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Abstract 33 

Filamentous fungi are one of the main causes of food losses worldwide and their ability to 34 

produce mycotoxins represents a hazard for human health. Their correct and rapid 35 

identification is thus crucial to manage food safety. In recent years, MALDI-TOF emerged as 36 

a rapid and reliable tool for fungi identification and was applied to typing of bacteria and 37 

yeasts, but few studies focused on filamentous fungal species complex differentiation and 38 

typing. Therefore, the aim of this study was to evaluate the use of MALDI-TOF to identify 39 

species of the Aspergillus section Flavi, and to differentiate Penicillium roqueforti isolates 40 

from three distinct genetic populations. Spectra were acquired from 23 Aspergillus species 41 

and integrated into a database for which cross-validation led to more than 99% of correctly 42 

attributed spectra. For P. roqueforti, spectra were acquired from 63 strains and a two-step 43 

calibration procedure was applied before database construction. Cross-validation and external 44 

validation respectively led to 94% and 95% of spectra attributed to the right population. 45 

Results obtained here suggested very good agreement between spectral and genetic data 46 

analysis for both Aspergillus species and P. roqueforti, demonstrating MALDI-TOF 47 

applicability as a fast and easy alternative to molecular techniques for species complex 48 

differentiation and strain typing of filamentous fungi. 49 

 50 

Keywords : MALDI-TOF MS ; filamentous fungi ; species complex ; strain typing 51 

 52 

1. Introduction  53 

 54 

Fungi are frequently involved in food spoilage and represent a major cause of food and 55 

economic losses. Indeed, among food losses and waste which represent 1 billion tons each 56 

year (FAO, 2011), it is estimated that 5 to 10% of them are due to fungal spoilage 57 

(Filtenborg, Frisvad, and Thrane 1996; Pitt and Hocking 2009). Fungi can spoil a large 58 

variety of feeds and foods, causing organoleptic properties deterioration such as visible 59 

growth on the product surface, off-flavor production, texture and color changes. Moreover, a 60 

large number of species such as Penicillium and Aspergillus spp. are potential mycotoxin 61 

producers, and may represent a great hazard for human health (Waśkiewicz 2014).  Hence, 62 

rapid and reliable identification of filamentous fungi is a key step for a better management of 63 

food safety and quality. 64 

For several years now, MALDI-TOF MS has been successfully applied to microorganism 65 

identification, from bacteria (Basile et al. 1998) to fungi (Welham et al. 2000) including 66 
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food-related fungi (Quéro et al. 2018). In the latter study, a spectral database comprising 619 67 

strains belonging to 136 species of food interest was built and 90 % correct identification at 68 

the species level were achieved after external validation. Several commercial instruments and 69 

databases are available (Deak et al. 2015) for routine identification. Besides identification at 70 

species level, MALDI-TOF MS has been shown as a powerful tool to discriminate fungal 71 

species complex and cryptic fungal species. As an example, Al-Hatmi et al. (2015) were able 72 

to correctly identify species of clinical interest belonging to the Fusarium fujikuroi complex, 73 

some of which being cryptic species. Allen et al. (2005) defined species complex as a cluster 74 

of related isolates which individuals may represent more than one species while cryptic 75 

species are morphologically indiscernible biological/phylogenetic units that are only revealed 76 

using DNA-based molecular analysis (Hawksworth 2006). In most cases, the identification of 77 

such species requires the analysis of several specific genes and expertise in data analysis 78 

(Balasundaram et al. 2015). Species complex are an issue not only in clinical context but also 79 

in the food context, particularly regarding mycotoxin production. For example, in the 80 

Aspergillus genera, and more particularly in the Flavi section which contains several cryptic 81 

species and currently comprises 33 phylogenetically distinct species (Frisvad et al. 2019), 82 

species have different mycotoxin production abilities, some species being able to produce B1, 83 

B2, G1 and G2 aflatoxins (e.g. A. nomius, A. novoparasiticus, A. parasiticus) while others 84 

only produce B1 and B2 aflatoxins (A. flavus, A. pseudotamarii and A. togoensis) or no 85 

aflatoxins (A. caelatus, A. subflavus and A. tamarii) (Frisvad et al. 2019). Another challenge 86 

within this section is the discrimination between the toxigenic Aspergillus flavus and A. 87 

parasiticus and the non-toxigenic A. oryzae and A. sojae, the latter being used in the 88 

production of numerous fermented products like sake or soy sauce (Gibbons et al. 2012).  89 

In order to discriminate Aspergillus species, MALDI-TOF MS could be a good alternative to 90 

molecular techniques, because of its accuracy, high-throughput and low cost per analysis. 91 

Several studies already pointed out its use for different Aspergillus sections including the 92 

Flavi section. For example, Alanio et al. (2011) used MALDI-TOF MS for discriminating  10 93 

species of Aspergillus section Fumigati while Hettick et al. (2008) and De Carolis et al. 94 

(2012) could differentiate A. flavus from A. parasiticus, and A. parasiticus, A. flavus and A. 95 

oryzae, respectively. In a more extensive study, Rodrigues et al. (2011) could identify 9 96 

species of Aspergillus section Flavi but could not distinguish aflatoxigenic and non-97 

aflatoxigenic isolates of A. Flavus. More recently, Imbert et al. (2019) assessed MALDI-TOF 98 

MS identification accuracy of Aspergillus cryptic species on a very large dataset of 1477 99 

isolates using the freely available mass spectrometry identification (MSI) platform. After 100 
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sequencing a subset of 245 cryptic species isolates for confirmation, they showed that, while 101 

very good identification (99.6 %) could be achieved with MALDI-TOF MS at the section 102 

level, only 66.1% of isolates were correctly assigned at the species level indicating that the 103 

database needed further improvement for cryptic species.  104 

 105 

To another extent, MALDI-TOF MS could also be of great interest for differentiating strains 106 

from a same species, i.e. for strain typing. In the past 10 years, it has been applied to bacteria 107 

of different genera and species such as Salmonella enterica (Kuhns et al. 2012), 108 

