
with high Mu values. Such an approach enables instant
mining which is required in interactive pattern mining.

The pattern sampling process we consider is based on
a random walk on a graph whose vertices are patterns
P = (S, I) and edges (transitions) are chosen following a
probability measure that overweights high quality patterns.
The random walk starts from a singleton pattern P = (S, I)
where S = {v} and I = [t, t]. Next, P is expanded by
adding randomly drawn vertices from N(S), the neighbor-
hood of S, or by adding a timestamp to I . The random
walk is basically composed of two main steps described in
Algorithm 3:

1) Mu(P ) is computed for each pattern P = (S, I), where
S = {v}, v 2 V and I = [t, t], t 2 T . The probability of
drawing a singleton pattern P is defined as
P(P ) = Mu(P )P

v02V,t02T
Mu({v0},[t0,t0])

2) From a current pattern P = (S, I) with I = [ti, tj ], the
next step consists to draw a pattern P

0 from the set:

Next(P ) = {(S, I)} [ {(S, [ti�1, tj ])} [ {(S, [ti, tj+1])}

[ {(S0
, I) | S0 = S [ {v}, v 2 N(S)}
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This is done based on P(P 0
|P ), the probability to reach

the pattern P
0
2 Next(P ) from P :

P(P 0
|P ) = Mu(P

0)P
P22Next(P )

Mu(P2)
.

This distribution of probabilities rewards transitions
toward patterns P

0 with large Mu(P 0) values. After
drawing P

0, if P 0
6= P , we continue the expansion by

repeating Step 2 using the new pattern P
0. If P 0 = P ,

the pattern P is returned to the user and the sampling
is repeated from Step 1 until the whole consumption of
the time budget.

The two main steps are repeated (lines 8 to 21) until P 0 = P .
At each iteration, the pattern P = (S, I) is extended by
adding a vertex to S or a timestamp to I . Since S and I

are respectively bounded by V and T , this loop necessarily
stops after at most |V | + |I| iterations. All patterns with
nonzero Mu value have a non zero probability to be gener-
ated.

Proposition 7. For each pattern P = (S, I), if Mu(P ) > 0
then P(P 2 R2) > 0

Proof 7. Let us prove it by induction on n = |S|+ |I|.
• For n = 2, P is such that |S| = 1 and |I| = 1 (in other

cases, Mu(P ) = 0). P can be drawn in the first step,
and if it is chosen from Next(P ) in step 2, it is added
to R2. Thus, P(P 2 R2) �

Mu(P )P
v02V,t02T

Mu({v0},[t0,t0]) ⇥

Mu(P )P
P22Next(P )

Mu(P2)
> 0.

• Let us suppose that the proposition is true for n. Let
P = (S, I) be a pattern such that |S| + |I| = n + 1
and Mu(P ) > 0. Let P 0 = (S0

, I
0) ✓ P be a pattern

containing one less vertex or one less timestamp than P .
This means that |S0

|+|I
0
| = n, by the recursion hypoth-

esis we have P(P 0
2 R2) > 0. Thus, the probability

P(P 0) to reach P
0 is not null. Since P can be reached

from P
0 during the random walk, then: P(P 2 R2) �

P(P 0)⇥ Mu(P )P
P22Next(P 0)

Mu(P2)
⇥

Mu(P )P
P22Next(P )

Mu(P2)

P(P 2 R2) > 0 ⇤

Fig. 4. A step of SIGLER-Samp: P
0 are the patterns that can be

generated from the current P when considering the graph of Fig. 3.

Fig. 4 gives an example of an iteration in SIGLER-Samp.
The current generated pattern is P = ({v4}, [t3, t4]). In the
next iteration, one of the neighbors of P , or P , is randomly
chosen. The neighbors are generated by either adding {v2}

or {v6}, vertices connected to v4 in the graph of Fig. 3, or
increasing the time interval.

