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Conditional fractional Gaussian fields
with the package FieldSim
by Alexandre Brouste, Jacques Istas and Sophie Lambert-Lacroix

Abstract We propose an effective and fast method to simulate multidimensional conditional fractional
Gaussian fields with the package FieldSim. Our method is valid not only for conditional simulations
associated to fractional Brownian fields, but to any Gaussian field and on any (non regular) grid of
points.

Introduction

Rough phenomena arise in texture simulations for image processing or medical imaging, natural
scenes simulations (clouds, mountains) and geophysical morphology modeling, financial mathematics,
ethernet traffic, etc. Some are time-indexed, some others, like texture or natural scene simulations,
should be indexed by subsets of the Euclidean spacesR2 orR3. Recent data (as the Cosmic Microwave
Background or solar data) are even indexed by a manifold.

The fractional Brownian motion (fBm), introduced by Kolmogorov (1940) (and developed by
Mandelbrot and Van Ness (1968)) is nowadays widely used to model this roughness. Fractional
Brownian motions have been extended in many directions: higher dimensions with fields, anisotropy,
multifractionnality, etc.. This paper is devoted to a simulation method for conditional Gaussian fields.
It could improve, in the future, natural scene simulations by fixing for instance the valleys.

The simulation of fractional Gaussian processes is not difficult in dimension one (see a review of
Coeurjolly (2000)). Let us recall the numerical complexity of some classical methods: the Cholesky
method has a complexity of O(N3) where N is the size of the simulated sample path. For specific
stationary processes (on a regular grid) the Levinson’s algorithm has a complexity of O(N2 log N) and
the Wood and Chan algorithm (see Wood and Chan (1994)) a complexity of O(N log N).

In higher dimension, the Wood and Chan method has been extended to stationary increments
fields with the Stein’s method (Stein, 2002) ; the fractional Brownian field can therefore be simulated on
a regular grid of the plane. For general Gaussian fields on general discrete grid, the Cholesky method
is costly and exact simulations are no longer tractable. Approximated methods have been intensively
developed (midpoint (Peitgen and Saupe, 1988), turning bands (Yin, 1996), truncated wavelet decom-
position) but for specific fields. On manifolds, simulation procedures based on truncated series of
eigenfunctions of the Laplace-Beltrami operator are discussed in Gelbaum and Titus (2014).

Our approach, presented in (Brouste et al., 2007, 2010), is based on a 2-steps method with an exact
simulation step plus a refined fast step, that is an improvement of the midpoint method. It has been
implemented in the FieldSim package. The fieldsim simulation method can be applied to general
Gaussian processes on general simulation grids (regular and non regular) on Euclidian spaces and
even on some manifolds (see Figure 1). It is worth mentioning that the other package RandomFields
allows the simulation of a large class of random fields such as Gaussian random fields, Poisson fields,
binary fields, Chi2 fields, t fields and max-stable fields (see Schlather et al. (2015)). These simulations
are obtained essentially by construction and not from the covariance structure of the process. In
RandomFields, conditional random fields (what is the purpose of the present paper) are given for
specific spatial and spatio-temporal random fields. It may be noted that the FieldSim package can
simulate any conditional Gaussian process as long as you know its covariance function.

We propose here to adapt the FieldSim package to conditional simulations. Definitions and
notation will be introduced in the following section with the process class, the setProcess procedure
and the fieldsim procedure. The fieldsim procedure adapted to conditional Gaussian fields is
described in the next section. Simulations with the package FieldSim are presented in the last section.

Notation and preliminaries

Fractional Gaussian fields

Let d be a positive integer and X(·) =
{

X(M), M ∈ Rd
}

be a real valued non stationary field with
zero mean and second order moments. It is worth emphasizing that we consider in this paper the
metric spaceRd with the Euclidian norm but it can be generalized to smooth and complete Riemannian
manifold equipped with its geodesic distance Brouste et al. (2010).
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Figure 1: On the left : fractional Brownian field (top-left), multifractional Brownian field (bottom-left),
fractional Brownian sheet (top-right) and hyperbolic fractional Brownian field (bottom-right); on the
right fractional Brownian field on the sphere.

