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A B S T R A C T

A stochastic method is introduced to characterize the dual-scale geometry of textile reinforcements in compo-
sites. The fiber tows are identified automatically from X-ray microtomographic scans with a machine learning
algorithm, quantifying the error of the procedure. The tow geometry is then used to construct a stochastic model
as a Gaussian Random Process which permits quantification of the uncertainty in the measurements of micro-
scale fiber volume fraction. The hyperparameters of the model are calibrated with a custom-built multi-objective
evolutionary algorithm. The approach is illustrated by the analysis of a vinyl-ester composite reinforced with a
glass fiber non-crimp fabric.

1. Introduction

Recently, with the advances in hardware, the capacity to simulate
the mechanical behavior or manufacturing processes of complex ma-
terials such as composites, has increased considerably [1–7]. Given
such possibilities, the researchers turn to models closely connected to
the experimental microstructure of materials. One example is the si-
mulation of Liquid Composite Molding (LCM) where a liquid polymer
resin is injected through a fibrous reinforcement. Engineering textiles,
commonly used in high-performance composites [8,9], consist of fiber
tows which in turn are bundles of fiber filaments. This results in a dual-
scale architecture with individual fibers at microscale and fiber tow at
mesoscale. As the impregnation behavior strongly depends on the
geometry of the reinforcement [10], a realistic model of the mesoscale
geometry together with a microscale fiber volume fraction is required.

Volume imaging techniques such as X-ray microtomography can be
used to retrieve the realistic geometry of fibrous reinforcement in
composites [11,12,5]. To achieve this, a segmentation process is per-
formed to partition the scans (Fig. 1a) into phase- (Fig. 1b) or structure-
specific (Fig. 1c) regions. Existing approaches range from manual fitting
of shapes [9], through simple algorithms such as thresholding [13–15]
to machine learning solutions [16]. While segmentation of phases is
quite consistent, especially in materials science, where the phase-

specific coefficient of attenuation µ is relatively constant, the same is
not true for structure segmentation. The identification of structures, i.e.,
spatial conglomerates of phases, requires a more comprehensive ap-
proach than in case of phases. In the latter, the intensity of µ is a suf-
ficient feature to obtain plausible results [17,18,9], although the pre-
sence of imaging-related artifacts may contribute to the overall error of
further measurements. In case of structures, the µ may not be enough to
perform the segmentation, since spatial conglomerates such as fiber
tows may consist of multiple phases, including polymer matrix and
residual voids trapped between individual fibers. Thus an approach that
takes into account the underlying geometry of the tows has to be em-
ployed.

Additional problem is the ambiguity in the definition of fiber tow
geometry. A tow cross-section should be a closed curve that en-
compasses the smallest area containing all of the individual fibers
comprising the tow. At the same time, the perimeter of the cross-section
should be the smallest possible, striving towards a compact geometry,
permitting accurate measurements of the local fiber volume fraction Vf .
To our best knowledge, none, if any research in computational material
science has addressed the problem of quantification of the two sources
of error: structure segmentation algorithm and the ambiguity of tow
geometry definition. Most of the segmentation methods are dedicated
to maximizing the compliance with “ground truth”, namely the manual
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segmentation provided by a human expert. The workload involved in
performing manual segmentations is substantial, hence the spectrum of
possible results is not thoroughly analyzed. However, in the medical
domain, Lê et al. [19] performed the identification of tumor tissue from
X-ray tomographic scans by modeling the tumor boundary with level
sets. A Gaussian Random Process (GRP) was then used to generate new
partitions. Based on the position and area of the generated samples, the
amount of radiation required to eradicate the tumor was estimated.
Level sets were also used in [20] to obtain a unique segmentation of
brain tissues, where the probability of the generated level set contours
was described by a multivariate Gaussian distribution, and the contour
with the highest likelihood was ultimately chosen. Finally, a unique
segmentation of coronary arteries was obtained in [21] after sampling
thresholds for image filtering and using multi-objective optimization
with genetic algorithms to select the most plausible one.