Algorithm 3: SIGLER-Samp

Input: time_budget
Output: R2 a set of sampled patterns

1 for v 2 V, t 2 T do

2 compute Mu({v}, [t, t])
3 while current time < time_budget do

4 // Step 1: draw a singleton pattern P
5 draw P = ({v}, [t, t]) ⇠ Mu(P )P

v02V,t02T
Mu({v0},[t0,t0])

6 // Step 2: expansion of P
7 P 0

 P
8 repeat

9 P  P 0

10 // Compute the set Next(P ) for P = (S, [ti, tj ])
11 Next(P ) {P}

12 for v 2 N(S) do

13 Next(P ) Next(P ) [ {(S [ {v}, [ti, tj ])}
14 if i > 1 then

15 Next(P ) Next(P ) [ {(S, [ti�1, tj ])}
16 if j < m then

17 Next(P ) Next(P ) [ {(S, [ti, tj+1])}
18 for P 0

2 Next(P ) do

19 compute Mu(P
0)

20 draw P 0
⇠

Mu(P 0)P
P22Next(P )

Mu(P2)

21 until P 0 = P ;
22 R2  R2 [ P

5.3 Discussion

We discuss here some potential issues that may appear,
and the related post-processing to fix them. By applying
one of the aforementioned algorithms, we find the set of
patterns R1 or R2, let’s denote it R⇤. In some particular
cases, two real life events happen at the same time and the
same location. However, these two events will be merged
in the same pattern P 2 R⇤. It is important to separate
them before displaying the result to the end user. Therefore,
for each pattern P = (S, I,H(S, I)) 2 R⇤, we apply a
community detection algorithm on the terms H(S, I) in
order to partition them into groups K1, ...,Kd where (1)
8i 2 J1, dK : Ki ✓ H(S, I) (2) [iKi = H(S, I) (3) each
Ki corresponds to a single real life event. We use Louvain
community detection algorithm [39], and we express its
result by the function Louvain1(P ) = {K1, ...,Kd}. The
similarity measure sim1 used in this clustering is defined
for two terms h1, h2 2 H(S, I) w.r.t the pattern P :

sim1(h1, h2, P ) =

8
<

:

1, if |{b 2 B | ({h1, h2} ✓ b.terms) and
(area(b.loc) 2 S) and (b.time 2 I)}| � 1

0, otherwise

In other words, sim1(h1, h2, P ) = 1 if h1 and h2 co-occur
at least once in the space S and the time interval I . Thus,
each cluster Ki 2 Louvain1(P ) would be a set of terms
that co-occur in this space-time. Each cluster Ki gives a
pattern (S, I,Ki) with the same space-time than the current
P . After applying this clustering to each P 2 R⇤, we have
the post-processed result R0 = [(S,I,H(S,I))2R⇤{(S, I,K) |

K 2 Louvain1(S, I,H(S, I))}
In order to deal with the redundancy issue, we have

defined SIGLER-Cov that computes a summary R1. How-
ever, it is not necessarily the optimal summary, that is to say
the summary of minimal size whose events partially cover
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each geolocated events that does not belong to the summary.
Indeed, the computation of an optimal summary is NP hard.
Thus, some redundancy can still remain in the result, we
post-process the set R0 to fix this issue. We apply Louvain
algorithm on patterns P 2 R

0 to merge the ones with similar
location, time interval, and terms. We define a similarity
measure sim2 for two patterns P = (S, I,K) and P

0 =

(S0
, I

0
,K

0): sim2(P, P 0) = |S\S
0
|

|S[S0| ⇥
|I\I

0
|

|I[I0| ⇥
|K\K

0
|

|K[K0| . The
result will be the communities: C1, ..., Cl where each commu-
nity Ci ✓ R

0 is a set of similar patterns. From each commu-
nity Ci we reconstitute a pattern PCi

= [(S,I,K)2Ci
(S, I,K).

The final result set of pattern is: R00 = {PC1 , ..., PCl
}.

6 EXPERIMENTS

In this section, we report our experimental results. We start
by describing the real-world datasets we use, as well as the
questions we aim to answer. Then, we provide a thorough
comparison with the state-of-the-art algorithms and we
report a performance study. Eventually, we evaluate the
ability of our approach to take user interests into account
through different testbeds4.

SIGLER is implemented in C++ and the experiments
were executed on a machine equipped with i7 CPU @
2.5GHz, and 16GB main memory, running macOS Sierra
version 10.12.2. For reproducibility purposes, the source
code and the data are available5.

6.1 Experimental Setting

Experiments are performed on 3 real-world datasets that
contain the tweets obtained by querying three different cities
on Twitter: New York (NYC), Los Angeles (LA) and London.
For each city, we collected geolocated public tweets and
removed those produced by bots (i.e, accounts that produce
more than 100 tweets in a period of 10 days). We only
retained tweets containing hashtags or user mentions. The
main characteristics of these datasets are given in Table 2.

dataset starting date ending date # tweets # distinct terms

New York 2016/10/08 2017/01/07 652,244 332,618
Los Angeles 2017/05/17 2017/07/27 353,541 224,769

London 2017/05/17 J 2017/07/27 270,648 177,166
TABLE 2

Description of the real-world datasets.

