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Abstract

For frequency estimation, the recently proposed coprime sampling scheme receives increasing interest as

it reduces sampling rate and exhibits high degrees of freedom. However, the virtual coarray generated

by coprime configuration is a linear virtual array structure with some missing elements. This leads to

information loss if only the contiguous part of the virtual coarray is used. In this paper, we propose a new

approach to fix this problem. A multi-rate coprime sampling mechanism is designed to fill all the holes in the

classical coprime virtual coarray. This is achieved by constructing new virtual coarrays containing the hole

elements which can be selected to fill all the holes in the original virtual coarray. Furthermore, by properly

setting the multi-rate coefficients to positive integers, our approach allows to reuse some samples obtained

with the classical coprime sampling configuration. The closed-form expression of the positions of the holes

is also given, which can be used to choose the appropriate multi-rate coefficients. Simulation results show

that the proposed approach can increase the degrees of freedom without requiring additional samples. The

estimation accuracy is also improved because our proposed approach fully exploits the information from the

available samples.
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1. Introduction

Recently, along with the increasing wireless applications, spectrum shortage has become a bottleneck to

wireless communication industry [1, 2]. To ease the overcrowded frequency spectrum, a promising strategy

is cognitive radio [3, 4, 5], which efficiently exploits the available spectrum opportunities by allowing the

second users to use the licensed frequency bands. To that end, the licensed frequency bands over a wide

spectrum need to be sensed in order to detect the unoccupied bands. Many techniques have been developed to

dynamically detect frequency bands, including energy detection, match filtering, and cyclostationary feature
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detection [6, 7, 8], etc. Due to the well known Shannon-Nyquist theorem, most of the above mentioned

techniques are limited by the Nyquist sampling rate. This could result in high implementation complexity

to hardware when the bandwidth is large [9, 10, 11].

To lighten the sampling burden on hardware implementation, many sub-Nyquist sampling techniques

have been proposed [12, 13, 14, 15, 16, 17]. Among them, some techniques reduce the sampling burden

by utilizing the concept of difference coarray [18]. The difference coarray exploits the collected samples to

generate a virtual data set, which is equivalent to a virtual sampler working under Nyquist sampling rate.

By doing so, the virtual Nyquist rate samples can be constructed by using some sparse samples. We refer

to this virtual sampler as virtual difference coarray in this paper. The resultant difference coarray allows

increasing greatly the degrees of freedom (DOF) with few sparse samples.

The nested sampling configuration [19, 20] and the minimum redundancy sampling [21, 22] can also

increase the DOF. However, the nested sampling, which yields a contiguous coarray structure, consists of

two different parts of samples. One part includes some sparse samples with large sampling interval. But

the other part is composed of some dense samples obtained with Nyquist rate, which could still cause high

hardware complexity. The minimum redundancy sampling can avoid to sample at the Nyquist rate but

the samplers do not have a closed-form expression. Combinatorial search is needed before determining the

sampling strategy.

The recently proposed coprime sampling mechanism [23, 24, 25] has been considered as an attractive

strategy because the sampling rate can be significantly reduced and closed-form coprime sampling strategy

can be easily implemented with two conventional samplers. Qin et al. [26] further increase the DOF by

dividing the samples into units. Several units are simultaneously utilized to form a larger sample block in

order to increase the aperture of virtual difference coarray. However, there are some missing elements in the

coprime difference coarray, which are considered as holes. It is difficult to directly use the non-continuous

virtual coarray for frequency estimation. A common countermeasure is to use only the maximum contiguous

part in the difference coarray and discard the discontinuous part. Unfortunately it leads to the loss of DOF

because some information in the virtual coarray is not used.

Many interpolation techniques have been proposed for coprime array in direction of arrivals (DOA)

finding domain to construct a complete virtual coarray and handle the DOF loss problem. A nuclear norm

minimization based interpolation algorithm [27] has been proposed to interpolate the holes. However, the

interpolation performance could be affected by finite number of snapshots. As the virtual coarray is a uniform

linear array-like structure, the Toeplitz property of covariance matrix can be utilized for interpolating the
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missing elements [28, 29, 30]. Zhou et al. [31] first divide the virtual coarray signals into multiple virtual

measurements, considered as atoms, then the atomic norm minimization technique is applied to reconstruct

the Toeplitz covariance matrix. Another high resolution algorithm is to exploit multiple frequencies [32, 33] to

generate multiple scaled versions of virtual coarrays for interpolation. This could have a high implementation

cost because some physical sensors are required to collect sample snapshots at different frequencies. It is

worth noting that this technique, which is proposed for DOA estimation, can not be directly used for

frequency estimation without adaptation.

In this paper, inspired by the technique proposed in [32] and [33] which is designed for DOA estimation

by a coprime array, we propose a novel interpolation mechanism which is specific to coprime sampling based

frequency estimation. We design a multi-rate coprime sampling mechanism to fill the missing elements in the

virtual coarray. Multi-rate coefficients are introduced to construct the scaled versions of the virtual coarray.