In material studies, the results of segmentation in X-ray micro-
tomography are usually not subject to error estimation, only sometimes
accompanied by sensibility studies [22]. In [16], we have proposed a
segmentation method based on dual kriging for identifying fiber tows in
composite reinforcements. However, the kriging approximation, de-
spite the availability of the error estimator , still provides determi-
nistic results.

In the present work, we focus on constructing a model based on the
actual microstructure while taking into account the measurement error
and controlling the level of simplification. The kriging model is ex-
tended by making use of the structure of the underlying Gaussian
Process to automatically generate new, plausible segmentations by af-
fine transformation of independent multivariate Gaussian samples in a
Monte Carlo manner [23]. This approach enables us to characterize the
probability distribution of material properties, such as fiber tow volume
or microscale fiber volume fraction. The ultimate goal is the uncertainty

quantification and propagation across the simulation of resin injection
during manufacture.

The rest of this paper is organized as follows. In Section 2 we for-
mulate the conditional GRP distribution of a fiber tow contour that is
then applied in Section 3 to generate a range of admissible contours for
which a specific material parameter can be calculated, and its prob-
abilistic distribution examined. The model is calibrated in Section 4 by
choosing an adequate kernel function with hyperparameters optimized
taking into account the geometric metrics of the structure. The metrics
are formulated as objective functions and subject to multi-objective
optimization. The approach is tested in Section 5 to identify glass fiber
volume fraction of a typical composite specimen manufactured by Resin
Transfer Molding (RTM).

2. Stochastic model of a fiber tow geometry

Two levels of segmentation are considered in this work: the phase
segmentation determining the distribution of individual fibers and the
structure segmentation identifying the geometry of fiber tows. The is
defined based on the probability of phase segmentation P x y( , )p
(Fig. 1c)

=x y
P x y d

( , )
1, if ( , )
0, otherwise

p t

(1)

where dt is an empirically determined threshold value. The cross-sec-
tion of a tow grouping individual fibers is obtained with structural
segmentation (Fig. 1c) that yields probability P x y( , )s from which a
contour is identified with an error. is expressed in a parametric form
with x t y t( ), ( ) as functions of a curvilinear coordinate t. We represent
X t( ) by a Gaussian Random ProcessGP

Fig. 1. Results of the X-ray micro-tomographic scan of a polymer composite with glass fiber reinforcement TG96N60E from Texonic: (a) raw, unprocessed tomogram;
(b) phase segmentation probability; (c) structure segmentation probability.
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X t µ k( ( )) ( , )t x x(0,1) GP (2)

where µx is a mean function

=µ t p t( ) ( )x
T

x (3)

with x denoting a vector of coefficients of polynomial basis and kx is a
covariance function. Similarly

Y t µ k( ( )) ( , ).t y y(0,1) GP (4)

We assume that a discrete instance ofGP at nt sample points t follows
a multivariate Gaussian distribution

=X X t x m K( | ( ) ) ( , )x
0 0 N (5)

conditioned by observed values = …x y i n, , 1, ,i i t
0 0 0 of a tow contour

0 (Fig. 2) associated with the measurement error variance t( )i
2 0 at

discrete points = …t t t[ , , ]n
0

1
0 0

t0 . The Gaussian regression [24] yields the
conditional mean vector mx of length nt

= +m µ C C x µ* ( ) ( )x
0 00 1 0 0 (6)

and a conditional covariance matrix K of dimensions ×n nt t

=K C C C C** * ( ) *0 00 1 0 (7)

where

= + = … = = …

= … = = …

C k t t t i j n C k t t i n

j n C k t t i j n

( , ) ( ) , , 1, , , * ( , ), 1, , ,

1, , ** ( , ), , 1, , .
ij i j i ij t ij i j t

t ij i j t

00 0 0 2 0 0 00 0

(8)

Parameter allows to scale the contribution of the segmentation error
and ij is the Kronecker delta (no summation over i). Furthermore, µx is
defined as