The covariance function R(·, ·) is defined by:

R(M1, M2) = cov (X(M1), X(M2)) , M1, M2 ∈ Rd.

This function is nonnegative definite (n.n.d.). Conversely, for any n.n.d. function R(·, ·), there exists
an unique centered Gaussian field of second order structure given by R(·, ·).

Different classical fractional Gaussian fields have been simulated to illustrate the FieldSim package
in Brouste et al. (2007, 2010). In the sequel, M and M′ are two points ofRd and ‖ · ‖ is the usual norm
onRd, d = 1, 2. We can cite

1. The standard fractional Brownian fields are defined through their covariance function (e.g.
Samorodnitsky and Taqqu (1994)):

R(M, M′) =
1
2

(
‖M‖2H + ‖M′‖2H − ‖M−M′‖2H

)
,

where the Hurst parameter H is real in (0, 1).

2. The standard multifractional Brownian fields are defined through their covariance function (see
Peltier and Levy-Véhel (1996); Benassi et al. (1997)):

R(M, M′) = α(M, M′)
(
‖M‖H̃(M,M′) + ‖M′‖H̃(M,M′) − ‖M−M′‖H̃(M,M′)

)
where H̃(M, M′) = H(M) + H(M′),

α(M, M′) =
C
(

H(M)+H(M′)
2

)2

2C (H(M))C (H(M′))
,

C(h) =

 π
d+1

2 Γ
(

h + 1
2

)
h sin (πh) Γ (2h) Γ

(
h + d

2

)


1
2

and the Hurst parameter is a continuous function H : Rd −→ (0, 1), where Γ is the usual
Gamma function.

3. The standard fractional Brownian sheets are defined through their covariance function (see
Kamont (1996)):

R(M, M′) =
1
2d

d

∏
i=1

{
|Mi|2Hi + |M′i |

2Hi − |Mi −M′i |
2Hi
}

,

where (H1, . . . , Hd) stands for the multivariate Hurst index inRd, 0 < Hi < 1.

4. The anisotropic fractional Brownian fields are defined through their covariance function (see
Bonami and Estrade (2003)):

R(M, M′) = vH(M) + vH(M′)− vH(M−M′)

where the variogram
vH(x) = 22H−1γ(H)CH,ϑ1,ϑ2 (x)‖x‖2H
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with H ∈ (0, 1), γ(H) depends explicitly on H and CH,ϑ1,ϑ2 (.) implies incomplete Beta functions
and two constants −π

2 ≤ ϑ1 < ϑ2 ≤ π
2 .

The FieldSim package

In the new version 3.2 of the package FieldSim, new features have been added. The most important
add is the process class and the setProcess function.

An object of class process has different slots:

• the name of the process. Several names are reserved for classical fractional Gaussian processes:
see Table 1 for details. "cond" is used for all kind of conditional simulations (see further).

• the slot values stores the values of the process on the simulation (and visualisation) grid.

• an object of class manifold which is the Riemannian manifold on which the process is lying ; an
object of the class manifold has four slots:

– name which is the name of the manifold we consider. The name "line", "plane", "sphere"
and "hyperboloid" are taken for the eponymous manifolds.

– atlas which is the union of discretized domains that cover the manifold (must be a matrix
where the number of rows is the dimension of the space where the manifold lives);

– distance which is the distance considered on the manifold ;

– origin which is the origin considered on the manifold (must be a point on the manifold).

The setter setManifold permits the user to create an object of class manifold with all its slots.
This class is already described in Brouste et al. (2010).

• the slot covf which contains the covariance function of the Gaussian process ;

• the slot parameter which contains all the parameter s associated to the covariance function of
the process. Here are the classical parameters associated to classical process.

All the examples presented can be defined with the setProcess command (see Table 1). With the
following command, the user can set a fBm with Hurst parameter 0.7 on a regular grid of the interval
[0, 1] (of size 256).