By properly selecting a set of multi-rate coefficients based on the positions of the holes, all the missing

elements can be recovered from the scaled virtual coarrays and the holes can be filled. After retrieving the

whole uniform linear structure of the virtual coarray, all the coprime sampling samples can be exploited for

frequency estimation. The main contributions of this paper are summarized as follows:

1) A novel multi-rate coprime sampling mechanism is designed to fill all the holes in the classical coprime

virtual coarray such that the total available DOF provided by coprime sampling can be exploited. We show

that no additional hardware implementation is required for the interpolation if the multi-rate coefficients are

chosen as some appropriate positive integer values related to the positions of the holes. The complete uniform

virtual coarray structure can be retrieved from the original sample stream obtained from the classical coprime

sampling scheme, and no additional samples are required. This proposed method is of great importance

since the coprime sampling sample stream can be used more effectively. Moreover, the proposed method can

also be easily extended to the generalized coprime sampling scheme, which can further increase the DOF.

2) The closed-form expression of all positions of the holes is derived. Though similar expression has

been reported in [26, 34], only the lower bound of the holes (first hole) has been explicitly given. The upper

bound of positions of the holes has not yet been reported and the holes close to position (2M − 1)N can

only be obtained by combinatorial search. We derive both the lower bound and upper bound in this paper

such that all the positions of the holes can be analytically obtained.

The rest of this paper is organized as follows. The classical coprime sampling model is reviewed in

Section 2. The proposed multi-rate coprime sampling scheme and the positions of the holes are described

in Section 3. Section 4 provides some simulation results and the conclusion is drawn in Section 5.
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2. Signal Model

Consider a signal composed of D sinusoidal components buried in noise

x(t) =

D∑
i=1

Aie
j(2πfit+φi) + ω(t) (1)

where Ai is the amplitude, fi the frequency of the i-th sinusoidal component, φi the corresponding phase

assumed to be uniformly distributed in [0, 2π] and uncorrelated to each other, and ω(t) is zero mean additive

white Gaussian noise.

As proposed in [24] and [26], two sub-Nyquist samplers operating at sampling intervals MT and NT

respectively are utilized to sample the noise contaminated signal, with M and N two coprime integers and

1
T = 2fmax the Nyquist rate (fmax > max(f1, f2, ..., fD)). The output samples of the two samplers are

denoted by xM [n] = x(MnT ) and xN [m] = x(NmT ), where n and m are non-negative integers. Figure 1

shows the sampling time indices of the two samplers where the values of Mn for the sampler xM and Nm

for the sampler xN are given by integers below the triangles of the first row and second row respectively.

The k-th sample unit collected at the output of the sampler xM is a collection of N samples in the

time interval [(k − 1)MNT, kMNT ), for any given positive integer k. Likewise, the corresponding sample

unit collected at the output of the sampler xN is a collection of M samples in the time interval [(k −

1)MNT, kMNT ). Without loss of generality, a sampling block is defined [24] as the collection of a sample

unit, whose first sample index is (k − 1)MN for the sampler output xM and two successive sample units

with the same first sample index (k − 1)MN for the sampler output xN , i.e. the red rectangle and blue

rectangle in Figure 1 represent two different blocks. In this paper, we refer to this scheme as the classical

coprime sampling. Two sample subsets associated with the l-th (l ≥ 0) block can be expressed as

xM [Nl + n] =

D∑
i=1

Aie
j
(
πqiM(Nl+n)+φi

)
+ ω(M(Nl + n)T ) (2)

xN [Ml +m] =

D∑
i=1

Aie
j
(
πqiN(Ml+m)+φi

)
+ ω(N(Ml +m)T ) (3)

where qi = 2fiT = fi
fmax

is the normalized frequency with qi ∈ (−1, 1), and m,n are the indices of samples

in the l-th block with 1 ≤ m ≤ 2M − 1, 0 ≤ n ≤ N − 1.

The following sampling signal vectors of the two samplers can be constructed with the above samples

yM [l] = [xM [Nl], xM [Nl + 1], ..., xM [Nl +N − 1]]T (4)
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0 4 8 12 16 20

0 5 10 15 20

Unit 1 Unit 2

24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

96 100 104 108 112

100 105 110 115

116

Figure 1: Sampling time indices set of two samplers, M = 4 and N = 5.

yN [l] = [xN [Ml + 1], ..., xN [Ml + 2M − 1]]T (5)

Concatenating yM [l] and yN [l], the whole sampling signal vector of the l-th block can be constructed as

y[l] = [yTM [l],yTN [l]]T =

D∑
i=1

a(qi)Aie
jφiejπqiMNl + n[l]

