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This works is devoted to establishing Quantitative Structure-Property 

Relationship (QSPR) between chemical structure of Ionic Liquids 

(ILs) and their viscosity followed by computer-aided design of new IL 

possessing desirable viscosity. The modeling was performed using 

back propagation artificial neural networks on a set of 99 ionic 

liquids at 25°C, covering a large viscosity range from 3 to 800 cP. 

The ISIDA fragment descriptors were used to encode molecular 

structures of ionic liquids. These models were first validated on 23 

new ILs from Solvionic company, and then used to predict the 

viscosity of three new ILs which then have been synthesized and 

tested. The models display high predictive performance in external 5-

fold cross validation: determination coefficients R2>0.73 and 

absolute mean absolute errors RMSE<70 cP. For three ILs 

synthesized and tested in this work, predicted viscosities are in good 

qualitative agreement with the experimentally measured ones. 
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Introduction 

Owing to their “green properties”, Ionic Liquids (ILs) are gaining 

interest as potential media in replacement of the traditional (volatile) organic 
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solvents currently in use in many fields of industry and research1,2. However, 

ILs present some drawbacks for industrial applications. Thus, practically all 

known ILs are relatively viscous, only few of them displaying a viscosity () 

below 20 cP at T = 25 °C, while the most popular ILs (imidazolium and 

tetraalkylammonium families) have viscosities in the range of 40 – 80 cP, 

which is pretty high compared to  = 0.40 cP for CH2Cl2 or 0.29 cP for 

hexane3. Nonetheless, it has been emphasized1,2 that all ILs’ physicochemical 

properties, such as viscosity, density, conductivity or melting point, are 

tunable, therefore adjustable, through a judicious choice of their cationic and 

anionic components. As a matter of fact, a subtle variation of ILs’ chemical 

structure, e.g., lengthening of an alkyl chain onto the imidazolium cationic 

skeleton, may lead to dramatic changes of various ILs’ properties4-7. In this 

respect, ILs could formally be considered as “design solvents”. However, this 

tunability is hardly applicable in practice. Indeed, since we do not master the 

relation between structure and properties of ILs yet, tuning of ILs’ properties 

is merely achieved through a trial/error procedure. Considering the almost 

infinite number of potential ILs to be tested, the task of conceiving the “best” 

IL for a given application is more a desirable dream than a user-friendly 

reality.  

The goal of this work is to build predictive QSPR models linking 

structure and viscosity of ionic liquids. Most of early QSPR studies8-18 have 

been performed for ILs melting points for datasets in which the anion was 

always taken the same . This allowed one to vary the structure of only cationic 

part of ILs. Carrera et al.19 performed modeling of melting points on the 

dataset of guanidinium ILs containing 4 different anions. Descriptors were 

generated only for the cationic part and for each anion an individual model 

has been prepared using counter-propagation neural networks.  

In this work, we describe an original procedure to generate descriptors 

vector for the species containing different cation and anion. This approach has 

been used to build and validate the models for viscosity on the initial set of 99 

ILs. The external validation has been performed on 23 new ILs recently 

produced by Solvonic company. Finally, the developed models have been used 

for in silico design of new three ILs, which viscosities have been predicted 

before their synthesis and experimental tests. To our knowledge, no QSPR 
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models for ILs viscosity, the property of dramatic importance to industrial 

applications, have been published so far. 

Materials and Methods 

 Experimental procedure. 

Synthesis. All reagents used were analytical grade. Starting materials were 

purchased from commercial sources and used as received. 1H, and 13C NMR 

spectra were recorded in CDCl3 unless otherwise specified on a spectrometer 

operating at 300, and 282 MHz, respectively. Mass spectra were measured on 

a JEOL MS-DX 300 mass spectrometer. 

 

Tetraheptylammonium bis-trifluoromethylsulfonylamide 
 

N(CF3SO2)2
-N(C7H15)4  

 
 
To a solution of 5.9 mmol (2.9 g) of tetraheptylamine bromide in 10 mL of 

deionized water and 5 ml acetone, 6.5 mmol (1.86 g) of 

bis(trifluoromethane)sulfonimide lithium(1.85 g) in 5.0 mL of acetone was 

added at 25 ºC. The reaction mixture was stirred for 12h. Evaporation of the 

solvent under vacuum gave the crude compound. The product was extracted 

with dichloromethane (30 mL) and washed several times with aliquots of water 

(20 mL) until no longer bromide residues were detected by the AgNO3 test. 