R> linefBm<-setProcess("fBm-line",0.7)
R> str(linefBm)

Formal class ’process’ [package "FieldSim"] with 7 slots
..@ name : chr "fBm"
..@ values : num 0
..@ manifold :Formal class ’manifold’ [package "FieldSim"] with 4 slots
.. .. ..@ name : chr "line"
.. .. ..@ atlas : num [1, 1:256] 0 0.00392 0.00784 0.01176 0.01569 ...
.. .. ..@ distance:function (xi, xj)
.. .. ..@ origin : num [1, 1] 0
..@ covf :function (xi, xj)
..@ parameter: num 0.7
..@ values2 : num 0
..@ manifold2:Formal class ’manifold’ [package "FieldSim"] with 4 slots
.. .. ..@ name : chr "line"
.. .. ..@ atlas : num [1, 1:256] 0 0.00392 0.00784 0.01176 0.01569 ...
.. .. ..@ distance:function (xi, xj)
.. .. ..@ origin : num [1, 1] 0

It is worth mentioning that the slot values is empty since there is no simulation done. Then as usual,
the user can use the fieldsim function in order to simulate the Gaussian process associated to covf on
the manifold grid defined in manifold.

R> fieldsim(linefBm)

In the fieldsim function, we can add the quantity Ne, the number of points of the grid to be simulated
in the exact step, and nbNeighbor, the number of neighbors used in the refined step. By default, Ne is
equal to the size of the grid given in atlas. The slot values are now set with the simulated values.
There exist different visualisation procedures to draw the results, for instance

R> plot(linefbm,"default")
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We recall that the discretization grids can be modified with the setAtlas command. Depending on
the manifold, there is several type of grid: "regular", "random" and "visualization". For instance,

R> setAtlas(linefBm,"regular",1000)
R> fieldsim(linefBm)
R> plot(linefBm,"default")

The fieldsim procedure for conditional Gaussian fields

In order to build conditional fractional Gaussian fields, we consider a conditioning set N = {N1, . . . ,
Nk} , Ni ∈ Rd, i = 1, . . . , k, and the conditioning values x = (x1, . . . , xk)

T ∈ Rk. Then we will say that
X̃(·) = {X̃(M), M ∈ Rd} is the conditional Gaussian field associated to the field X(·) (of covariance
function R) and to the conditioning pair (N , x) if the finite dimensional laws of X̃(·) is the same as
the finite dimensional laws of X(·) given the event {(X(N1), . . . , X(Nk))

T =: XN = x}. We denote
by m̃(·) (resp. R̃(·, ·)) the mean (resp. covariance) function of the process X̃(·). The following lemma
allows us to determine m̃(·) and R̃(·, ·) according to R(·, ·) (sketch of proof is given in (Piterbag, 1996,
Section A.1)).

Lemma 1. Let us consider the centered Gaussian vector
(
Y1, Y2, ZT)T ∈ R×R×Rk of covariance matrix

Σ2 =

 E(Y2
1 ) E(Y1Y2) E(Y1ZT)

E(Y1Y2) E(Y2
2 ) E(Y2ZT)

E(ZY1) E(ZY2) E(ZZT)

 .

Suppose that E(ZZT) is invertible. Then the conditional law of (Y1, Y2)
T given the event {Z = z ∈ Rk} is

Gaussian with mean

m̃ =

(
E(Y1ZT)
E(Y2ZT)

)
{E(ZZT)}−1z (1)

and covariance matrix

Σ̃2 =

(
E(Y2

1 ) E(Y1Y2)
E(Y1Y2) E(Y2

2 )

)
−
(

E(Y1ZT)
E(Y2ZT)

)
{E(ZZT)}−1 (E(ZY1) E(ZY2)

)
. (2)

In the Gaussian field context, Lemma 1 allows us to write down an explicit expression of the mean
function and the autocovariance function of the conditional Gaussian field associated to R(·, ·) and to
(N , x). Let us put Y1 = X(M1) and Y2 = X(M2) the values of the field X(·) at points M1 ∈ Rd and
M2 ∈ Rd respectively, and Z = XN ∈ Rk. Therefore, all quantities in (1) and (2) can be expressed in
term of the autocovariance function R. Precisely,

E(YiYj) = R(Mi, Mj), (i, j) ∈ {1, 2}2

and
E(YiZ`) = R(Mi, N`), i ∈ {1, 2}, ` = 1, . . . , k.