= Ass(l) + n[l] (6)

where As = [a(q1),a(q2), ...,a(qD)], s(l) = [A1e
j(q1πMNl+φ1), A2e

j(q2πMNl+φ2), ... ADe
j(qDπMNl+φD)]T ,

a(qi) = [[1...ejqiπM(N−1)] [ejqiπN ... ejqiπN(2M−1)]]T , and n[l] is the corresponding noise vector. From

the hypothesis on the received signal, the covariance matrix of y[l] can be written as

Ry = E[y[l]yH [l]] = AsRsA
H
s + σ2

nI

=

D∑
i=1

A2
ia(qi)a

H(qi) + σ2
nI (7)

where Rs = diag[p1, p2, ..., pD] with pi = A2
i , i = 1, 2, ..., D, σ2

n is the noise power and I is a (N + 2M − 1)×

(N + 2M − 1) identity matrix. Matrix Ry contains both the self-lags and cross-lags correlation of the two

sample streams. The self-lags and cross-lags can be represented by the following difference coarray integers

set

L = {±(Mn−Nm)} (8)

The maximum value in L is (2M − 1)N , which is much larger than 2M + N − 1 for two coprime integers.

Coprime sampling scheme uses the concept of difference coarray to construct a virtual coarray and increase

the DOF. Elements in L can be equivalently considered as the indices of a virtual Nyquist rate sampler,

whose samples are the corresponding elements in Ry.
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The equivalent virtual signal can be obtained by reshaping the covariance matrix Ry as follows

r = vec(Ry) =

D∑
i=1

pia
∗(qi)⊗ a(qi) + σ2

ni = Acp + σ2
ni (9)

where Ac = A∗s �As, p = [p1, p2, ..., pD]T , � denotes the Khatri-Rao product, ⊗ denotes the Kronecker

product and i = vec(I).

3. Multi-rate coprime sampling

It can be noticed that the vectorized vector r contains all the self-lags and cross-lags correlation. By

selecting the appropriate elements corresponding to the self-lags and cross-lags in L (8), we can construct

the virtual coarray integer set ranging from −(2M−1)N to (2M−1)N [35], in which some missing elements

exist. An illustration of the virtual coarray is given in Figure 2a with M = 4, N = 5. It is clear that there

are some holes in the virtual coarray and the nonuniform coarray can not be directly employed for efficient

frequency estimation. In this section, we elaborate how the holes can be filled by exploiting multi-rate

coprime sampling without additional samples, such that all the information included in the virtual coarray

can be fully exploited.

It is worth noting that we consider the classical coprime sampling [24] to elaborate the proposed method

in this paper. The proposed multi-rate method can be easily extended to the generalized coprime sampling

scheme [26] by choosing appropriate sampling rate in accordance with the positions of the holes. By doing

so, the DOF can be further increased.

3.1. Multiple rate coprime sampling

Consider two samplers similar to Figure 1, whose sampling intervals are arMT and arNT with ar the

multi-rate coefficient (ar > 0), respectively, the two collected sample subsets associated with the l-th block

are given by

xM,ar [Nl + n] =

D∑
i=1

Aie
j
(
πqiarM(Nl+n)+φi

)
+ ω(arM(Nl + n)T )

xN,ar [Ml +m] =

D∑
i=1

Aie
j
(
πqiarN(Ml+m)+φi

)
+ ω(arN(Ml +m)T )

where xM,ar [Nl + n] = x(M(Nl + n)arT ), xN,ar [Ml + m] = x(N(Ml + m)arT ), with 1 ≤ m ≤ 2M − 1,

0 ≤ n ≤ N − 1. It can be observed that the number of elements in each block remains the same as in the
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original classical coprime sampling, while the sampling interval is scaled up by a factor ar. The corresponding

sampling signal vector of the l-th block can be written as

yar [l] =

D∑
i=1

a(arqi)Aie
jφiejπqiarMNl + nar [l] (10)

its covariance matrix can be expressed as

Ry(ar) = E[yar [l]yHar [l]] =

D∑
i=1

A2
ia(arqi)a

H(arqi) + σ2
nI (11)

Similarly to (8), the self-lags and cross-lags under sampling rates arMT and arNT can be described by the

following set

L(ar) = {±ar(Mn−Nm)} (12)

It is obvious that L(ar) is a scaled version of L with multi-rate coefficient ar. With an appropriate value

of ar, L(ar) can include some missing elements in L. After vectorizing and rearranging the elements, the

virtual coarray obtained with sampling rates arMT and arNT contains some hole elements that occur in the

virtual coarray of sampling rates MT and NT . The idea of multi-rate coprime scheme is to find all the hole

elements from the resultant virtual coarrays generated by multi-rate coprime sampling. These elements can

be employed to fill the holes in the classical coprime coarray. This is achieved by choosing some appropriate

values of ar in accordance with the positions of the holes.

xx xx x x x xx xx x
0 5 10 15 20 25 30 35-35 -30 -25 -20 -15 -10 -5

0 2 10 2220 24 30 36-36 -30 -24 -20-22 4 6 8 2826 3432
….   ... x xx…    

4846 50
...