Evaporation of the solvent yielded the compound as a transparent and slightly 

viscous liquid. Liquid Yield: 95%. 

Active charcoal (10 wt%) was added to the ionic liquid  and the liquid was 

stirred for 24 h. After adding 20 mL of dichloromethane to reduce the viscosity 

of the ionic liquid, the mixture was filtrated over a filter paper. The solvent was 

removed under reduced pressure. The ionic liquid was thereafter pumped at 

room temperature for 18 h and, additionally, at 50 °C for 10 h at 50°C. 

 

1
H NMR (400 MHz, CDCl3): δ 0.90 (t, 12H), 1.32 (m, 32H), 1.60(m,8H), 3.14 (m,8H) 

13
C NMR (100 MHz, CDCl3): δ13.92, 21.78, 22.39, 26.03, 28.58, 31.40, 58.65, 113.53, 117.80, 

122.06, 126.32. 

Electrospray MS (+ve): m/z 410.47 (100%,C28H60N
+
), MS (-ve) m/z 279.91 (100%, C2F6NO4S2

-
). 

N1 
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Triethylammonium 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-
octanedionate 
 
 

F

F

F

F

F

F

F

O O

H3C

CH3

CH3

HN(C2H5)3

 
 
To a solution of 20 mmol (2.05g) of triethylamine in 10mL of anhydrous 

acetonitrile, 20 mmol (5.95 g) of 6,6,7,7,8,8,8-Heptafluoro-2,2-dimethyl-3,5-

octanedione in 5.0 mL of acetonitrile was added at 25 ºC .The reaction mixture 

was stirred for 24h. Evaporation of the solvent under vacuum gave the crude 

compound (yield 95%). The ionic liquid was thereafter pumped at room 

temperature for 18 h and, additionally, at 50 °C for 10 h at 50°C. 

 

1
H NMR (400 MHz, CDCl3): δ 1.10 (s, 9H), 1.13 (t, 9H), 2.90 (q,6H), 5.79 (s,1H) 

13
C NMR (100 MHz, CDCl3): δ 8.81, 27.62, 41.05, 45.32, 90.39, 119.65, 171.94, 202.76 

Electrospray MS (+ve): m/z 102.12 (100%,C6H16N
+
), MS (-ve) m/z 295.05 (100%, C10H10O2F7

-
). 

 
1-methylimidazolium 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-
octanedionate 
 

F

F

F

F

F

F

F

O O

H3C

CH3

CH3

NHN

 
 
To a solution of 20 mmol (1.72 g) of 1-methylimidazole in 10mL of anhydrous 

acetonitrile, 20 mmol (5.95 g) of 6,6,7,7,8,8,8-Heptafluoro-2,2-dimethyl-3,5-

octanedione in 5.0 mL of acetonitrile was added at 25 ºC .The reaction mixture 

was stirred for 24h. Evaporation of the solvent under vacuum gave the crude 

compound (yield 95%). The ionic liquid was thereafter pumped at room 

temperature for 18 h and, additionally, at 50 °C for 10 h at 50 °C. 

 

1
H NMR (400 MHz, CDCl3): δ 1.21 (s, 9H), 3.69 (s,3H), 6.05 (s,1H), 6.85 (s, 1H), 7,04 (s,1H), 7.53 

(s, 1H). 

13
C NMR (100 MHz, CDCl3): δ 26.93, 33.24, 39.85, 93.61, 119.69, 129.34, 137.77, 177.22, 203.87. 

N3 

N2 
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Electrospray MS (+ve): m/z 84.06 (100%,C4H7N2
+
), MS (-ve) m/z 295.05 (100%, C10H10O2F7

-
). 

Viscosity Measurements. Chemicals were packed under argon atmosphere 

after a careful degassing procedure at the Solvionic plant, were used as 

received. Flaskes were open just prior to the viscosity measurement. All 

samples, either from Solvionic or synthesized in our group, were measured on 

a ARES viscosimeter (Rheometric Scientific), with a cone/plate geometry ( 40 

mm,  = 0.0436 rad, gap: 5/100), requiring some 1.5 ml of IL. Temperature was 

controled at 25 ± 0.1 °C.  