This empirical study aims to answer the following ques-
tions: Are SIGLER-Cov and SIGLER-Samp more effective
and efficient than their competitors? Do they scale well
according to the size of the dataset and the different pa-
rameters? Does SIGLER-Samp capture all the events? Is the
approach able to make use of user feedback to discover user-
relevant events?

In the first bunch of experiments, we compare our ap-
proach with two local event detection approaches: (1) Multi-
scale Event Detection algorithm (MED) [5], a state-of-the-art
algorithm which aims to identify geolocated events based

4. We report experiments performed on a crowd-sourcing platform
with real-users in this paper. Additional experiments with virtual users
are reported in supplementary material.

5. https://tinyurl.com/yywy2fqc

on a wavelet analysis of time series of terms, (2) GeoBurst
[13], an online local event detection method, that first detects
geo-topic clusters using a random walk on a keyword co-
occurrence graph, and then ranks all the clusters with a
weighted combination of spatial and temporal burstiness.
We also considered INSIGHT [18] and EDCOW [19], two non
location-aware event detection methods. INSIGHT is one of
the best methods to detect events in tweets, as it won a
recent challenge [41].

These experiments show that (1) non location-aware
approaches are not appropriate to detect geolocated events,
and (2) MED and GeoBurst algorithms are less robust to
noise than our approaches, and encounter scalability issue.
Finally, we demonstrate the ability of our methods to extract
interesting user-driven events via experiments performed
on a crowdsourcing platform.

6.2 Effectiveness

We first study the ability of our approach to detect user-
driven geolocated events. Using the method described in
[5], we generate artificial datasets for which the ground-
truth geolocated events are known. Twenty events, denoted
hereafter R0, are artificially created. Each of them lasts
between 2 and 8 timestamps, involves from 2 to 16 vertices
and is defined by 10 unique terms. The datasets contain
1024 vertices, 32 timestamps and 1200 unique terms. Posts
are artificially produced and sent at different timestamps
and spatial locations. Each post contains between 9 to 13
terms. These posts are either related to embedded events,
or are randomly drawn: (1) Event-related posts are uni-
formly distributed over the vertices and times stamps of
its associated event and contain 5 of the 10 event-related
terms as well as between 4 to 8 other terms; (2) Non-
event related posts are uniformly distributed over the other
timestamps and vertices. The terms they contain are drawn
using a Zipf law probability distribution [42] among the
1000 non-event related terms. 10 to 50 event-related posts
are randomly drawn and the number of non-event related
posts is controlled by the noise rate parameter.

Let R = {e1, . . . , ek} be the set of discovered events.
The quality of R is assessed based on the following adapted
Fscore measure:

Fscore(R,R0) = 2⇥
Precision(R,R0)⇥Recall(R,R0)

Precision(R,R0) +Recall(R,R0)

with Precision(R,R0) =
P

e2R
max

e02R0
cov(e,e0)

|R|
and

Recall(R,R0) =
P

e2R0
max

e02R
cov(e,e0)

|R0|
.

Fig. 5 presents the Fscore values achieved by the differ-
ent approaches when noise rate is varying. From this figure
we can draw the following conclusions:

1) Non location-aware event detection approaches cannot detect

geolocated events, as INSIGHT and EDCOW Fscore is
always lower than 0.2.

2) SIGLER, MED and GeoBurst perform well with
low noise rate. However, both SIGLER-Cov and

SIGLER-Samp are more robust to noise than MED and

GeoBurst . The Fscore of our approaches remains high
even when the noise rate increases, whereas MED and
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GeoBurst Fscore decreases almost linearly. More pre-
cisely, MED and GeoBurst keep a good recall but the
precision decreases when the noise rate increases.

3) Furthermore, the Fscore of SIGLER-Samp is obvi-
ously bounded by the Fscore obtained by SIGLER-Cov
which adopts a more exhaustive exploration of the
search space. Nevertheless, the bigger the time budget,
the better the Fscore.

Fig. 5. Average and error bars of Fscore values obtained over 10 gen-
erated datasets for a given noise rate value (� = 5 and minCov = 0.8).
Non location-aware event detection approaches are not able to de-
tect geolocated events. MED fails in presence of noise. Runtime of
SIGLER-Cov increases from 10ms to 2.5s when the noise rate in-
creases.