6866 7044-10 -2-8 -6 -4
….   .........

-26-28-34-32
x x x

-46-48 -44-50-68-70 -66

0 3 6 9-3-9 -6
….   ... …     …   ...

24 30 3621 27 33
x

7269 75
... x x

10299 105
…     …   ...

-33 -27 -21-36 -30 -24
x

-75 -69-72
…     …   ......xx

-105 -99-102

(a)

(b)

(c)

Figure 2: Sampling indices of virtual coarrays with different sampling rates. (a) Sampling rates MT,NT (b) Sampling rates
2MT, 2NT (c) Sampling rates 3MT, 3NT , with M = 4 and N = 5, •: existed elements, ×: holes.

3.2. Virtual covariance matrix construction

The maximum value in L is K = (2M − 1)N . We consider a covariance matrix Rv that can utilize all

the DOF. Therefore, we can define a set of values corresponding to the full DOF as

LDOF = {±i|0 ≤ i ≤ K} (13)
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Then we can construct the following Toeplitz covariance matrix

Rv =



r[0] r[−1] ... r[−K]

r[1] r[0] ... r[−K + 1]

... ... ... ...

r[K] r[K − 1] ... r[0]


(14)

where r[i] = E[x(t)x∗(t−iT )] only depends on the lag i = 0, 1, ..., (2M−1)N . In other words, r[i] corresponds

to the data of the i-th position in the virtual coarray. An example of virtual coarray with M = 4, N = 5 is

shown in Figure 2a. For a given realization, Rv and r[i] are represented by R̂v and r̂[i].

To estimate r[i], the covariance matrix (7) is estimated by averaging the available sample blocks

R̂y =
1

L

L−1∑
l=0

y[l]yH [l] (15)

where L is the number of blocks. For the i-th position in the virtual coarray, there may be several ele-

ments in R̂y that correspond to the same position. The i-th position r[i] is estimated by averaging all the

corresponding elements in R̂y and the respective element r̂[i] is obtained [33].

Notice that there are some missing integers in L which are related to the missing elements in R̂v. These

elements correspond to the holes that can not be directly obtained from R̂y. We define the missing elements

set as

Lholes = {i|i ∈ (LDOF − L)} (16)

Alternatively, a new covariance matrix can be estimated under multi-rate coprime sampling with coefficient

ar, which is represented by R̂y(ar). By choosing some appropriate values of ar, the set of lags associated

with R̂y(ar) can be equivalently represented as (12). All the missing elements r̂[i] can be obtained from the

intersection between Lholes and the selected sets L(ar) to retrieve matrix R̂v. In other words, we can define

Irates as a set of selected multi-rate coefficients allowing to fill all the holes such that

Lholes =
⋃

ar∈Irates

{Lholes ∩ L(ar)} (17)

For illustration, we consider the holes ±24 as shown in Figure 2a. Many values of ar can be used to fill these

two holes. A condensed coarray can be obtained with value ar = 24
25 , which requires to implement another

two samplers at new sampling rates 24
25MT and 24

25NT . If we choose ar > 1, the coarray will be extended,
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as shown in Figure 2b for ar = 2.

Meanwhile, an interesting fact is that if the multi-rate coefficient ar is set to be an integer greater than

1, the resultant samples are included in the samples obtained with the initial classical sampling rates MT

and NT . These samples can be equivalently considered as the samples of the multi-rate sampling. In other

words, these samples can be directly obtained by decimating the original classical coprime samples. A

graphic illustration is given in Figure 3 with M = 4, N = 5 and ar = 2. This is of great importance to the

sampling process because the multi-rate samples can be obtained by choosing the appropriate samples from

the classical coprime sampling sample stream. In this case, the resultant multi-rate covariance matrix can

be respectively expressed as follows

R̂y(ar) =
1

b Lar c

b L
ar
c∑

l=0

yar [l]yHar [l] (18)

Here, only 1
ar

samples from the xM and xN samplers are chosen for the multi-rate scheme, which indicates

that the multi-rate scheme has totally b Lar c blocks (b·c is the floor operator). No additional sampling

operation is required and this will not cause extra sampling burden to the samplers. In the following

sections, we only consider the case where ar is an integer greater than 1.

0 4 8 12 16 20

0 5 10 15 20

24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

96 100 104 108 112

100 105 110 115

116

Figure 3: Multi-rate coprime sampling indices selected from the classical coprime sampling, M = 4, N = 5, ar = 2
↓: sampling indices selected for multi-rate coprime sampling.

Filling holes without data reusing

As shown in Figure 2, we consider M = 4, N = 5 to illustrate the mechanism without reusing data.