Staphylococcus aureus (Ueda et al. 2015), Legionella spp. (Fujinami et al. 2011) or 109 

Arthrobacter spp. (Vargha et al. 2006) and could be in some cases as effective as traditional 110 

typing methods such as multi-locus sequence typing (MLST) or Pulsed-Field Gel 111 

Electrophoresis (PFGE). In a recent study, Kern et al. (2014) showed the ability of MALDI 112 

TOF MS  to differentiate Lactobacillus brevis isolates at the strain level, and correlations 113 

could also be made between spectra classification and strain physiological properties. 114 

MALDI-TOF MS typing was also applied to yeasts of clinical interest, for which it could be 115 

as powerful as microsatellite markers for monitoring the spread of nosocomial infections 116 

(Pulcrano et al. 2012). This technique was also recently applied for the typing of brewing 117 

yeast strains allowing their classification into different major beer types (Lauterbach et al. 118 

2017) as well as for the typing of 33 wine yeasts which could be sorted according to their 119 

genetic background (Usbeck et al. 2014). One of the main challenges of fungal typing is that, 120 

as compared to bacteria, their phylogenetic relationships are more complex and species 121 

boundaries are not easily drawn (Bader 2013). Nevertheless, a rapid and reliable method for 122 

fungal typing would be of great interest in several contexts, e.g., to help understanding the 123 

domestication process and history of numerous species used in industry, for source-tracking 124 

of spoilage fungi in the food industry, to differentiate toxigenic and atoxigenic strains of a 125 

same species, to  discriminate the different strains involved in natural fermentation processes 126 

for the selection of starter cultures and for deciphering the tenuous limits between 127 

contaminant and biotechnological isolates (Belén Flórez et al. 2007). In the past 15 years, 128 

several studies focused on strain-level classification of filamentous fungi with technological 129 

interest such as those used in cheese manufacture. Belén Flórez et al. (2007) and Fontaine et 130 

al. (2015), using randomly amplified polymorphic DNA (RAPD)-PCR, could discriminate, at 131 

the intraspecies level, P. roqueforti isolates from cheese and environmental origins.  132 

Microsatellite markers were also used to investigate the  genetic diversity within Penicillium 133 

roqueforti  isolates (Ropars et al. 2014; Gillot et al. 2015), and these studies allowed the 134 
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differentiation of isolates in several genetically divergent populations. For instance, Gillot et 135 

al. (2015), using 4 polymorphic microsatellite markers, distinguished 28 haplotypes among a 136 

worldwide collection of 164 P. roqueforti isolates from cheese and other environments. 137 

Furthermore, these 28 haplotypes could be clustered into three well-defined genetically 138 

differentiated populations. 139 

While there is a strong body of evidence that MALDI-TOF MS can be applied to 140 

discriminate closely-related bacterial species and bacterial strains, only few studies have 141 

evaluated MALDI-TOF MS as a rapid tool to differentiate closely-related fungal species and 142 

strains or genetic populations from a same species. Therefore, the aim of this study was first 143 

to evaluate the potential of MALDI-TOF MS to accurately identify 23 closely-related  144 

species of Aspergillus section Flavi, and then to assess whether this technique could be used 145 

for discriminating Penicillium roqueforti isolates previously shown by Gillot et  al. (2015) to 146 

belong to three distinct genetic populations. 147 

  148 

2. Materials and methods  149 

 150 

2.1 Fungal strains and cultivation 151 

 152 

Sixty-eight strains belonging to 23 species from the Aspergillus section Flavi  were obtained 153 

from different culture collections. They are listed in Table 1. Strain identification was 154 

performed by DNA sequencing in previous studies (Frisvad et al. 2019 ; Carvajal-Campos et 155 

al. 2017 ; Quéro et al. 2018) or by the culture collection providing the isolates. Sixty-three 156 

Penicillium roqueforti isolates obtained from the Université de Bretagne Occidentale Culture 157 

Collection (UBOCC), Centraalbureau voor Schimmelcultures (CBS), Mycology laboratory of 158 

the Institute of Hygiene and Epidemiology (IHEM), Mycothèque de l’Université Catholique 159 

de Louvain (MUCL), Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ), 160 

and Laboratoire Cryptogamie Paris (LCP) collections belonging to 28 haplotypes and 161 

classified into three genetically distinct populations (1, 2 and 3)  were chosen among the 164 162 

isolates which were studied  by Gillot et al. (2015). Twenty-one, 22 and 20 isolates belonged 163 

to population 1, 2 and 3, respectively (Supplementary Table 1). 164 

  165 

To assess viability and purity before spectra acquisition, all strains were first cultivated at 166 

25°C on Malt Extract Agar (20 g.L-1 malt extract, 3 g.L-1 yeast extract, 15 g.L-1 agar) and 167 

Potato Dextrose Agar (PDA, bioMérieux, Marcy l’Etoile, France), for Aspergillus spp. and P. 168 
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roqueforti, respectively. Then, they were cultivated on their respective media  for 8 days at 169 

25°C before spectra acquisition. Three culture replicates were made for each strain. 170 

  171 

2.2 Sample preparation and spectra acquisition 172 

 173 

After cultivation, isolates were processed following the manufacturer’s instructions 174 

(bioMérieux, Marcy l’Etoile, France) as described previously (Quéro et al. 2018). Briefly, 175 

fungal biomass was suspended in 70% ethanol, before formic acid/acetonitrile protein 176 

extraction and centrifugation. After samples and matrix were deposited on target slides, 177 

spectra were acquired using the VITEK MS system (bioMérieux, Marcy l’Etoile, France) 178 

equipped with the Launchpad V2.8.4 acquisition software. Each sample was analyzed in 179 

duplicate. 180 

All spectra were acquired in linear positive ion extraction mode in a mass range from 2000 to 181 