We also study the impact of parameters of our approach
on the value of Fscore. To this aim, we variate minCov
and � and we show the value of Fscore in Fig 6. The
highest FScore is achieved with values of � between 1
and 2, this leads to the best trade-off between precision
and recall. Increasing � allows to increase the precision, but
decreases the recall. Although the value of Fscore slightly
increases when minCov is higher, this parameter does not
significantly impact the quality of the result.

Fig. 6. Average and error bars of Fscore obtained according to � and
minCov. Default values are: noiseRate = 0.8, minCov = 0.8, � = 5.

Ideally, one would prefer to perform the effectiveness
study based on real world dataset. However, we do not have
the ground truth of such data. This makes it very hard to
achieve an objective comparison on them. Nevertheless, in
supplementary materials, we display and compare the top
10 events returned by SIGLER-Cov, MED and GeoBurst in
the New York dataset. We show that there are several events
that are identified by both SIGLER-Cov and MED. We also
show that GeoBurst provides events that are much smaller
than the ones of SIGLER-Cov and MED. We also discuss the
quality of these top 10 events. MED and GeoBurst tend to
detect false positive events.

6.3 Efficiency

To evaluate the scalability of the algorithms, we consider
New York tweets, our largest dataset. Fig. 7 reports the
runtime and the number of events obtained by SIGLER6,
MED, and GeoBurst when dataset parameters are varying.
However, MED is only reported for at most 10,000 tweets
because of its scalability issues (in the figures at left).

MED, GeoBurst, and SIGLER-Cov discover a compara-
ble number of events but MED performances raise scala-
bility issues. Indeed, SIGLER-Cov outperforms MED with
several orders of magnitude for all the configurations, espe-
cially when the number of tweets increases. Even if MED
uses some indexing techniques, its computational complex-
ity is quadratic in the number of tweets, and MED fails to
handle large datasets. Although MED is able to process one
day of tweets in our experiments, it is without considering
the fact that the Twitter API gives access to less than 1% of
the posted tweets. MED scale limitation is therefore a real
issue on these data.

In Fig. 7 - right, we report the runtime and the number
of discovered events with higher numbers of tweets (we
consider the whole dataset). We observe that the execution
time of SIGLER-Cov increases with the number of tweets,
but there is no order of magnitude change (non-logarithmic
scale). Although GeoBurst runtime also increases linearly, it
is considerably higher than the one of SIGLER-Cov.

We also study the impact of number of vertices and
time granularity on our methods. We show their behavior
in Fig. 8 when these two dimensions are varying. The
execution time of SIGLER-Cov increases when the number
of vertices and time granularity increase. The execution
time of SIGLER-Samp is controlled by a parameter and we
can observe that its number of results tends to the one of
SIGLER-Cov when the time budget increases.

To go further on evaluating the discovered events, Fig. 9
investigates the ability of SIGLER-Samp to capture similar
events as SIGLER-Cov, that is to say it verifies that the
computed event sample well covers all the events obtained
with the exhaustive approach. To this end, we compare
the events provided by SIGLER-Samp (denoted R1) with
the events discovered by SIGLER-Cov (denoted R2) as
follows. Using the Jaccard similarity measure of two pat-
terns P1 = (S1, I1) and P2 = (S2, I2), J(P1, P2) = 1

3 ⇥⇣
|S1\S2|

|S1[S2|
+ |I1\I2|

|I1[I2|
+ |HP1\HP2|

|HP1[HP2|

⌘
, the similarity of R1 and

R2 is defined by Sim(R1, R2) =
P

P12R1
maxP22R2 J(P1,P2)

|R1|+|R2|
+

P
P22R2

maxP12R1 J(P1,P2)

|R1|+|R2|
. We executed SIGLER-Samp with

different time budgets and post-processed the result R2 by
removing redundant patterns (using minCov = 0.8) and
low quality ones (using � = 40). Fig. 9 reports the Sim

values with respect to SIGLER-Samp time budget for 300K
tweets (left) and the whole dataset (right). The runtimes of
SIGLER-Cov for these two cases are respectively 95s and
173s. With a time budget fixed to 11% of the execution time
of SIGLER-Cov (around 9s and 19s), SIGLER-Samp retrieves
most of the high-quality patterns (sim > 0.9 ).

6. The runtime for SIGLER corresponds to the complete process in-
cluding the post-processing step described in Section 5.3. This explains
the slight variation of the runtime of SIGLER-Samp for different
configurations.
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Fig. 7. Runtime and number of events of SIGLER-Cov, SIGLER-Samp, MED and GeoBurst when varying the number of tweets (default values
of SIGLERs: 2000 vertices, �t = 3h, � = 10 and minCov = 0.8).