The holes occur at positions {±24,±28,±29,±32,±33,±34}. As shown in Figure 2b, a new virtual coarray

can be constructed by setting ar = 2. It can be easily observed that the lags {±24,±28,±32,±34} can be

obtained via this new coarray and we can directly select these elements from Figure 2b to fill the holes in

Figure 2a. In addition, the holes {±33} and {±29} can also be filled by setting ar = 3 (Figure 2c) and
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ar = 29 respectively. The resultant integer sets can be expressed as

L(ar = 2) = {±2(Mn−Nm)} (19)

L(ar = 3) = {±3(Mn−Nm)} (20)

L(ar = 29) = {±29(Mn−Nm)} (21)

Here, m,n are the indices of samples in one block. By selecting the appropriate elements from R̂y(ar =

2), R̂y(ar = 3), R̂y(ar = 29), the holes in Figure 2a can all be filled correspondingly. It comes that

{±24,±28,±32,±34} ⊆ {Lholes ∩ L(ar = 2)} (22)

{±33} ⊆ {Lholes ∩ L(ar = 3)} (23)

{±29} ⊆ {Lholes ∩ L(ar = 29)} (24)

Notice that each value of ar can only fill one or several specific holes. In other words, we use only the

corresponding elements in each R̂y(ar) to fill the holes and discard the remaining elements. We define

this mechanism as data no-reusing mechanism. In the following section, we will explain the data reusing

mechanism

Filling holes with data reusing

The estimation variance can generally be reduced if higher number of data can be used for calculating the

average value. Comparing Figure 2a, Figure 2b and Figure 2c, it can be found that there are some overlapped

positions, i.e., {0,±2,±4,±6...} in Figure 2a and Figure 2b, {±6,±12,±18...} in Figure 2a, Figure 2b and

Figure 2c. It means that L ∩ L(ar) is not an empty set. The data in the initial coarray (Figure 2a) are

constructed by averaging the respective data from the sampling covariance matrix. In Figure 2b and Figure

2c, though the data from the selected matrices R̂y(ar) are intended to fill the holes, they simultaneously

generate some data which can be reused for calculating the overlapped positions in Figure 2a. In this case,

we can jointly use all the useful data in R̂y(ar) with the data in R̂y to construct the complete virtual

coarray.

For illustration, we consider the position {±6}, which can be found in Figure 2a, Figure 2b and Figure

2c. The respective elements in R̂y, R̂y(ar = 2), R̂y(ar = 3) can be selected to calculate the average and be

used to fill the position {±6}. This data reusing mechanism can be applied to all the overlapped positions

including the holes. The information in the virtual coarrays generated by multi-rates can then be maximally
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exploited.

Let us denote the set of multi-rate integer coefficients Irates as in (17), and define the union set of

overlapped positions between the classical coprime coarray and multiple rate coarrays as

Lrates =
⋃

ar∈Irates

{L ∩ L(ar)} (25)

Furthermore, assume that there are Ni entries in R̂y and Ni,ar entries in R̂y(ar), which are denoted by

R̂
(i,k)

y , k = 1, 2, ..., Ni and R̂
(i,k)

y (ar), k = 1, 2, ..., Ni,ar , which correspond to the same i-th position in the

coarray, then the data reusing mechanism can be summarized as follows:

1) If i ∈ {L− Lrates}, we select all the corresponding entries from R̂y to calculate r̂[i]:

r̂[i] =
1

Ni

Ni∑
k=1

R̂
(i,k)

y (26)

2) If i ∈ Lholes, we first choose several different values of ar ∈ Irates to generate different versions of

R̂y(ar), then select all the corresponding entries from different R̂y(ar) to calculate r̂[i]:

r̂[i] =
1∑

ar∈Irate
Ni,ar

∑
ar∈Irate

Ni,ar∑
k=1

R̂
(i,k)

y (ar) (27)

3) If i ∈ Lrates, we select all the corresponding entries from R̂y as well as the different versions of R̂y(ar)

to jointly estimate the mean value of r̂[i]:

r̂[i] =
1

Ni +
∑
ar∈Irate

Ni,ar

 Ni∑
k=1

R̂
(i,k)

y +
∑

ar∈Irate

Ni,ar∑
k=1

R̂
(i,k)

y (ar)

 (28)

It can be noticed that for the covariance matrix R̂y(ar), apart from the entries in R̂y(ar) that are used to

estimate r̂[i] for the case i ∈ Lholes, some entries in R̂y(ar) can also be reused to estimate the elements r̂[i]

for i ∈ Lrates.

After filling all the holes in the classical coprime virtual coarray, the maximum DOF can be fully used

without discarding the non-contiguous part. Many mature techniques can be applied on R̂v, including

MUltiple SIgnal Classification (MUSIC) [36] and Estimation of Signal Parameters via Rotational Invariance

Techniques (ESPRIT) [37], etc.
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3.3. Suggested rules to choose the multi-rate coefficients

For any given situation, it is clear that different sets of multi-rate Irates can be defined to fill all the

holes. Here we suggest two rules to choose Irates:

• Rule 1: Choose ar as small as possible. This can be seen from equation (18) that smaller ar can

achieve higher value of L
ar

, leading to more data for calculating R̂y(ar) and achieving better estimation

performance.