= = = … = = …µ µ µ µ p t i n µ p t i n( ), ( ) , 1, , , ( ) , 1, ,x x x x
T

i x t x
T

i x t
0 0 0

i i
0 (9)

with fitted by Least Squares Fitting. The means mx and my (obtained
in an analogous manner) represent the kriging approximation of the
contour . The variance of the estimation is given by diagonal terms of
matrix K

= = …K i n, 1, , .i ii t
2 (10)

Considering a closed contour , we propose a periodic exponential
squared kernel function

=k t t t t( , ) exp 1 sin ( ·( )) , (0, 1)i j i j
2 2

(11)

with a single length-scale hyperparameter . Example kernels are
shown in Fig. 3 for = …t 0, , 1i and varying . The value of governs the
size of the domain of influence. For = 1 every point contributes
equally leading to overfitting, especially for low values of (Fig. 4a),
which result in interpolation. Less accurate approximations are ob-
tained for low values of , e.q., = 0.01 and = 0.1 which together with
the increase in lead to smoother, elliptical contours (Fig. 4b). The
zone of influence of depends also on the density of data coordinates,
with sparse values leading to more variability in the reconstruction.

3. Stochastic sampling

As stated in the introduction, the GP mean vectors mx and my
provide a deterministic approximation of the contour. Here, we take
advantage of the formulation of the model as a Gaussian Process to
investigate the probability distributions of physical quantities. Namely,
we can generate new, plausible contour samples

t m K( ) ( , )xN (12)

through an affine transformation

= +x m t Au( )x (13)

of independent multivariate samples u taken from

U I(0, )N (14)

where A is determined from Cholesky’s decomposition of K

=K AA .T (15)

This decomposition has to be performed only once and then A can be
used to generate new contours at the cost of a single matrix–vector
multiplication. The examples of such contours are shown in Fig. 5. The
scaling factor (Eq. (8)) permits to control the influence of the seg-
mentation error on the approximation of the contour. In Fig. 5a, the
error is scaled with a coefficient = 0.05, yielding both mean and
samples with low variability, almost interpolating data. Increasing is
effective when a calibration of the segmentation is required as it en-
ables exploration of contours that are dissimilar from the initial data.
The smaller values of are useful in estimating material properties
from the model that is already calibrated. This strategy is summarized
in Alg.1 and will be now applied to process experimental microtomo-
graphic data.

Algorithm1: Generation of new contours by sampling of the calibrated GP model.

4. Kernel calibration

The kernel k modeling covariance C in Eq. (8) is calibrated by ad-
justing the hyperparameter . The choice of is directed by the physical
plausibility of the model, i.e., how well it approximates the geometry of
the fiber tow. We assume that:

• the number of fibers in a fiber tow is constant,
• the diameter of each individual fiber is constant,

implying that the total area volfib of fibers at each section orthogonal to
the centroid line of the fiber tow is also constant. As the sections in
question are the volumes of thickness z and are represented by voxels,
the term “fiber volume” is more appropriate. The measurement of volfib
from a microtomographic scan is further detailed in [16]. The following
functions need to be considered

=

= +

=

f vol z x y d f

dm t
dt

dm t
dt

dt f

m t
dm t

dt
m t dm t

dt
dt

( ) ( , ) ( ) , ( )

( , ) ( , )
, ( )

1
2

( , )
( , )

( , ) ( , ) .

fib

x y

x
y

y
x

1 ( ) 2

0

1 2 2

3

0

1

(16)

Fig. 2. Points x y( , )0 0 defining contour 0 of section identified during tow
segmentation superimposed on the function x y( , ) of material distribution.
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Function f1 measures the difference between volfib and the total fiber
surface within the approximated contour; f2 is the contour length and f3
the area of the contour.