20,000 Da. Individual spectra were accumulated from 500 laser shots (100 profiles with 5 182 

shots per profile) with the ‘Auto-Quality’ option activated. The system was calibrated 183 

externally with fresh cells of Escherichia coli ATCC 8739. Raw spectra were automatically 184 

processed by smoothing and peak detection procedures implemented in the Launchpad 185 

acquisition software (bioMérieux, Marcy l’Etoile, France). 186 

Raw spectra were then controlled for peak resolution, signal-to-noise ratio and absolute 187 

signal intensity as described previously (Girard et al. 2016). The spectra that did not reach the 188 

specified quality criteria were discarded. 189 

  190 

2.3 Discrimination of Aspergillus section Flavi species complex 191 

 192 

Two approaches were used to evaluate the power of MALDI-TOF MS to discriminate 193 

Aspergillus species from the Flavi section. First, a non-supervised approach was used in 194 

which the distances between all spectra were determined using the classical multidimensional 195 

scaling function (cmdscale) of Matlab (2014, The Mathworks Inc., USA). The calculated 196 

distances between spectra were based on the absence or presence of peaks and their 197 

intensities. These distances were then visualized using a multidimensional scaling (MDS) 198 

graphic. Secondly, a supervised approach was used after building a spectral database with 61 199 

strains as previously described (Girard et al. 2016; Quéro et al. 2018). Briefly, peak lists were 200 

binned and a predictive model was established using the Advanced Spectra Classifier (ASC) 201 

algorithm developed by bioMerieux (Marcy l’Etoile, France). Briefly, the ASC algorithm 202 
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assigns weights to each bin depending on the absence or presence of a peak. For example, if a 203 

peak is always present in a bin for spectra of population 1 and absent in the same bin for the 204 

other groups, the algorithm will assign a high positive weight to that bin for classification of 205 

unknown spectra. On the contrary, if a peak is always absent for population 1 and present in 206 

the other populations, it will have a high negative weight. Moreover, if a peak is either 207 

present or absent in spectra of the same population, it will have a low weight as it is poorly 208 

discriminant. This decision algorithm was applied to only retain significant matches and a 209 

single choice identification was obtained when only one species was retained. When more 210 

than one species was retained, a low discrimination result was proposed. In case more than 4 211 

species were retained or if no significant match was found, it was considered as a non-212 

identification result. 213 

Spectra acquired from 7 species, i.e., A. bertholletius, A. coremiiformis, A. cerealis (ex A. 214 

korhogoensis), A. mottae, A. oryzae, A. pseudocaelatus and A. pseudonomius were not 215 

included in the database as the number of tested strains was not sufficient. Indeed, the ASC 216 

algorithm used for database construction requires a minimum of 2 strains per species. 217 

Performances of this database were then evaluated using the same set of isolates by cross-218 

validation, i.e., internal validation, as described previously (Quero et al. 2018). The spectral 219 

data were randomly split into 5 subsets, 4 subsets used as learning phase and the last one used 220 

to validate the identification performances (or in this case, the attribution to the right group). 221 

This procedure was repeated 5 times, each subset being used once as a test. A correct 222 

identification was defined when the same identification occurred between cross-validation 223 

result and the reference identification. Low discrimination results were considered as correct 224 

if the expected identification was included in the matches. A misidentification result was 225 

defined as a discordant identification between the cross-validation result and the reference 226 

identification.  227 

  228 

  229 
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2.4 Discrimination of Penicillium roqueforti isolates 230 

  231 

Prior to similarity comparison of spectra and database construction, a two-step calibration 232 

was applied on all spectra, involving a linear calibration step to correct any possible global 233 

mass shift and a quadratic calibration step  on the spectra entire mass range. 234 

For linear calibration, specific MS peaks of P. roqueforti spectra were used. To do so, MS 235 

spectra of P. roqueforti isolates recorded in the bioMérieux commercial database (version 236 

3.2) were screened for specific MS peaks, which were then searched in the spectra acquired 237 

in the present study. Thirteen specific MS peaks with masses ranging from 3704.84 to 238 

14431.15 Da were found. Then, only MS peaks present in more than 70% of isolates 239 

belonging to two of the three genetic populations were kept which led to the selection of 9 240 

MS peaks with a mass of 3704.84, 3746.12, 4972.23, 6242.47, 6777.90, 6840.56, 7409.58, 241 

7437.67 and 14431.14 Da. The selected theoretical MS peaks were then compared to those 242 

observed in the spectra acquired in the present study, allowing the application of a linear 243 

model to correct eventual mass deviations. After mass correction with linear calibration, a 244 

quadratic calibration was applied. For this calibration step, the entire mass range (3000-20000 245 

Da) was targeted, in which masses ranging between 3000 and 6000 Da, 6000 and 10000 Da 246 

and 10000 and 20000 Da were screened  using a 1-,2- and 3-Da interval, respectively. The 247 

masse range 2000-3000 Da was excluded for quadratic calibration as it contained a very high 248 

number of peaks which could bias the model used for calibration. For quadratic calibration, 249 

mass tolerance was more restrictive than previously and only MS peaks present in more than 250 

83% of isolates belonging to two of the three genetic populations were kept. These selected 251 

masses which included 42 MS peaks (data not shown) were then used to build a quadratic 252 

model between theoretical and observed masses, allowing a good alignment of spectra. 253 

  254 

A spectral database in which the spectra derived from P. roqueforti  isolates were assigned to 255 

one of the three genetic populations identified by Gillot et al. (2015) was then implemented, 256 

using the ASC algorithm. 257 

Performances of this database were first evaluated by cross-validation as described above and 258 

database performances were also evaluated by external validation using 21 strains not used to 259 

build the database.  Spectra derived from these strains were used to challenge the database to 260 

assess whether they could be correctly assigned to the correct genetic population. 261 

  262 

  263 
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3. Results and discussion 264 

 265 

3.1 Evaluation of MALDI-TOF MS for discriminating Aspergillus section Flavi species 266 

 267 

 The distances between spectra of all tested species can be visualized in Figure 1, which 268 

shows the results of MDS analysis for all spectra (Figure 1A), spectra of the A. flavus-clade 269 