Fig. 8. Number of events by SIGLER-Cov and SIGLER-Samp and runtime of SIGLER-Cov according to the number of vertices, and the time
granularity when considering the whole dataset (default values: 652k tweets, 2000 vertices, �t = 3h, � = 10 and minCov = 0.8).

Fig. 9. Similarity of the results of SIGLER-Cov with the ones of
SIGLER-Samp with respect to SIGLER-Samp time budget.

Finally, Fig. 10 evaluates the impact of the two main
parameters, minCov and �, on the results. minCov is a
very intuitive parameter that eliminates a pattern if it is
covered at least by minCov% of a pattern belonging to
the solution. When minCov=1, only non maximal patterns
are removed, and the more minCov decreases, the more
disjoint the patterns. From Fig. 10 we can observe that this
parameter has also a major impact on the execution time.
Indeed, this parameter is involved in the computation of
the upper-bounds and when large, it drastically reduces the
execution time. In our experiments, we set this parameter to
0.8 to remove highly redundant events while allowing some
intersections.

The quality of an event is evaluated by the measure M,
also used to rank the patterns when presented to the user
(see next subsections). The function of the parameter � is to
cut the tail of the pattern distribution in order to only keep
those of high quality. So the larger �, the smaller the number
of patterns and the faster the execution.

For the following experiments, we fixed the value of �
according to the number of events that we wanted to present
to the user. Thus, we fixed � value so as to have around 800
events for NYC, which contains 3 months of tweets, and
around 400 events for LA and London that contain 70 days

of tweets. This led us to set � = 40 for NYC, and � = 15 for
London and LA dataset.

Fig. 10. Runtime and number of discovered events by SIGLER-Cov
according to minCov and � (default value minCov=0.8, � = 40).

6.4 User-driven discovery of geo-located events

To evaluate the ability of SIGLER to take benefit of user
feedback, we performed interactive event detection process
with real users on real datasets. We used a crowdsourcing
platform – Figure Eight7– to hire people living in the country
where the data is located. Indeed, our user feedback requires
some expertise about the city and its events. To this end,
we developed a graphical application8 and deployed it on
Figure Eight. For each user, the process consists in several
iterations. At each of them, a batch containing the tweets
emitted for 6 consecutive days is given as input to the
algorithms (with a recovery of 3 days between 2 batches).
Geolocated events are computed using either M (data-
driven detection), or Mu (user-driven detection). Then, the
user is asked to mark the events that she likes. Finally, the
batch index is incremented and the process iterates. Since
evaluating with the overall datasets can be very long and

7. https://www.figure-eight.com
8. 134.214.104.134:6001 and 134.214.104.134:6002.
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Fig. 11. Ability to take user feedback into account with real users: number of likes (left), average ranks of liked events (center), Nemenyi tests on
average ranks (right) for paired samples.

exhausting for real users, we limited the number of batches
to 10, that is approximately 33 days of data.

We used two different settings9 to compare the data-
driven and the user-driven approaches. In the paired sample

(also referred to as comparative evaluation), each of the
40 participants evaluated both approaches in a blind way,
i.e. the two lists of events were randomly displayed to the
user. In the unpaired sample (also known as independent
evaluation), 60 participants evaluated either the data or the
user-driven approach while not being aware of the type of
method used.

Fig. 11 reports the results of this crowdsourcing-based
evaluation. For the paired sample, the number of likes is
greater or equal in the user-driven setting than in the data-
driven one, while results are less obvious for the unpaired
sample. The purpose of paired samples is to get better
statistics by controlling for the effects of other “unwanted”
variables. And so, as our sample sizes are quite small,
results obtained on paired samples are probably the most
reliable. In addition, the test of Wilcoxon [43] is applicable
on the paired sample, while it is not on the unpaired ones.
However, even for paired samples, the Wilcoxon test does

9. The evaluation frameworks are available at: (1) for the paired sam-
ple: 134.214.104.134:6002, (2) for the umpaired sample: 134.214.104.134:
6001

not allow to reject the null hypothesis “the number of
likes are similar”, and the difference is not considered as
significant. Considering the average ranks of liked events,
we can observe that they are always better in the user-driven
configuration than in the data-driven one. The difference in
the values is considered as significant by both Wilcoxon and
Nemenyi tests [43]. The Nemenyi test value is shown in Fig.
11: when the rank difference on the graduated line is greater
than the CD value, the rank difference is considered not due
to chance.