Consequently, the mean function of the conditional Gaussian field is given by

m̃(M) = E(X(M)XT
N ){E(XNXT

N )}−1x, M ∈ Rd. (3)

Then the autocovariance function of a conditional Gaussian field (using (1,2)-coordinate of Equation
(2)) is given by

R̃(M1, M2) = R(M1, M2)−E(X(M1)XT
N ){E(XNXT

N )}−1E(XNX(M2)). (4)

For instance, for k = 1, we get

m̃(M) =
R(M, N1)

R(N1, N1)
x1

and

R̃(M1, M2) = R(M1, M2)−
R(M1, N1)R(M2, N1)

R(N1, N1)
.

Let us recall that the goal of this paper is to give a procedure that yields discretization of sample
path of the conditional Gaussian field over a space discretization {Se,Sr} of Rd associated to the
n.n.d. autocovariance function R and the conditioning set and values (N , x) . In the sequel, we denote
by X̃(·) this sample path. Since the mean function (3) is known, we can consider the centered field
X(·) = X̃(·)− m̃(·).The fieldsim procedure for conditional Gaussian fields takes place as follows.
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Exact simulation step. Given a space discretization Se, a sample of a centered Gaussian vector
(X(M))M∈Se with covariance matrix R̃ given by {R̃}i,j = R̃(Mi, Mj), Mi, Mj ∈ Se, is simulated. Here
R̃ is defined by (4). This simulation is obtained by an algorithm based on Cholesky decomposition of
the matrix R̃.

Refined simulation step. Let Sr be the remaining space discretization. For each new point M ∈ Sr at
which we want to simulate the field, X(M) is generated by using only a set of neighbors instead of all
the simulated components (as in the accurate simulation step). Precisely, let OM be a neighbors set of
M (for the Euclidean distance) and XOM be the space generated by the variables X(M′), M′ ∈ OM.
Let us remark that the neighbors set is defined with all the already simulated variables (in the accurate
and refined simulation step). Let XXOM

(M) be the best linear combination of variables of XOM

approximating X(M) in the sense that the variance of the innovation

εXNM
(M) = X(M)− XXOM

(M)

is minimal. The new variable X(M) is obtained by

XXOM
(M) +

√
Var(εXOM

(M))U,

where U is a centered and reduced Gaussian variable independent of the already simulated compo-
nents. Note that the variable XXOM

(M) and the variance Var(εXOM
(M)) are completely determined

by the covariance structure of the sequence X(M′), M′ ∈ OM ∪ {M}.

Adding the mean. Finally, we compute X̃(M) = X(M) + m̃(M) for all M ∈ {Se,Sr}.

For storage and computing time, the accurate simulation step must concern only a small number
of variables whereas the second step can relate a larger number of variables. That leads to an effective
and fast method to simulate any Gaussian field.

It is worth mentioning that the setProcess command will check if {E(XNXT
N )}−1 exists for

common conditional simulations.

Some examples of conditional fractional Gaussian fields

We focus, in this paper, on the conditional Gaussian fields associated to the previously mentioned
fields but every other classical Gaussian fields can be also simulated: standard bifractional Brownian
motion, space-time deformed fractional Brownian motion, etc. (see Brouste et al. (2007)). We also
consider conditional simulations associated to fractional Gaussian fields on manifolds (hyperboloid
and sphere) (see Brouste et al. (2010) for covariance function definition).

The procedure fieldsim is extended to the conditional Gaussian fields. We can find in the Table 1,
the setProcess reference short-card.

On the line

The fractional Gaussian processes on the line are fast to simulate.