• Rule 2: Make the cardinality of Irates as small as possible. In the proposed scheme, we should

calculate R̂y(ar) for each value of ar. It is straightforward that more different coefficients will cause higher

calculation complexity. Consequently, the cardinality of Irates should be as small as possible to reduce the

calculation complexity.

To find the appropriate value of ar, the positions of holes are first obtained by the proposition which will

be specified in the next subsection. Then the prime factorization is implemented to find the prime factors

of the position value of each hole. According to the prime factors of the position values of all holes, we can

choose ar based on the above two rules. The details are given as follows:

If several values of the positions of holes have one common prime factor (CPF), we choose this CPF as

one value of ar to fill the corresponding holes;

If there exist several common prime factors for several holes, we choose the smallest CPF according to

rule 1;

If the position of a hole have no CPF with other holes, we choose its minimum prime factor as one value

of ar.

For any integers greater than 1, we can always find at least one prime factor according to the principle

of prime factorization. This means that we can always find at least one suitable ar 6= 1 for any hole value.

For the cases of small value of M and N which have few holes in the coarray, it could be easy to perform

the prime factorization and find the suitable ar. As for the cases of large M and N with more holes, saying

more than 10 hole elements (10 is an empirical value), we propose the following algorithm to simplify the

process of choosing ar:

1) We first consider ar1 = 2. This is because 2 is the smallest prime integer and it is the prime factor of

all even integers. By doing so, the holes with even position values can be filled.

2) If there are still many unfilled holes (more than 10 different values), we can choose the next prime

integer greater than 2, which is ar2 = 3, and the holes with position values of multiple of 3 are filled. If

there are only a few holes remaining unfilled, the prime factorization is then implemented to the unfilled

12



holes to find their prime factors and choose the suitable ar.

The reason we choose ar1 = 2 is that a smaller integer is a common divisor of more integers, i.e., 2 is

the divisor of all even integers while 3 is the divisor of one integer among every three contiguous integers.

In general, if there are many holes needed to be filled, ar with a smaller value can fill more holes.

3.4. Positions of the holes

Before choosing an appropriate value of ar, the position of missing elements in L should be first deter-

mined. For given system parameters M and N , the following proposition holds:

Proposition: The holes occur at position ±(b1M + b2N), where b1M + b2N < (2M − 1)N , b1, b2 are

integers, 1 ≤ b1 ≤ N − 1− bNM c and M ≤ b2 ≤ 2M − 2.

It should be noticed that the same expression of positions of the holes has been given in [34]. However,

only the lower bounds of b1 and b2 are provided. The upper bounds of b1 and b2 have not been given. In

Appendix, we give the proof for the upper bounds of b1 and b2 so that all the holes can be analytically

determined. We also provide a new way to prove the lower bounds of b1 and b2.

3.5. CRB

The Cramér Rao Bound (CRB) offers a lower bound of estimation variance of any unbiased estimator.

The CRB has been widely studied for traditional uniform linear array [38, 39] and coprime coarray [35, 40,

41]. In this section, we give the CRB of the classical coprime sampling. For signal model (7), the parameter

vector is defined as

η = [q1, ..., qD, p1, ...pD, σ
2
n]T (29)

The (i, j)-th element of the Fisher information matrix (FIM) can be given as

FIMi,j = L trace[
∂Ry

∂ηi
R−1y

∂Ry

∂ηj
R−1y ] (30)

Following the similar derivations in [35], FIM can be given as

FIM = L

 MH
f Mf MH

f Ms

MH
s Mf MH

s Ms

 (31)

where

Mf = (RT
y ⊗Ry)−1/2AdRs (32)
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Ms = (RT
y ⊗Ry)−1/2[Ac, i] (33)

with Ad = A∗der �As + A∗s �Ader and

Ader =

[
∂a(q1)

∂q1
,
∂a(q2)

∂q2
, ...,

∂a(qD)

∂qD

]
(34)

The CRB of the estimated frequencies can be obtained as

CRBf =
1

L
(MH

f (I−Ms(M
H
s Ms)

−1MH
s )Mf )−1 (35)

4. Numerical Results

In this section, the MUSIC algorithm is used for estimating the frequencies. The benchmarks of compar-

ison are to assess the maximum number of detectable frequencies and the relative root mean square error

(RMSE) of the estimated frequencies, which is defined as

RMSE =

√√√√ 1

DU

D∑
i=1

U∑
u=1

(q̂i(u)− qi)2 (36)

where q̂i(u) is the estimate of the normalized frequency qi in the u-th estimation trial, u = 1, 2, ..., U .