(Figure 1B) and spectra from the other clades (Figure 1C). Overall, most species were quite 270 

well separated from the others while some did not (Figure 1A). Based on spectra similarity, 3 271 

groups of species could be distinguished except for spectra of A. pseudotamarii which stood 272 

apart from these groups (Figure 1A). The first two groups (groups A and B, Figure 1A) 273 

contained spectra of all species of the A. flavus-clade that gathers the A. flavus and A. 274 

parasiticus related species (Varga et al, 2011) with the exception of A. mottae and A. oryzae 275 

as well as spectra from A. pseudonomius and A. avenaceus from the nomius- and avenaceus-276 

clade. Although A. mottae is considered to belong to A. flavus-clade, this latter species is 277 

considered as an ancestral taxon of the group including the A. parasiticus- and A. flavus-278 

subclades (Soares et a, 2012; Carvajal-Campos et al. 2017). Interestingly, Group B contained 279 

all species that are closely phylogenetically related to A. parasiticus, namely A. arachidicola, 280 

A. novoparasiticus, A. transmontanensis, A. sojae and A. sergii. All of these species are 281 

considered in the literature as pertaining to the A. parasiticus-clade (Rodrigues et al. 2011; 282 

Carvajal-Campos et al. 2017). It is worth mentioning that the separate grouping of A. 283 

parasiticus-clade MALDI-TOF MS spectra from other A. flavus-clade species was also 284 

reported by Rodrigues et al. (2011) but on a smaller number of species. Group C contained all 285 

the species from the other clades, with the exception of A. oryzae and A. mottae from the A. 286 

flavus-clade.   287 

When only representing spectra from species of the A. flavus-clade (Figure 1B), it can be 288 

observed that most of these species were clearly separated. Interestingly, spectra of A. flavus 289 

and A. oryzae (the likely domesticated form of A. flavus) clearly stood apart despite their very 290 

close phylogenetic relatedness (Frisvad et al. 2019), reflecting the fact that A. oryzae 291 

expressed many proteins that differed from those of A. flavus. Indeed, it is well established 292 

that domestication of A. flavus has led to important genetic and functional changes in its 293 

metabolism (Gibbons et al. 2012). Instead, spectra of A. oryzae were more similar to those of 294 

A. minisclerotigenes which is also closely phylogenetically related to A. oryzae (Frisvad et 295 

al., 2019). In contrast to A. flavus and A. oryzae, spectra profiles of A. parasiticus and its 296 

likely domesticated form, A. sojae, shared much more common characteristics. Figure 1C 297 
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shows the distance between spectra of the 11 other tested species belonging to the other 298 

clades of Aspergillus section Flavi. Spectra of species from the A. tamarii-clade were 299 

completely separated from the other ones but not grouped together. Indeed, spectra of A. 300 

tamarii and A. pseudotamarii were clearly separated from each other while those of A. 301 

caelatus and A. pseudocaelatus were more similar. Though they belonged to different clades, 302 

spectra of the remaining species were grouped together except those of A. pseudonomius and 303 

A. avenaceus isolates which were grouped together. Overall, spectra of the tested species 304 

were quite well separated, indicating that it should be possible to differentiate and identify 305 

them using a supervised approach. 306 

Spectra of the 16 species which were represented by at least two strains were integrated into 307 

the bioMérieux spectral database and identification performances were assessed by cross-308 

validation (Table 2). Overall, more than 99% of spectra (271/272) were assigned to the 309 

correct species. Only one spectrum of A. novoparasiticus was not identified, and one 310 

spectrum of A. avenaceus was attributed to both A. avenaceus and A. flavus. These results 311 

show that, even if the species of Aspergillus section Flavi tested here are closely related, their 312 

spectra are sufficiently different to yield correct identification when implemented into a 313 

spectral database and analyzed with the ASC algorithm. Results obtained here are of 314 

particular interest, especially for A. parasiticus and A. sojae whose spectra were perfectly 315 

separated and identified during cross-validation. It should be noted that these species are very 316 

similar from a morphological point of view; cannot be distinguished from each other based 317 

only on gene sequencing of taxonomic markers such as β-tubulin, calmodulin and RPB2 318 

genes and extrolite analysis is necessary to differentiate them (i.e., in contrast to A. 319 

parasiticus, A. sojae does not produce aflatoxins and aflatrem (Frisvad et al. 2019). In the 320 

same way, A. parasiticus and A. novoparasiticus were shown to share similar β-tubulin 321 

sequences, requiring the sequencing of other specific genes for identification (Frisvad et al. 322 

2019), whereas the analysis of their MS spectra was enough to discriminate them. This 323 

analysis also allowed separation of aflatoxin-producing species (A. aflatoxiformans, A. 324 

arachidicola, A. flavus, A. luteovirescens (ex A. bombycis), A. minisclerotigenes, A. nomius, 325 

A. novoparasiticus, A. parasiticus, A. pseudotamarii, A. sergii, A. transmontanensis) from 326 

non-aflatoxin producing ones (A. avenaceus, A. caelatus, A. leporis, A. sojae, A. tamarii). To 327 

our best knowledge, this is the first time that as many species of the Flavi section are studied 328 

and correctly identified by MALDI-TOF MS analysis. Indeed, several papers focused on the 329 

identification of Aspergillus section Flavi species of clinical interest such as A. flavus, A. 330 

oryzae, A. nomius or A. tamarii and though a separate  clustering of species was obtained 331 
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using hierarchical analysis, no commercial databases were able to accurately identify them 332 

(De Carolis et al. 2012; Li et al. 2017; Masih et al. 2016; Park et al. 2017; Rodrigues et al. 333 

2011; Tam et al. 2014). This underlines the need of expanding spectral databases to reach 334 

good identification performances. 335 

Regarding the results obtained in the present study, MALDI-TOF MS spectra analysis could 336 

be as powerful as the polyphasic approach commonly used to identify Aspergillus species of 337 

this section which may include morphological, physiological, molecular and/or extrolite data 338 

analysis (Frisvad et al., 2019, Carvajal-Campos et al, 2018). These results are very promising 339 

even though they are based on a relatively low number of isolates and spectra and that only 340 