 Computational procedure.  

Datasets. For the QSPR analysis, we critically selected from the literature 

the dataset of 99 ILs whose viscosities were measured at 25°C and the 

experimental protocol of viscosity measurements was clearly described. All 

common names of the ILs cations and anions were converted into standard 

IUPAC names. Lewis structures of each species were obtained from the 

IUPAC names using the OpenEye Lexichem “nam2mol” software20 and saved 

as SD file.  

It should be noted that ILs’ viscosities are very sensitive to 

temperature21 and there exists no well-established relation  = f(T). 

Therefore, only viscosity data measured at T=25°C were retained for the 

modeling. The selected dataset contains four families of cations and 9 

different anions (Table 1). The ILs involving the Tf2N
- anion and fluorinated 

anions, empirically known to lower viscosity, represent about 80% of the data. 

The data distribution on Figure 1 shows that only 20% of studied ILs are very 

viscous (> 200 cP). 

Unlike UNIFAC-VISCO22 and some other methods, we report here the 

models for the IL's viscosity itself rather than for its logarithm. In fact, the 

models for the logarithm of the viscosity were also obtained but they don't 

display any improvement of the predictive performance. 

Descriptors. The ISIDA descriptors were used to build the QSPR models. They represent the 

counts (occurrences) of some fragments in a molecular graph
23

. Three types of fragments are 

considered: sequences (type 1) and extended augmented atoms (type 2). A sequence is the shortest 

path connected two given atoms. For each type of sequence, the lower (l) and upper (u) limits for 
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the number of constituent atoms must be defined. The program generates all ‘‘intermediate’’ 

sequences involving n atoms (l<=n<=u) recording both atoms and bonds. Extended augmented 

atom is a combination of types 1 and 2: an atom representing an origin of several sequences 

containing from l to u atoms. Three sub-types, AB, A and B are defined for each class. They 

represent sequences of atoms and bonds (AB), of atoms only (A), or of bonds only (B)
24

. 

Since studied ILs represent the1:1 mixture of cation and anion, the 

descriptor vector of an IL has been generated by concatenation of the 

descriptor vectors of the constituted species, as it is shown on Figure 2. 

Totally, 24 initial pools of descriptors corresponding to different 

fragmentation types have been generated for the training set.  

 

Machine Learning Methods. The back propagating artificial neural 

networks (NN) implemented in the Weka 5.8 program25 have been used. This is 

well reputed machine-learning method able to produce predictive models even 

on noisy and insufficiently prepared data. The network was trained using the 

early stopping procedure26 in which the model built on the training set was 

systematically applied to the tuning set containing 20% of the training data. 

The training procedure was stopped as soon as the predictive performance 

deterioration was observed. For each initial pool of descriptors, the number of 

neurons in the hidden layer was systematically varied from 2 to the half of the 

number of descriptors. The optimal size of the hidden layer corresponds to 

models displaying the highest predictive performance in cross-validation 

calculations. Typically, this number ranges from 2 to 11. 

The partial least square regression (PLS) implemented in the Weka5.8 40 

program has been used for the purpose of comparison. No significant changes 

of the predictive performance of the PLS vs NN models have been observed. 

Therefore, here we report only results obtained with the NN method. 

 

 

Validation of individual models. In order to assess predictive performance 

of QSPR models, they must be validated on unknown data. Here, 5-fold cross-

validation (5-CV) procedure has been used. The initial dataset was split into 5 

non-overlapping subsets; each subset was used as a test set, whereas an 

ensemble of other four subsets was used to train a model. Thus, each 
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compound of the dataset was predicted using 80% of the data. This procedure 

has been repeated 3 times in order to estimate the fluctuations of statistical 

parameters of the models.  

Two statistical parameters are used to evaluate the performance of the 

predictions: the determination coefficient27 (R2), the root mean square error27 

(RMSE) for the linear correlation Predicted vs Experimental viscosity values.  