Thus, this experience with real users leads to nuance the
claim that the user-driven approach makes it possible to
identify more interesting events than the data-driven one.
However, it confirms that the identified events are of much
better quality for the user-driven setting than for the data-
driven one. Similar experiments with simulated users are
reported in supplemental material.
6.5 Illustrative results

Finally, we show some examples of events detected by
our approach. Fig. 12 reports the top 3 events detected in
New York, London, and Los Angeles datasets. Each event
is described by the locations, time interval and top 8 most
frequent terms of its related tweets.

The first event in New York is the Comic Con10 , which

10. https://goo.gl/BR7kgp
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New York London Los Angeles

Fig. 12. Top 3 events detected in New York (left), London (center), and Los Angeles (right).

is an annual convention mainly dedicated to comics. It
was organized in Jacob K. Javits Convention Center, the
location associated to the related tweets. The two other
events correspond to USA presidential elections, and the
celebration of Halloween. In London, the first event is a
Pride Parade organized in July 8th, 2017. The remaining
are two geolocated events corresponding to a soccer event
and a concert of U2. In Los Angeles, the top 3 events are
respectively: the Official Disney Fan Club, E311 (a video
game related event), and the FYF Fest12 (a music festival).

7 CONCLUSION

In this paper, we introduced the novel problem of user-
driven geolocated event discovery in social media. We han-
dled the discovery of data-driven and user-driven event
detection in a unified view. We designed two different al-
gorithms to efficiently and effectively discover events based
on geolocation and user feedback. Experiments demon-
strate that, in the data-driven setting, our approach out-
performs state of the art methods by a factor of two to
several orders of magnitude. Furthermore, our approach is
more robust to noise. We also provide evidence that non
location-aware event detection approaches fail to discover
geolocated events. Thus, user feedback cannot be consid-
ered by post-processing the events obtained by existing
approaches. We also showed the ability of our method to

11. https://goo.gl/pio4dS
12. https://goo.gl/k1yWmK

directly discover geolocated events that are of interest for
the user based on her feedback with crowdsourcing-based
experiments. We believe that this work opens new direc-
tions for future research. For example, the event detection
can be enhanced by thoroughly taking into account prior
knowledge to detect really unexpected events and better
propagate user feedback to the semantic neighborhood of
liked events. Another interesting direction is to learn an
explicit model of user interests and provide active learning
based heuristics to foster the interactive process.
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1 USER-DRIVEN DISCOVERY BASED ON SIMU-

LATED USERS

In this section, we provide supplementary experiments of
the user-driven approach. We simulated virtual users who,
depending on their “own interest”, tend to prefer events
of a given type. We evaluate their “satisfaction” according
to the number of events that the system presents to them
that they are inclined to like. Thus, virtual users having
topics and/or location preferences are simulated and the
experiment consists in studying the number of liked events
when considering or not user feedback during the event
discovery process.

To that end, we first extracted events in the three
real datasets1 and retain those spanning at least over
2 timestamps (the set E). Then, we manually an-
notated the events. The tags used for the annota-
tion are Topics = {Business/Economics, Politics, Sci-
ence/Technology, Art/Culture, Celebration, Music, Sport,
Accident/Disaster}. Each event P can be annotated with
several topics and the function Tag(P, ⌧) ! [0, 1] ex-
presses the importance of the topic for the event (withP

⌧2Topics Tag(P, ⌧) = 1). Some detected events did not
match to any category and the obtained distributions are
presented in Table 1.

dataset # Art/Culture Music Celebration Sport Politics Business
NYC 800 97 89 212 87 88 1
LA 489 157 70 18 30 0 7

London 353 120 32 8 53 3 36

TABLE 1

Distribution of events according to the topics.

• A. Bendimerad and C. Robardet are with University of Lyon, INSA Lyon,
CNRS UMR 5205.

• M. Plantevit is with University of Lyon, University Lyon 1, CNRS UMR
5205

• S. Amer-Yahia is with University of Grenoble Alpes, CNRS.

1. To obtain around 800 events on NYC, we used � = 40, and to
obtain around 400 events on LA and London, we used � = 15. On all
datasets we set minCov = 0.8.

A virtual user u prefers a specific topic, or location, or
both of them. The function Pu(P ) captures the preferences
of the user u for the event P . It is defined according to 3
cases:

• If ⌧ is the preferred topic of u, Pu(P ) = Tag(P, ⌧)
• If ` is the preferred location of u, we consider that u is

interested in events at a distance from ` at most equal
to L and Pu(P ) = max(L�dist(`,P )

L , 0). Based on the
surface area of the cities, we choose L = 5km for New
York, and L = 10km for Los Angeles and London.