16 species among the 33 currently recognized species were included in the database for 341 

validation.  The next step would be to integrate more species and isolates to the database as it 342 

can influence identification performances (Normand et al., 2013) and also to challenge the 343 

database with external isolates, in order to assess if spectra and isolates that were not used to 344 

build the database can be correctly identified.  345 

 346 

3.2 Evaluation of MALDI-TOF MS for typing of P. roqueforti isolates 347 

 348 

3.2.1 Similarity comparison and effect of calibration on the grouping of P. roqueforti 349 

isolates 350 

 351 

The distances between all spectra according to their genetic populations and the impact of 352 

calibration on the separation of these three populations can be visualized in Figure 2 which 353 

shows the results of MDS analysis before (Figure 2A) and after calibration (Figure 2B). 354 

Overall, there was a good separation of P. roqueforti MS spectra according to their respective 355 

genetic population and the two-step calibration approach applied in the present study 356 

improved separation of these spectra, thus confirming the potential of MALDI-TOF MS to 357 

discriminate filamentous fungi at the intraspecific level when combined with recalibration. 358 

Indeed, P. roqueforti isolates from population 2 were clearly separated from those of 359 

populations 3 and 1 (Figure 2B), even though, for the latter population, spectra from few 360 

strains, e.g., strain F77-1 which belonged to population 1, showed a high similarity with other 361 

spectra from population 2. It is also worth mentioning that spectra derived from population 2 362 

isolates, in contrast to population 1 and 3 spectra, showed a high heterogeneity, as underlined 363 

by the distances between spectra of population 2 isolates.  It was especially true for spectra 364 

derived from strain F41-4 that formed a separated group from other population 2 isolates. A 365 
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higher genetic diversity was also reported in isolates from this population as compared to 366 

other populations in the study of Gillot et al. (2015), which confirms the results obtained 367 

here. Indeed, population 2 contained almost all non-cheese isolates which harbored a larger 368 

number of allelic profiles to that of cheese isolates (Gillot et al. 2015). Moreover, cheese 369 

isolates from this population were systematically retrieved from a given Protected 370 

Designation of Origin (PDO) or Protected Geographical Indication (PGI) cheese type (i.e. 371 

Roquefort, Bleu d’Auvergne and Bleu de Gex). The two-step calibration approach used in the 372 

present study also improved separation of spectra derived from populations 1 and 3 isolates 373 

which mainly corresponded to cheese isolates from different PDO or PGI, with population 3 374 

and 1 isolates originating mainly from Gorgonzola-Type cheeses and other cheeses (i.e. 375 

Stilton, Cabrales, Danablu, Fourme d’ambert Bleu de Gex and Jihoceska Niva), respectively. 376 

It is also worth mentioning that, as previously reported by Gillot et al. (2015), a common 377 

macroscopic aspect was observed within population 3 isolates, with both a velvety to weakly 378 

floccose texture and a light greenish gray to pale green color. As shown in Figure 2B, spectra 379 

of several isolates from these two populations could not be clearly distinguished using MDS 380 

analysis underlining the fact that they shared highly similar MS profiles and therefore 381 

expressed features. The fact that spectra derived from populations 1 and 3 isolates shared 382 

quite similar MS profiles may be explained by the fact that most isolates from these 2 383 

populations were cheese isolates, which have been selected by cheese producers and/or by the 384 

natural conditions prevailing during cheese ripening (Gillot et al. 2015). Similar results were 385 

also obtained after investigating the relationship between the intraspecific variability of the 386 

biological response to temperature and aw and the different genetic populations within the 387 

selected P. roqueforti strains (Nguyen et al. submitted). 388 

  389 

3.2.2 Database construction and validation 390 

 391 

To go further in the assessment of the MALDI-TOF MS discriminative power at the 392 

intraspecific level, a database was constructed with 252 spectra, representing 42 strains, with 393 

14, 15 and 13 isolates belonging to populations 1, 2 and 3, respectively. Cross-validation 394 

results are shown in Table 3. Overall, the results of cross-validation showed that 94.1% of all 395 

spectra (235 out of 252 spectra) were correctly assigned to their corresponding genetic 396 

population.  All spectra derived from population 2 and 3 isolates were either correctly 397 

assigned to the right population (96.67-98.72 % of all spectra) or not identified at all (3.33-398 

1.28 % of all spectra corresponding to 3 and 1 spectra, respectively). These non-identified 399 
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spectra were derived from strain F41-4 from population 2 and strain F34-1 from population 3. 400 

Other spectra derived from these strains were correctly assigned to their respective genetic 401 

population. Identification performances of spectra derived from population 1 isolates were 402 

lower than those obtained with the other two populations with 84.52% of spectra (71 out of 403 

84 spectra) correctly assigned. The two spectra which yielded low discrimination results 404 

corresponded to two spectra of strain F84, that were either attributed to population 1 and 3 405 

while other spectra of this strain were correctly identified. One of the two unidentified spectra 406 

with no identification results corresponded to one spectrum of strain F21-1, for which the 407 

other five spectra were correctly assigned. The second one corresponded to one spectrum of 408 

strain F81, for which three other spectra yielded discordant results as they were attributed to 409 

population 3, while the last two were correctly assigned to population 1. Finally, the six 410 

incorrectly assigned spectra belonged to strain F77-1 for which all spectra were incorrectly 411 

assigned to population 2. This result could be explained by the fact that this isolate had MS 412 

spectra which were more similar to those of several population 2 isolates (Figure 2B). 413 

For external validation, 126 spectra corresponding to 21 independent isolates including 7 414 

isolates from each genetic population, were used to challenge the database. The results are 415 

shown in Table 4. 95.24 % of all spectra (110 out of 126 spectra) were correctly assigned to 416 

their corresponding population. Spectra acquired from external isolates from populations 1 417 

and 2 were all correctly assigned, with the exception of one spectrum from the strain 418 