Consensus predictions. The 5-CV calculations were performed on the 

training set systematically varying fragmentation type and the number of 

neurons in the hidden layer (NHN). This resulted in 360 models. Then, 12 

models with R2  0.5 have been selected and the corresponding parameters 

(fragmentation type and NHN) were further used to generate an ensemble of 

the final models on the entire initial dataset. All these models were then 

systematically applied to the compounds from the Solvionic catalogue28 as well 

as to three new compounds synthesized in this work. For each test compound, 

the predictions were calculated as an arithmetic mean of the values calculated 

with the selected individual NN models.  

Applicability Domain. The Applicability Domain (AD) is a meta-model which 

decides if a QSAR model could be applied to a given test object. Indirectly, AD 

measures a similarity between the test object and the training set. If they are 

considered dissimilar, the QSPR model may lead to wrong value and, therefore, 

should not be involve in property assessments. Here, as AD, we used the 

Fragment Control approach29 discarding the model if a test compound possess 

the fragments absent in the initial pool of descriptor generated for the training 

set. The number of discarded models (and, hence, the number of models used 

for the consensus predictions) varies from one compound to another.  

Results and Discussion. 

Predictive performance of the consensus NN models assessed in 5-fold 

external cross validation is reasonably high: determination coefficient R2 = 

0.73 and RMSE =  67.5 cP. Prediction error represents about 10% of the 

viscosity range of the dataset. Despite of this rather big RMSE value, the 

models are able to distinguish several viscosity ranges - of weakly, medium 

and highly viscous ILs. 
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At the next step, the viscosity of 23 new ILs from Solvionic (Figure 3) 

was measured and compared with the theoretically predicted values. 

Prediction error is 73 cP, which is consistent with that observed during cross-

validation. A major underestimated outlier is tributyl(methyl)azaniumTf2N 

(structure 9 in Figure 3) for which calculated values are about 200 cP lower 

than the experimentally measured one (Figure 4). This could be explained by 

low population of viscous ILs in the initial dataset used for model building 

(Figure 1).  

Finally, all cations and anions from the bibliographic dataset were 

combined to generate over 1000 new ILs. The models were used to predict the 

viscosity of each of them and a pool of either low viscous or high viscous ones 

was selected. Then, starting from these structures, and considering synthetic 

feasibility and availability of starting compounds, three completely new ILs 

have been suggested for the synthesis and experimental tests. Table 2 shows 

that predicted viscosity values are in qualitative agreement with the 

experimental data: compounds N1 and N2 are medium viscous, whereas N3 is 

highly viscous.  

We believe, that relatively modest quantitative precision of the models 

(RMSE ≈70 cP) is related to the noise in the experimental data collected from 

different bibliography sources. As an example, one can mention viscosity 

values published for 1-butyl-3-methylimidazolium hexafluorophosphate at 

298K: 45030, 20031, 27032, 27133, 25034, 24735, 21836, 21237, 27038. Albeit all 

authors used similar procedures of drying and measurements, the standard 

deviation in this series is 74 cP which is very similar to the errors of 

predictions obtained in this work. New high quality data are needed to 

improve predictive performance of our models.  

Conclusion 

In this paper we report predictive models for viscosity of ionic liquids 

used to in silico design of new ILs with desirable properties. For the first time, 

QSAR modeling has been performed on the dataset of ionic liquids where both 

cation and anion varied. Relatively modest predictive performance of the 

models (about 70 cP) is attributed to inaccuracies in experimental data used 

for the model building.  
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To sum up, the models developed on the initial data set of 99 ionic 

liquids were able to predict with the reasonable accuracy the viscosity for new 

ILs recently synthesized by Solvionic. Moreover, three new ILs, whose 

viscosities were assessed theoretically before the synthesis, have been 

designed and tested experimentally.  

The key point of our modeling is the technique of descriptors generation 

suggested in this work. This approach can be used to model properties of 1:1 

two-component mixtures. New method of descriptors generation for any 

mixtures is in progress in our group. In particularly, this approach could be 

applied to ionic liquids containing mono-charged cations and doubly (as SO4
2-) 

or triply-charged (PO4
3-) anions.  
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TABLE 1. Cations and anions constituting 99 ionic liquids from the initial 

dataset. 