Conditional simulations associated to Fractional Brownian motion (fBm) and multifractional
Brownian motion (mBm) and to the conditioning set N = {1/2, 3/4, 1} and conditioning values
x = {1, 1/2, 0} are illustrated on Figure 2. Here Hurst exponent is H = 0.7 for the fBm and H(t) =
0.3 + 0.6t, t ∈ [0, 1] for the mBm. The processes are simulated on a regular grid of 256 points of [0, 1]
with only exact simulation step (Sr = ∅).

They can be obtained with the fieldsim procedure. For instance, the mBm at Figure 2 is obtained
with:

R> funcH<-function(x){0.3+x*0.6}
R> cond.mBm<-setProcess("cond-mBm-line",list(Gamma=matrix(c(1/2,1,3/4,0.5,1,0),2,3),
par=funcH))
R> fieldsim(cond.mBm)
R> plot(cond.mBm)

In the simulation below, the points of the set N belong to the visualization grid. When this is not
the case, the plot could show a failure for the conditioning in the region of high variability. To avoid

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859
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Figure 2: Conditional simulations associated to fractional Brownian motion and multifractional
Brownian motion. The real time (resp. CPU time) in seconds is equal to 8.430 (resp. 0.043) for the
fractional Brownian motion and 14.609 (resp. 0.111) for the multifractional Brownian motion.

this, it is possible to add the points of the set N to the visualization grid. For instance, in the previous
exemple, to add the point 1/6 to the visualization grid, we can use the following lines of code:

R> atlas.cond.mBm <- sort(c(cond.mBm@manifold@atlas[1,],1/6))
R> cond.mBm@manifold@atlas<- matrix(atlas.mBm,nrow=1)

An other solution is to use finer grids which contains the points of the set N .

On the plane

Conditional simulations associated to Fractional Brownian field (for H = 0.9) and multifractional
Brownian field (for H(t) = 0.3 + 0.6t1) are illustrated on Figure 3. Conditional simulations associated
to anisotropic fields (fractional Brownian sheet with H1 = 0.9, H2 = 0.3, anisotropic fractional
Brownian field with H = 0.7, ϑ1 = π

6 and ϑ2 = π
3 ) are presented on Figure 4. For all the fields, we

consider the following conditioning set

N =

{(
1,

k
26 + 1

)
,
(

k
26 + 1

, 1
)

, k = 0, . . . 26 + 1
}

and conditioning values x = 0.

Figure 3: Conditional simulations associated to fractional Brownian field (on the left) and multifrac-
tional Brownian field (on the right). The real time (resp. CPU time) in seconds is equal to 1270.911 (resp.
6.769) for the fractional Brownian field and 1782.533 (resp. 9.953) for the multifractional Brownian
field.

All the processes are simulated on a regular grid of 4096 points of [0, 1]2 with 100 points for exact
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Figure 4: Conditional simulations associated to fractional Brownian sheet (on the left) and anisotropic
fractional Brownian field. The real time (resp. CPU time) in seconds is equal to 728.605 (resp. 4.223) for
the fractional Brownian sheet and 2995.644 (resp. 14.782) for the anisotropic fractional Brownian field.

simulation step and 3996 for refined step (with 4 neighbors). For instance, the conditional Gaussian
field associated to anistropic fractional Brownian field on [0, 1]2 (see Figure 4) is given by

R> Ng<-2^6+1
R> x<-seq(from=0,to=1,length=Ng)
R> G<-cbind(rbind(rep(1,Ng-1),x[2:Ng],rep(0,Ng-1)),
rbind(x[2:(Ng-1)],rep(1,Ng-2),rep(0,Ng-2)))
R> condfBm2d<-setProcess("cond-afBf-plane",
list(Gamma=G,par=list(H=0.7,theta1=pi/6,theta2=pi/3)))
R> setAtlas(condfBm2d,"visualization",6)
R> fieldsim(condfBm2d,Ne=100,nbNeighbor=4)
R> plot(condfBm2d,theta=120,phi=30,expand=0.5)

It is worth emphasizing that, for a fixed size of the simulation grid, the simulation time of the
fieldsim procedure depends on the number of conditioning points (see for instance the fractional
Brownian field on Figures 3 and 6 for 129 and 39 conditioning points respectively). But this variation
is small compared to the variation due to the size of the simulation grid.