IHEM3196 and F53 from population 1 and two spectra from strain LCP03969 from 419 

population 2. Finally, for external isolates from population 3, 71.43% of spectra (30 out of 42 420 

spectra) were accurately assigned to their respective population. All incorrectly assigned 421 

spectra (either yielding no or discordant identification) belonged to strains F28-3 and 422 

UBOCC-A-101449. For strain F28-3, five out of six spectra were not identified, and the last 423 

one was incorrectly attributed to population 2 while for strain UBOCC-A-101449, three out 424 

of six spectra were incorrectly identified to population 1 and the other three were assigned to 425 

both populations 1 and 2 by the algorithm. Interestingly, when looking in details at the allelic 426 

profiles of strains F28-3 and UBOCC-A-101449, we observed that the 2 strains, despite being 427 

classified in population 3 by Gillot et al. (2015), shared 1 similar allele with that of isolates 428 

from population 2 and 1, respectively. Hence, it could explain why their assignment to the 429 

right population was problematic. 430 

Noteworthy, several strains from populations 1 and 2 that were chosen for external validation 431 

also shared common alleles with isolates from other populations (Gillot et al. 2015). Indeed, 432 

strains IHEM3196 and F53, that were assigned to population 1 by Gillot et al. (2015), also 433 
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shared 1 common allele with isolates from population 2, while strains UBOCC-A-111178, 434 

DSMZ1999 and UBOCC-A-111170, assigned to population 2 by Gillot et al. (2015) shared 2 435 

common alleles with population 2 and for the two other alleles, presented alleles that were 436 

different from those of other isolates from population 3. Nevertheless, spectra of these 437 

isolates were correctly assigned after external validation suggesting that their MS peak 438 

profiles were much more closely related to that of the isolates which were used to build the 439 

database. 440 

As indicated in the ‘Materials and methods’ section, for database construction, peak lists of 441 

spectra from each population were binned and a predictive model was established. In order to 442 

understand what were the main differences in the MS spectra of the three P. roqueforti 443 

populations, we investigated which bins (or mass-intervals) had a high impact (positive or 444 

negative) for population assignment. The two bins that had the higher and lower impact on 445 

population assignment are shown in Table 5. All these bins had masses ranging from 3000 to 446 

7716.1 Da. In comparison, Hettick et al. (2008) found differences between spectra of 447 

Aspergillus flavus isolates in a mass range from 7000 to 10000 Da, but in contrast to the 448 

present study in which the ASC algorithm was used, such comparison was performed on 449 

whole spectra based on peak lists. It is also interesting to note that high-impact weights for 450 

population 2 were slightly higher than those of the two other populations and that overall, 451 

high-impact bins were different depending on the population, except for the [3000.0;3004.0] 452 

bin which allowed to discriminate population 3 isolates from population 1 and 2 isolates 453 

(Table 5). Thus, it would be of great interest to look closer into the different bins that allowed 454 

population separation during MALDI-TOF MS analysis, especially those which were 455 

identified by the algorithm as having a high-impact weight. The application of MALDI-TOF 456 

MS/MS could help to determine the exact m/z of proteins which allowed to discriminate P. 457 

roqueforti isolates at the population level  as performed previously by Freimoser et al. (2016) 458 

on different Monilinia species. Then, after comparison with theoretical masses of proteins 459 

predicted from available sequenced genomes of P. roqueforti, it may be possible to identify 460 

which are the proteins (and their functions) that permit to discriminate one population from 461 

another. However, such comparison can lead to the identification of several different proteins 462 

for one single peak because different proteins can share the same m/z value (Spinali et al. 463 

2015).  464 

Altogether, these results suggest that there is a very good agreement between genetic data and 465 

MS peak profiles and that MALDI-TOF MS could be used as a rapid tool for typing of P. 466 

roqueforti isolates using a dataset of well characterized isolates at the intraspecific level. 467 
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Indeed, MALDI-TOF MS was able to highlight intra-specific polymorphism and yielded 468 

similar results to those obtained from genetic analysis based on the study of three 469 

microsatellites markers of Penicillium roqueforti isolates. In addition, it was even possible to 470 

assign external isolates to the right populations by constructing a spectral database. However, 471 

two strains which possessed allelic profiles found in other genetic populations, could not be 472 

classified accurately with the approach used in the present study. Despite a very good 473 

agreement between genetic data and MS profiles, it must be noted that differentiation 474 

between the three populations is not made on the same markers in each analysis. Indeed, 475 

genetic analysis is based on microsatellite markers, short and repeated DNA sequences 476 

(Mathimaran et al. 2008), while MALDI-TOF MS detects predominantly ribosomal proteins 477 

and other proteins, that are constantly expressed and highly abundant (Santos et al. 2010). 478 

 479 

In conclusion, the results obtained in this study, together with those previously published by 480 

Quero et al. (2018) confirm that MALDI-TOF MS can be a powerful tool to differentiate and 481 

identify food-related filamentous fungi not only at the species level but can also be applied to 482 

differentiate species complex and cryptic species as well populations from a same species. 483 

This method could be of great interest for the management of mycological safety and quality 484 

of foods. Indeed, correct species identification of moulds is of high importance and the 485 

possibility of going beyond species identification could also be a valuable asset for source 486 

tracking of fungi in the food chain. 487 
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Table 1. Aspergillus spp. isolates from Aspergillus section Flavi analyzed by MALDI-TOF MS in the 708 

present study. 709 

Clade Species Strain number Origin substrate 

Avenaceus Aspergillus avenaceus NRRL 517 T 

NRRL 4517 
Green pea 
Unknown 

Bertholletius Aspergillus bertholletius CCT 7615 T Rain forest soil 

Coremiiformis Aspergillus coremiiformis NRRL 13603 T Soil 

Flavus Aspergillus aflatoxiformans 

(ex A. parvisclerotigenus) 