4.1. MUSIC spectrum and number of detectable frequencies

We first consider the case of M = 4 and N = 5 to show the MUSIC spectrum of the proposed multi-

rate coprime sampling scheme. The SNR is set to be 0dB and the number of sampling units is set to

L = 1000. Based on the Proposition of positions of the holes in Section 3.4, the set of holes can be

determined as Lholes = {±24,±28,±29,±32,±33,±34}. The maximum number of detectable frequencies

of the coarray after filling the holes with the proposed multi-rate coprime scheme is (2M − 1)N = 35. As

explained in the previous section, parameter ar with values in the set Irates = {2, 3, 29} has been used.

Irates = {3, 4, 17, 29} could also be chosen but according to the suggested rules in Section 3.3, it is preferable

to use Irates = {2, 3, 29} with three different ar rather than four.

Figure 4 shows the MUSIC spectrum of 35 estimated frequencies which are uniformly distributed over

interval [−0.96, 0.96]. The vertical dotted lines correspond to the true positions of frequencies. It can be

seen that all the frequencies are correctly estimated using the proposed scheme. It should be mentioned

that in the classical coprime sampling, only a maximum of 23 frequencies can be estimated due to the holes,
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Figure 4: MUSIC spectrum of estimated frequencies, M = 4, N = 5, 35 different sinusoidal components.

which means that part of the DOF can not be used. Our proposed scheme can significantly increase the

maximum number of detectable frequencies.

4.2. Performance with different multi-rate coefficients

Next, we investigate the impact of the multi-rate coefficient to the proposed scheme. The data no-reusing

mechanism is used in Figure 5 to focus on the impact of ar. For simplicity, we consider a coprime array

with M = 2, N = 3 which has only one pair of holes in the difference coarray (position ±8). The number of

Monte Carlo trials is set to be 500. We only need to choose one value of ar to construct a new multi-rate

coarray. The possible solutions of integer ar are ar = 2, ar = 4, ar = 8. The classical coprime sampling

scheme with no holes filling [24] is compared with these three scenarios.

Figure 5 shows the performance with 4 sinusoidal components. It can be seen that the proposed scheme

outperforms the classical coprime sampling scheme. This is mainly because the multiple coprime rate
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Figure 5: RMSE performance with different multi-rate coefficients, M = 2, N = 3, 4 sinusoidal components.

scheme fills the holes in the classical coprime virtual coarray. Therefore, the maximum number of detectable

frequencies is 9 for the proposed method, while it is only 7 for the classical coprime scheme with M = 2, N =

3.

We can also observe from Figure 5 that a lower value of ar leads to a better estimation performance.

This benefit is due to the fact that more samples are selected from the classical coprime sample stream if ar

is set to a lower value. The estimation variance can be reduced when more samples are used for calculating

the average, which is in agreement with the suggested rules in Section 3.3. However, this benefit is very

limited when ar varies from 4 to 2. The two respective curves achieve very similar performance as shown in

Figure 5. This is because the noise can not be thoroughly eliminated even if more samples are selected from

the same sample stream. It can also be observed that there is a gap between the RMSE of the proposed

method and the CRB even in high SNR region. This is consistent with the conclusion in [35] where the

authors claim that the RMSE of coprime configuration converges to a positive value and CRB tends to zero
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Figure 6: RMSE performance with different multi-rate coefficients, M = 2, N = 3, 4 sinusoidal components.

when D < M +N . Figure 6 compares the performance as a function of number of units. It is obvious that

the estimation performance is improved when more sample units are available.

4.3. Comparison of data reusing and data no-reusing

Figure 7 and Figure 8 compare the data reusing mechanism and data no-reusing mechanism with the

generalized coprime sampling scheme [26] and nuclear norm minimization interpolation scheme [27]. For the

generalized coprime sampling scheme, we consider two sample units from each sampler to form a sample

block hereafter. Different from the previous subsection with only one pair of holes, we consider M = 4, N = 5

such that six pairs of holes are required to be filled by choosing several different values of ar simultaneously.

The signal contains 12 sinusoidal components in Figure 7 and 25 components in Figure 8. As described in

Section 4.1, three different multi-rate coefficients Irates = {2, 3, 29} are considered to fill all the holes.

As shown in Figure 7 and Figure 8, both the data reusing and data no-reusing mechanism outperform
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Figure 7: Performance of data reusing & data no-reusing, M = 4, N = 5, 12 sinusoidal components.

the generalized coprime and the nuclear norm scheme. This is because the generalized coprime scheme

use two sample units to form a sample block in our simulation. By doing so, some holes can be filled

but there still exist some unfilled holes and the maximum DOF can not be fully utilized. In contrast, the

proposed method can fill all the holes distributed in [0, (2M − 1)N ] and achieve better performance. In

addition, the proposed method also surpasses the nuclear norm scheme because the performance of nuclear

norm interpolation could be strongly affected by noise level. In high SNR region, nuclear norm scheme can

achieve similar performance with the proposed method.