• If u has both topic and location interests, Pu(P ) =
Tag(P,⌧)+max(L�dist(`,P )

L ,0)
2

Topics with fewer than 20 events were discarded. For
the preferred locations, we consider several well-known
places for each city2. Finally, to be able to automatically
annotating computed events on these datasets, we used
the Tag function to annotate hashtags and locations (for
x = h, v, Tag0(x, ⌧) =

P
P2E s. t. x2P Tag(P, ⌧)) and then

use them to automatically annotate events (Tag?(P, ⌧) =P
x2P Tag0(x, ⌧)).
To evaluate how SIGLER-Cov and SIGLER-Samp effec-

tively discover user-driven events, we simulate the same
interactive process that we did with the real users in Sec-
tion 6.4, but with virtual users this time.

Fig. 1 presents results of these experiments when sim-
ulating between 19 and 29 virtual users depending on the
number of considered locations and topics on each dataset.
For each dataset, we show boxplots of the average number
of likes using SIGLER-Cov and SIGLER-Samp in the data
and user-driven settings. We can observe that (1) the average
number of likes in the user-driven setting is always greater
than the one in data-driven configuration. This difference is
considered as significant by the Wilcoxon and the Nemeny
post-hoc [Dem06] tests (the later is shown on Fig. 1.(2)
results obtained by SIGLER-Samp are below those obtained
by SIGLER-Cov, and the difference is significant according

2. NYC: Barclays Center, Javits Center, Madison Square Garden and
Metlife Stadium; LA: City Hall, DisneyLand, Museum of Art and
Rose Bowl Stadium; London: City of London, Royal Albert Hall, Soho
Theatre and Wembley Stadium.
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Fig. 1. Virtual user-driven geo-spatial event detection with SIGLER-Cov and SIGLER-Samp. Number of likes (1st column) and average ranks

of events liked by both data and user-driven settings (2nd column), Nemenyi tests on number of likes and average ranks (3rd and 4th columns).

to the Wilcoxon test, except for the NYC dataset, where
the number of likes is considered to be similar. Indeed,
SIGLER-Cov is more exhaustive and finds more events than
SIGLER-Samp, which explains this point.

Notice that in this simulation between 300 and 800
events are presented to the virtual-users who, on the con-
trary to human users, have the ability to evaluate all of them.
As already mentioned above, the order in which the events
are presented to the users is essential. In order to evaluate
this point, Fig. 1 presents the average ranks of events liked
by both data and user-driven settings. Clearly the setting
for which the liked events are ranked first is advantageous
in real situations. We can observe that the average rank is
always lower in the user-driven setting than in the data-
driven one. This difference is considered significant by the
Wilcoxon test on all datasets. This is also confirmed, in a
more visual way, by the Nemenyi tests [Dem06] displayed
on the figure. When comparing the average ranks obtained
by SIGLER-Cov and SIGLER-Samp, it appears that the later
obtains significantly better ranks (smaller) for liked events
that the former. Thus SIGLER-Samp identifies fewer events,
but that are of high quality for users.

This simulation with virtual users allows us to conclude
that the user-driven setting makes it possible to identify
more relevant events than the data-driven one, whether
in terms of quantity and quality. Besides, SIGLER-Samp
identifies fewer geolocated events than SIGLER-Cov, but

they are of better quality.

2 COMPARATIVE STUDY IN REAL WORLD DATASET

Based on synthetic data, we have studied in Section 6.2
the ability of our approach to detect local events, and we
compared it with other state-of-the-art methods. Ideally, one
would prefer to use real world datasets to perform such
evaluation. However, we do not have the ground truth of
the studied real world data. This makes it very hard to
achieve an objective comparison on them. Nevertheless, we
show in Table 2 the top 10 events returned by SIGLER-Cov,
MED, and GeoBurst, on the first 10k tweets of NYC dataset,
and we make a discussion about them. The number of
tweets is limited to only 10k, in order to be able to compare
with MED which has scalability issues.

We can notice that there are some similar results of
SIGLER-Cov with those of MED and GeoBurst. In fact,
SIGLER-Cov and MED have both returned the New York
Comic Con3 (1, 4 and 8 in SIGLER-Cov, 3 and 4 in MED),
Beyoncé Concert4 (2 in SIGLER-Cov, 5 and 8 in MED), and
Taylor Mac concert5 (5 in SIGLER-Cov and 10 in MED) .