CBS 121.62 
SF1 
SF6 

Arachis hypogea 

Rain forest soil 
Rain forest soil 

Flavus Aspergillus arachidicola UBOCC-A-117374 = CBS 117612 
UBOCC-A-117375 = CBS 117611 
UBOCC-A-117376 = CBS 117614 
UBOCC-A-117377 = CBS 117615 
UBOCC-A-117373 = CBS 117610T 

Arachis glabrata leaf 
Arachis glabrata leaf 
Arachis glabrata leaf 
Arachis glabrata leaf 
Arachis glabrata leaf 

Flavus Aspergillus cerealis  

(ex A. korhogoensis) 

NRRL 66708 = MACI46 Peanut pods 

Flavus Aspergillus flavus UBOCC-A-108068 = LCP 89.4253 
UBOCC-A-108067 = CBS 100927 T 

UBOCC-A-101061 
UBOCC-A-101063 
UBOCC-A-106028 
UBOCC-A-106029 
UBOCC-A-106030 
UBOCC-A-106031 
UBOCC-A-106032 
UBOCC-A-106033 

Molten cheese 
Cellophane 
Pig feed 
Cotton oil cake 
Wheat 
Pig feed 
Wheat 
Maize 
Barley 
Poultry feed 

Flavus Aspergillus minisclerotigenes UBOCC-A-117303 = CBS 117635 T 

UBOCC-A-117304 = CBS 117633 
UBOCC-A-117305 = CBS 117634 
UBOCC-A-117306 = CBS 117620 
UBOCC-A-117307 = CBS 117639 
NRRL 29000 

Arachis hypogea seed 
Arachis hypogea seed 
Arachis hypogea seed 
Arachis hypogea seed 
Arachis hypogea seed 
Peanut soil 

Flavus Aspergillus mottae MUM 10.231 T Maize kernel 

Flavus Aspergillus novoparasiticus AFc32 = NRRL 62795 
UBOCC-A-117379 = CBS 126850 
UBOCC-A-117378 = CBS 126849 T 

LEMI 267 

Cassava 
Air sample 
Human sputum 
Human sputum 

Flavus Aspergillus oryzae CBS 100925 T Unknown 

Flavus Aspergillus parasiticus UBOCC-A-111038 = CBS 100308 
UBOCC-A-111039 
UBOCC-A-111041 = CBS 971.97 
UBOCC-A-110223 = CBS 100926 T 

NRRL 492 

Unknown 
Unknown 
Indian sweets 
Sugar cane mealy bug 
Unknown 
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Flavus Aspergillus sergii MUM 10.219 T 

MUM 10.251 
Prune fruit 
Almond shell 

Flavus Aspergillus sojae CBS 134.52 
CBS 100928 T 

Soy sauce 
Soy sauce 

Flavus Aspergillus transmontanensis MUM 10.205 
MUM 10.214 T 

Almond 
Almond 

Leporis Aspergillus leporis NRRL 3216 T 

NRRL 6599 
Dung of Lepus townsensii 
Soil 

Nomius Aspergillus luteovirescens (ex 

A bombycis) 

NRRL 25010 
NRRL 25593 

Frass in silkworm house 
Frass in silkworm house 

Nomius Aspergillus nomius CBS 123901 
NRRL 13137 T 

NRRL 6552 

Keratitis 
Wheat 
Pine sawfly 

Nomius Aspergillus pseudonomius NRRL 3353 T Diseased alkali bee 

Tamarii Aspergillus caelatus CBS 763.97 T 

NRRL 25568 
Soil 
Soil 

Tamarii Aspergillus pseudocaelatus CBS 117616 T Arachis burkartii leaf 

Tamarii Aspergillus pseudotamarii CBS 766.97 T 

CBS 117628 
NRRL 443 
NRRL 25518 

Teafield soil 
Teafield soil 
Unknown 
Teafield soil 

Tamarii Aspergillus tamarii UBOCC-A-110176 = CBS 104.13 T 

UBOCC-A-110179 = CBS 104.14 
UBOCC-A-110219 = CBS 129.49 
UBOCC-A-110225 = CBS 590.68 
UBOCC-A-111043 
UBOCC-A-111045 
UBOCC-A-111046 

Charcoal 
Tomato 
Coffee tree seed 
Nutmeg 
Charcoal 
Coffee tree seed 
Nutmeg 

TType strain 710 

UBOCC, Université de Bretagne Occidentale Culture Collection ; CBS, Centraalbureau voor 711 

Schimmelcultures Collection ; MUM, Micoteca da Universidad do Minho ; NRRL, National Center 712 

for Agricultural Utilization Research 713 

 714 

 715 

  716 
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Table 2. Identification performances of Aspergillus section Flavi species after cross-717 

validation. 718 

Species Overall 

correct 

Single 

choice 

Low 

discrimination 

No 

identification 

Discordant 

A. aflatoxiformans 100% 
(11/11)* 

100% 
(11/11) 

0% 
(0/11) 

0% 
(0/11) 

0% 
(0/11) 

A. arachidicola 100% 
(18/18) 

100% 
(18/18) 

0% 
(0/18) 

0% 
(0/18) 

0% 
(0/18) 

A. avenaceus 100% 
(10/10) 

90% 
(9/10) 

10% 
(1/10) 

0% 
(0/10) 

0% 
(0/10) 

A. luteovirescens 100% 
(12/12) 

100% 
(12/12) 

0% 
(0/12) 

0% 
(0/12) 

0% 
(0/12) 

A. caelatus 100% 
(12/12) 

100% 
(12/12) 

0% 
(0/12) 

0% 
(0/12) 

0% 
(0/12) 

A.  flavus 100% 
(38/38) 

100% 
(38/38) 

0% 
(0/38) 

0% 
(0/38) 

0% 
(0/38) 

A. leporis 100% 
(12/12) 

100% 
(12/12) 

0% 
(0/12) 

0% 
(0/12) 

0% 
(0/12) 