 

Cations 
Number of 

ILs 

Ref. Anions Number of 

ILs 
Ref. 

imidazolium 47 

4,5,39,4

0 

Tf2N
- (CF3SO2)2N

- 28 
5,41-45 

tetraalkylammo

nium 
46 

41-47 PF6
- 5 

5 

pyridinium 2 

41,48 BF4
- 5 4,39,41,44

,48 

pyrolidinium 
4 

 

46,47 Fluorinated boron-

containing alkyl 

chains  

39 
4,39,44 

   Cyanamide  4 46 

  

 Trifluoroacetyl-

trifluoromethane-

sulfonylazanide  

7 
47 

   Carbanion  9 49 

  
 Hexafluorostibanuid

e 

1 
40 

  
 Heptafluorotengste

nuide  

1 
40 

 

 

 

TABLE 2: Predicted and experimental viscosity (cP) for the three ILs 

synthesized in this work.  

 

Ionic Liquid Predicted Experimenta

l 
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N1 28 56 

N2 53 49 

N3 469 600 
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Figure 1. Viscosity data distribution for the initial set of 99 ionic liquids.  
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Figure 2. Generation of the ISIDA fragment descriptors for an ionic liquid by 
concatenation of those separately generated for the cation and anion. . 
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Figure 3. Structure of 23 new ionic liquids from the Solvionic dataset.     

 

 

 

 

Figure 4. Prediction performance of the predictive neural networks models on 
the Solvionic dataset.  



 15 

References. 

 

 (1) Kirchner, B. Ionic Liquids; Springer, 2010; Vol. 290. 
 (2) Wasserscheid, P.; Welton, T. Ionic liquids in synthesis; Wiley, 2008; 
Vol. 1 & 2. 
 (3) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic solvents : 
physical properties and methods of purification; John Wiley & sons: New-York, 
1986; Vol. II. 
 (4) Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Chem. Eur. J. 2004, 10, 
6581. 
 (5) Dzyuba, S.; Bartsch, R. A. Chem. Phys. Chem. 2002, 3, 161. 
 (6) Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B. Thermochim. 
Acta 2000, 357/358, 97. 
 (7) McEwen, A. B.; Ngo, H. L.; LeCompte, K.; Goldman, J. L. J. 
Electrochem. Soc. 1999, 146, 1687. 
 (8) Bini, R.; Chiappe, C.; Micheli, A.; Solaro, R.; Starita, A.; Tine, M. R. 
Green Chem. 2008, 10, 306. 
 (9) Carrera, G.; Aires-de-Sousa, J. Green Chem. 2005, 7, 20. 
 (10) Eike, D.; Brennecke, J.; Maginn, E. Green Chemistry 2003, 5, 323. 
 (11) Katritzky, A. R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Karelson, M.; 
Visser, A. E.; Rogers, R. D. J. Chem. Inf. Comput. Sci. 2002, 42, 225. 
 (12) Katritzky, A. R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Maran, U.; 
Karelson, M. Crystal Growth & Design 2001, 1, 261. 
 (13) Katritzky, A. R.; Lomaka, A.; Petrukhin, R.; Jain, R.; Karelson, M.; 
Visser, A. E.; Rogers, R. D. J. Chem. Inf. Comput. Sci. 2002, 42, 71. 
 (14) Lopez-Martin, I.; Burello, E.; Davey, P. N.; Seddon, K.; Rothenberg, 
G. Chem. Phys. Chem. 2007, 8, 690. 
 (15) Sun, N.; He, X.; Dong, K.; Zhang, X.; Lu, W.; He, H.; Zhang, S. Fluid 
Phase Equilibria 2006, 246, 137. 
 (16) Trohalaki, S.; Pachter, R. QSAR Comb. Sci. 2005, 24, 485. 
 (17) Trohalaki, S.; Pachter, R.; Drake, G.; Hawkins, T. Energy & Fuels 
2005, 19, 279. 
 (18) Varnek, A.; Kireeva, N.; Tetko, I. V.; Baskin, I. I.; Solov'ev, V. P. J. 
Chem. Inf. Model. 2007, 47, 1111. 
 (19) Carrera, G.; Branco, L. C.; Aires-de-Sousa, J.; Afonso, C. A. M. 
Tetrahedron 2008, 64, 2216. 
 (20) OpenEye. Lexichem nam2mol; 1.9 ed.; OpenEye, 2009. 
 (21) Wasserscheid, P.; van Hal, R.; Bösmann, A. Green Chem. 2002, 4, 
400. 
 (22) Chevalier, J. L.; Petrino, P.; Gaston-Bonhomme, Y. Chemical 
Engineering Science 1994, 49, 1799. 
 (23) Varnek, A.; Fourches, D.; Horvath, D.; Klimchuk, O.; Gaudin, C.; 
Vayer, P.; Solovev, V.; Hoonakker, F.; Tetko, I. V.; Marcou, G. Current Computer 
- Aided Drug Design 2008, 4, 191. 
 (24) Varnek, A.; Fourches, D.; Hoonakker, F.; Solov’ev, V. Journal of 
Computer-Aided Molecular Design 2005, 19, 693. 
 (25) Witten, I. H.; Frank, E. Data Mining: Practical Machine Learning 
Tools and Techniques; Elsevier, 2005. 
 (26) Sarle, A. S. “Stopped training and other remedies for overfitting”; 
27th symposium on the interface of computing science and statistics, 1995, 
Pittsburgh, PA. 