3. https://goo.gl/BR7kgp
4. https://goo.gl/FrZEBu
5. https://goo.gl/9pM6z3
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#
SiglerCov MED GeoBurst

time top 5 terms time top 5 terms time top 5 terms

1
0h

to 23h
nycc, nycc2016, cosplay,
ny comic con, newyorkcomiccon.

0h
to 23h

nyc, newyork, love, manhattan,
saturday.

15h
to 23h

nilerodgers, foldfest, bettemidler,
foresthillsstadium, walkeratconcert.

2
0h

to 21h

formationworldtour, beyonce,
formationtour, beyhive,
theformationworldtour.

0h
to 23h

newyork, job, hiring, newyorkcity,
photo.

15h
to 21h

raniahatoum, thelondonnyc, tripleb,
blackbridalbliss, bridalgown.

3
6h

to 18h
rnrbrooklyn, runrocknroll,
halfmarathon, brooklynwerunhard.

0h
to 23h

nycc2016, cosplay, nycc,
newyorkcomiccon, wonderwoman.

18h
to 23h

intercoiffure, wella, icamoments,
nerolisalonspa, wellapro.

4
12h

to 21h
smashingnycc, nigelthornberry,
nigel, smashing, wildthornberries.

0h
to 23h

nycc, ny comic con, cosplay,
comiccon, marvel.

9h
to 15h

ridetheferry.

5
12h

to 21h

24decadehistoryofpopularmusic,
sawtaylormac, 24decades,
marskado, afraidoffun.

0h
to 23h

formationworldtour, beyonce,
beyhive, metlifestadium, beyonce.

18h
to 23h

sturgillsimpson, kingsbklyn,
asailorsguidetoearth.

6
15h

to 23h
greenday, websterhall, revrad,
saturdaynight, 90s.

0h
to 23h

brooklyn, bushwick, williamsburg,
sigurros, music.

0h
to 12h

elitefridays, cityscapesny, imsobx,
reposting, cityscapesnyc.

7
18h

to 21h
dosgualas, livvinyl, monies,
freeze, megaman.

0h
to 23h

repost, montanoy27, regram,
alofokemusicnet, parkslopemoms .

18h
to 23h

descendents.

8
12h

to 18h
ronswwadventure,
75thanniversary.

0h
to 23h

formationtour, beyonce,
theformationworldtour, nj,
kendricklamar.

0h
to 15h

50cent, dozadrumdealer,
mynameisjuan, industrykilla,
narcotechs.

9
15h

to 21h
foresthillsstadium, nilerodgers,
fold, bettemidler, foresthills.

3h
to 23h

foodporn, food, foodie,
yummy, eeeeeats.

0h
to 12h

deadrabbitnyc.

10 18h to 21h
knicks, nets, nyknicks,
brooklynnets, preseason.

0h
to 23h

24decadehistoryofpopularmusic,
sawtaylormac, 24decades,
proofoflifenumber, marskado.

0h
to 23h

doomocracy, pedroreyes,
doomacracy, creativetime.

TABLE 2

Top 10 events returned by SIGLER-Cov, MED, and GeoBurst, in NYC dataset, for the first 10k tweets (the day of 8 Oct. 2016). True positive

events are market in bold while false negative events are not.

Both SIGLER-Cov and GeoBurst identified the FOLD Festi-
val of Nile Rodgers6 (9 in SIGLER-Cov and 1 in GeoBurst).
However, the rest of top results of GeoBurst are different
from the ones of other approaches. GeoBurst seems to give
more importance to small events. In fact, each of the top
10 events of GeoBurst contain at most 10 tweets, while the
number of tweets in top results of SIGLER-Cov (resp. MED)
varies between 43 and 3k (resp. between 42 and 1280).

We believe that the results 1, 2, 7, and 9 of MED, and
the result 4 of GeoBurst are not relevant. Indeed, they
are defined with terms that do not correspond to any real
life event (e.g., nyc, job, hiring, foodporn, etc.). Concretely,
The terms ”nyc, newyork, love, manhattan, job, hiring,
newyorkcity, photo, repost” are very frequent in New York
dataset. Each of them appear at least 30 times in 90% of the
days. The term ”saturday” is frequently used in Saturday
(more than 30 times in 80% of cases). The terms ”food,
foodie, yummy, eeeeeats” also appear in a large number of
posts where people want to share their feeling about some
food experience. Each of them is used at least 7 times in 50%
of the days. The term ”ridetheferry” is used by people who
pass by the NY Waterway Ferry. It occurs between 1 and 6
times in 22 different days.
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