A. minisclerotigenes 100% 
(25/25) 

100% 
(25/25) 

0% 
(0/25) 

0% 
(0/25) 

0% 
(0/25) 

A. nomius 100% 
(12/12) 

100% 
(12/12) 

0% 
(0/12) 

0% 
(0/12) 

0% 
(0/12) 

A. novoparasiticus 95% 
(19/20) 

95% 
(19/20) 

0% 
(0/20) 

5% 
(1/20) 

0% 
(0/20) 

A. parasiticus 100% 
(20/20) 

100% 
(20/20) 

0% 
(20/20) 

0% 
(20/20) 

0% 
(20/20) 

A. pseudotamarii 100% 
(24/24) 

100% 
(24/24) 

0% 
(0/24) 

0% 
(0/24) 

0% 
(0/24) 

A. sergii 100% 
(11/11) 

100% 
(11/11) 

0% 
(0/11) 

0% 
(0/11) 

0% 
(0/11) 

A. sojae 100% 
(12/12) 

100% 
(12/12) 

0% 
(0/12) 

0% 
(0/12) 

0% 
(0/12) 

A. tamarii 100% 
(26/26) 

100% 
(26/26) 

0% 
(0/26) 

0% 
(0/26) 

0% 
(0/26) 

A. transmontanensis 100% 
(9/9) 

100% 
(9/9) 

0% 
(0/9) 

0% 
(0/9) 

0% 
(0/9) 

Global performances 99.65% 
(271/272) 

99.3% 
(270/272) 

0. 35% 
(1/272) 

0.35% 
(1/272) 

0% 
(0/272) 

*number of spectra out of the total number of spectra acquired 719 

  720 
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Table 3. Classification performance of P. roqueforti isolates into three genetic populations 721 

after cross-validation. 722 

Population Overall 

correct 

Single 

choice 

Low 

discrimination 

No 

identification 

Discordant 

1 86.9 % 
(73/84)* 

84.52% 
(71/84) 

2.38% 
(2/84) 

2.38% 
(2/84) 

10.71% 
(9/84) 

2 96.67 % 
(87/90) 

96.67% 
(87/90) 

0% 
(0/90) 

3.33% 
(3/90) 

0% 
(0/90) 

3 98.72 % 
(77/78) 

98.72% 
(77/78) 

0% 
(0/78) 

1.28% 
(1/78) 

0% 
(0/78) 

Total 94.1 % 
(237/252) 

93.3% 
(235/252) 

0.79% 
(2/252) 

2.33% 
(6/252) 

3.57% 
(9/252) 

*number of spectra out of the total number of spectra acquired 723 

 724 

 725 

 726 

Table 4. Classification performance of P. roqueforti isolates into three genetic populations 727 

after external validation. 728 

Population Correct identification No identification Discordant 

1 95.24% 
(40/42)* 

4.76% 
(2/42) 

0% 
(0/42) 

2 95.24% 
(40/42) 

2.38% 
(1/42) 

2.38% 
(1/42) 

3 71.43% 
(30/42) 

11.90% 
(5/42) 

16.67% 
(7/42) 

Total 87.3% 
(110/126) 

6.35% 
(8/126) 

6.35% 
(8/126) 

*number of spectra out of the total number of spectra acquired  729 



26 

 

Table 5. List of bins allowing classification with the ACS algorithm of P. roqueforti isolates 730 

into three distinct genetic population after MALDI-TOF MS analysis. 731 

 732 

  High positive 
weight group 1 

High negative 
weight group 1 

High positive 
weight group 3 

High negative 
weight group 3 

High negative 
weight group 2 

[4423.3;4429.3]* 
[3938.5;3943.8] 

  [3943.8;3949.1] 
[3382.8;3387.3] 

  

High positive 
weight group 2 

  [7208.4;7218.1] 
[6470.0;6478.6] 

  [3000;3004] 
[7705.8;7716.1] 

High negative 
weight group 3 

[3000.0;3004.0] 
[44423.3;4429.3] 

      

High positive 
weight group 3 

  [5410.7;5417.9] 
[3056.6;3060.6] 

    

 733 

*Mass range in Da 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 
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Figure legends. 757 

 758 

Figure 1. (A) Multidimensional scaling (MDS) of the spectra dataset obtained after MALDI-759 

TOF MS analysis of 23 species of Aspergillus belonging to the Flavi section. Spectra are 760 

colored according to the respective species to which they belong. Spectra circled in dashed-761 

red, dashed-blue and dashed green correspond to spectra of groups A, B and C, respectively. 762 

(B) Multidimensional scaling (MDS) of the spectra dataset obtained after MALDI-TOF MS 763 

analysis of 12 species of Aspergillus belonging to the A. flavus clade of Flavi section. Spectra 764 

are colored according to the respective species to which they belong.  765 

(C) Multidimensional scaling (MDS) of the spectra dataset obtained after MALDI-TOF MS 766 

analysis of 11 species of Aspergillus belonging to the A. tamarii, A. bertholletius, A.nomius, 767 

A. coremiiformis, A. leporis and A. avenaceus clades of Flavi section. Spectra are colored 768 

according to the respective species to which they belong.  769 

 770 

Figure 2. (A) Multidimensional scaling (MDS) of the spectra dataset obtained after MALDI-771 

TOF MS analysis of P. roqueforti isolates based on 6 replicates per strain (3 biological 772 

replicates and 2 technical replicates), before calibration of the spectra. Spectra are colored 773 

according to the respective genetic populations to which the isolates belong. 774 

(B)  Multidimensional scaling (MDS) of the spectra dataset obtained after MALDI-TOF MS 775 

analysis of P. roqueforti isolates based on 6 replicates per strain (3 biological replicates and 2 776 

technical replicates), after calibration of the spectra. Spectra are colored according to the 777 

respective genetic populations to which the isolates belong. Spectra circled in dashed-green 778 

and –blue correspond to spectra from P. roqueforti F41-4 and F77-1, respectively. 779 
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