 16 

 (27) Tan, P. N.; Steinbach, M.; Kumar, V. Introduction to Data Mining; 
Addison-Wesley, 2006. 
 (28) Solvionic. Catalogue - Liquides Ioniques 2009; Solvionic, Ed. 
Toulouse, France, 2009. 
 (29) Horvath, D.; Marcou, G.; Varnek, A. J. Chem. Inf. Model. 2009, 49, 
1762. 
 (30) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H.; Broker, 
G.; Rogers, R. D. Green Chem. 2001, 3, 156. 
 (31) Baker, S.; Baker, G.; Kane, M.; Bright, F. J. Phys. Chem. B 2001, 
105, 9663. 
 (32) Wang, J.; Zhu, A.; Zhao, Y.; Zhuo, K. Solution Chemistry 2005, 34, 585. 
 (33) Harris, K. R.; Kanakubo, M.; Woolf, L. A. Chem. Eng. Data 2007, 52, 1080. 
 (34) Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M. Phys. Chem. 

B 2006, 110, 19593. 
 (35) Pereiro, A. B.; Legido, J. L.; Rodriguez, A. Chem. Thermodynamics 2007, 39, 
1168. 
 (36) Jiqin, Z.; Jian, C.; Chengyue, L.; Weiyang, F. Chem. Eng. Data 2007, 52, 
812. 
 (37) Zafarani-Moattar, M. T.; Majdan-Cegincara, R. J. Chem. Eng. data 
2007, 52, 2359. 
 (38) Ahosseini, A.; Scurto, A. M. Int J Thermophys 2008, 29. 
 (39) Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Chem. Phys. Chem. 2005, 
6, 1324. 
 (40) Matsumoto, K.; Hagiwara, R.; Yoshida, R.; Ito, Y.; Mazej, Z.; Benkic, 
P.; Zemva, B.; Tamada, O.; Yoshino, H.; Matsubara, S. Dalton Trans. 2004, 144. 
 (41) Behar, D.; Neta, P.; Schultheisz, C. J. Phys. Chem. 2002, 106, 3139. 
 (42) Matsumoto, H.; Kageyama, H.; Miyazaki, Y. Chem. Lett. 2001, 182. 
 (43) Sun, J.; Forsyth, M.; MacFarlane, D. R. J. Phys. Chem. B 1998, 102, 
8858. 
 (44) Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Chem. Eur. J. 2004, 10, 1. 
 (45) Taggougui, M.; Diaw, M.; Carré, B.; Willmann, P.; Lemordant, D. 
Electrochim. Acta 2008, 53, 5496. 
 (46) MacFarlane, D. R.; Golding, J.; Forsyth, S.; Forsyth, M.; Deacon, G. 
B. Chem. Commun. 2001, 1430. 
 (47) Matsumoto, H.; Kageyama, H.; Miyazaki, Y. Chem. Commun. 2002, 
1726. 
 (48) Heintz, A.; Klasen, D.; Lehmann, J. K. J. Sol. Chem. 2002, 31, 467. 
 (49) Gupta, O. D.; Twamley, B.; Shreeve, J. M. Tetrahedron Lett. 2004, 
45, 1733. 
 
  