Furthermore, the data reusing mechanism has a slightly better performance than the data no-reusing

mechanism when SNR is low because more data are employed for constructing the virtual coarray. As SNR

increases, two mechanisms achieve very similar performance. This is because only part of data in R̂y(ar)

is selected for the data reusing mechanism. The improvement will be very limited. It is evident in Figure
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Figure 8: Performance of data reusing & data no-reusing, M = 4, N = 5, 25 sinusoidal components.

7 that in less sources scenario (i.e. 12 sinusoidal components compared to 25 components in Figure 8),

the performance of the generalized coprime can be close to the proposed method when SNR is high. For

M = 4, N = 5, the maximum number of detectable frequencies of the generalized coprime is 28, while it is

23 for the classical coprime and 35 for the proposed method. It should be mentioned that the nuclear norm

scheme can not always achieve the maximum DOF because the actual freedom is governed by non-uniform

grid [27]. We consider 25 sinusoidal components in Figure 8 for comparison. It can be seen that there is a gap

between the generalized coprime and the proposed method due to the difference of DOF. The performance

of nuclear norm scheme is the worst in Figure 8 and it tends to be close to the generalized coprime scheme

in high SNR scheme. An interesting fact is that the virtual coarray of the generalized coprime scheme is

similar to the classical coprime. The proposed method can also be easily applied to the generalized coprime

scheme to fill the holes and the DOF can be further increased.
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5. Conclusion

In this paper, we have proposed a multi-rate coprime sampling approach to fill the missing elements in

the coprime virtual coarray without requiring additional samples. The maximum DOF can be exploited by

fully utilizing the information contained in the classical coprime sampling. The proposed approach generates

several scaled versions of the virtual coarray which are related to the multi-rate coefficients. The holes in

the virtual coarray of the classical coprime sampling can be filled via selecting appropriate elements from

the scaled virtual coarrays. The covariance matrix of the virtual coarray signal can be constructed after

filling all the holes and more sources can be detected because the aperture of the coarray is increased.

Furthermore, our proposed approach brings no extra sampling burden to the samplers. This is achieved by

setting the multi-rate coefficient to a positive integer in accordance with the positions of the holes and part

of the samples from the classical coprime sample stream can be directly selected to construct the multi-rate

sampling sample stream. The proposed method can also be extended to the generalized coprime sampling

to fill the holes and further increase the DOF. We also give the closed-form expression of holes in this paper

to get a better choice of the multi-rate coefficients. The results reveal that our proposed scheme can achieve

a higher number of detectable frequencies as well as better accuracy.
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6. Appendix

Proof of Proposition

1) The first hole is located at position MN + M [26]. We first show that any integer number in

[0,MN + M − 1], namely a, can be generated by the difference coarray ±(Nm −Mn). We can rewrite

a = Nm−Mn into

Nm = a+Mn

Under the conditions 0 ≤ n ≤ N − 1 and 0 ≤ a ≤ MN + M − 1, for each value of a and n, we can

have a + Mn ≤ 2MN − 1. Then, it can be obtained that N ≤ Nm ≤ 2MN − 1, which is equivalent to
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1 ≤ m ≤ 2M − 1
N . As N > 1 and m is an integer, we can obtain

1 ≤ m ≤ 2M − 1

It indicates that for each value of n ∈ [0, N − 1], we can always find an appropriate value of m ∈ [1, 2M − 1]

to obtain a ∈ [0,MN +M − 1].

Then we show that the value MN +M can not be obtained with ±(Nm−Mn) by using contradiction.

Assuming that MN +M = Nm−Mn can be obtained with some appropriate values of m,n. Then it can

be derived that

M

N
=
m−M
n+ 1

Notice that m−M ≤M − 1. But as M,N are coprime integers, their ratio can not be reduced to a radio of

smaller integers. As a consequence, it is not possible to find proper values of m and n satisfying the above

equation. Similar derivation holds if we assume MN +M = −(Nm−Mn). Hence the first hole in position

MN +M is proved.

2) The general expression of positions of the holes b1M + b2N (b1 ≥ 1, b2 ≥ M) can be proved by

contradiction, which can be found in Appendix I [34].

3) Finally, we determine the upper bounds of b1andb2. Notice that the maximum number in L is

(2M − 1)N , the positions of the holes follow that b1M + b2N < (2M − 1)N . Recalling the condition

b1 ≥ 1, b2 ≥M , we can have

b1M < (2M − 1)N − b2N

< 2MN −N −MN

< MN −N

b1 < N − N

M

Since N > M and b1 is an integer, we can obtain that b1 ≤ N − 1−bNM c. Similarly, we can also obtain that

b2 ≤ 2M − 2.
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