On the hyperboloid and on the sphere

Conditional simulations can be extended to fractional Gaussian fields on manifold associated to the
fractional Brownian field on the hyperboloid with H = 0.7,

N =
{
(0, 1,

√
2), (0, 2,

√
5)
}

, x = (5,−5),

and a conditional fractional Brownian field on the sphere with H = 0.4,

N =

{
(0, 0, 1),

(
1
2

, 0,

√
3

2

)}
, x = (5,−5).

The two processes are simulated on a regular grid of 5400 points of R3 with 100 points for exact
simulation step and 5300 for refined step (with 4 neighbors).

The conditional simulations associated to the fractional Brownian field on the sphere (see Figure 5)
is obtained with

R> Gamma=matrix(c(0,0,1,5,0.5,0,sqrt(3)/2,-5),4,2)
R> sphere.cond.fBm<-setProcess("cond-fBm-sphere",list(Gamma=Gamma,par=0.4))
R> setAtlas(sphere.cond.fBm,"visualization",30)
R> fieldsim(sphere.cond.fBm,Ne=100,nbNeighbor=4)
R> plot(sphere.cond.fBm)

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859
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Figure 5: Conditional simulations associated to the fractional Brownian field on the hyperboloid
and on the sphere. The real time (resp. CPU time) in seconds is equal to 54.567 (resp. 0.293) for the
hyperboloid and 188.807 (resp. 14.216) for the sphere.

Conclusion and perpsectives

We propose a generic method to simulate multidimensional conditional fractional Gaussian fields.

Our method is valid for any Gaussian field and on any (non regular) grid of points as soon as the
covariance function is available. This method is constructed to be universal (conditional simulation,
simulation on a manifold) and is consecutively not as fast as other methods defined for specific fields.
In the near future, the Fieldsim should also possess such specific methods.

Our method is adapted to conditional simulations and, consequently, permits now to simulate
easily several natural scenes (clouds, mountains) with valleys and fixed topographic points. Such a
simulation is presented in Figure 6.

Figure 6: Natural scene simulation. Here a 150× 150 regular grid fractional Brownian field of Hurst
parameter H = 0.8 with 39 conditioning points (in red) is simulated. The real time (resp. CPU time) in
seconds is equal to 54.567 (resp. 0.293).

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859
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Table 1: The process class. "fBm" for fractional Brownian motion, "mBm" for multifractional Brownian
motion, "2pfBm" for the standard bi-fractional Brownian motion, "stdfBm" for the space-time deformed
fractional Brownian motion, "AfBf" for anisotropic fractional Brownian field and "fBs" for fractional
Brownian sheet.

name of the process parameter

On [0, 1]
"fBm-line" numeric
"mBm-line" function
"2pfBm-line" list(H=numeric, K=numeric)
"stdfBm-line" list(H=numeric, sigma=function, tau=function)
"cond-fBm-line" list(Gamma=matrix, par=numeric)
"cond-mBm-line" list(Gamma=matrix, par=function)
"cond-2pfBm-line" list(Gamma=matrix, par=list(H=numeric, K=numeric))

On the square [0, 1]2

"fBm-plane" numeric
"mBm-plane" function
"2pfBm-plane" list(H=numeric, K=numeric)
"afBf-plane" list(H=numeric, theta1=numeric, theta2=numeric)
"fBs-plane" vector
"cond-fBm-plane" list(Gamma=matrix, par=numeric)
"cond-mBm-line" list(Gamma=matrix, par=function)
"cond-afBf-plane" list(Gamma=matrix, par=list(H=numeric, theta1=numeric, theta2=numeric))
"cond-fBs-line" list(Gamma=matrix, par=vector)

On the hyperboloid
"fBm-hyperboloid" numeric
"cond-fBm-hyperboloid" list(Gamma=matrix, par=numeric)

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859
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