We can thus formulate a bi-objective optimization problem

= f f
f

Arg min( ( ), ( ))
( )

0 1

2 3

1

(17)

where f f,2 3 are objective functions and f1 is an inequality constraint
which restricts the admissibility of the generated contour (Fig. 6)) to
the domains containing the required volume of fibers volfib. Simulta-
neous minimization of f2 and f3 imposes a specific character on the
reconstructed geometry by a compromise between minimal contour
length ( f2) and minimal volume ( f3). As observed in Fig. 7, the objective
functions are nonlinear in and exhibit multiple local minima. Thus,
the optimization is performed by an evolutionary algorithm inspired by
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) by Deb

Fig. 3. Shape of kernel function defined in Eq. (11) for = …t 0, ,1i and for varying (length-scale).

Fig. 4. Mean m m( , )x y (Eq. (6)) of the Gaussian Process for different values of and : (a) = 0.1·10 7; (b) = 0.05.
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Fig. 5. Mean and samples of the contour modeled with a Gaussian Process with different values of error scaling factor : (a) = 0.05; (b) = 2.5.

Fig. 6. Admissibility of contour based on f1.

Fig. 7. Values of (a) f2 (contour perimeter) and (b) f3 (tow area) in function of (length-scale).
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[25]. The algorithm is described in Appendix A.

5. Test case: fiber volume fraction of a textile composite

So far, the methodology has been illustrated with abstract cases of
simplified fiber tow geometry. Here, we present how the stochastic
model performs on the actual microtomographic data. In addition to the
exploration of various types of reconstructions, we present an appli-
cation of the stochastic formulation to characterize the fiber volume
fractionVf of a fiber tow. The approach will follow the steps outlined in
Program1. The phase and structure segmentation of raw tomograms are
performed following the procedures in [16] and further data pre-
processing step is performed as described in Section 5.2. The micro-
tomographic data is then used to calibrate theGP model and generate
new plausible contour samples. The latter are finally used to analyze
the probability density function (PDF) of the local fiber volume fraction
Vf of the fiber tow.

Program1: Methodology for stochastic characterization of fiber tows.

Input: tomogram
Parameters: parameters for Alg.1, Alg.3, and Alg.2

1 extract P x y P x y( , ), ( , )p s and init after [16]
2 data preprocessing with Alg.3;
3 calibrate kernel with Alg.2;
4 sample new contours with Alg.1;
5 calculate Vf for each contour (Eq. (22));
6return the PDF of Vf ;

5.1. Material and data acquisition

The material used in the study is a composite of a vinyl-ester matrix
reinforced with three plies of TG96N60E glass fiber textile provided by
Texonic[26]. The textile has a 3D orthogonal fabric architecture with
unidirectional tows (non-crimp) placed in the warp and weft directions,
kept together by a binder yarn. The composite was manufactured by
Resin Transfer Molding (RTM). The liquid resin was injected at a con-
stant rate into dry fibrous reinforcement placed in a rigid metallic mold.
The intended fiber weight fraction was 50%. The scanned sample was
cut from the center of the manufactured specimen (Fig. 8) and had

nominal dimensions of 3x3x10 mm. The scans were realized at Labor-
atoire Mateis of INSA de Lyon, France on a v|tome|x X-ray micro-
tomograph with parameters of acquisition detailed in Table 1.

The radiographic projections were reconstructed with the filtered
back-projection algorithm [27] into tomograms. One volume consisted
of 1200 reconstructed slices requiring 1.5 GB of memory. It provided
information on ten fiber tows, from which a single tow was selected and
an example tomogram was subject to stochastic characterization.

5.2. Data preprocessing

The reconstructed tomogram is subject to two types of segmentation
with Fast Random Forest learning algorithms as in [16]. Firstly, the
phase segmentation is performed yielding phase probability P x y( , )p
(Fig. 1b) from which and volfib are further determined. Secondly, a
structure segmentation is realized giving P x y( , )s (Fig. 1c) and the initial
contour init discretized with t0. The discrete values of P x y( , )s are stored
as a matrix ×N M where N and M are respectively the width and height
of the tomographic image and

=
i i
j j

init n

n

1

1

t

t

0

0 (18)

is a set of indexes in . From this data we identify the probability Pc of a
contour and its mean coordinates x y( , )0 0 and variances ,

x y
2 2
0 0 to

construct the stochastic model. The operations enabling this identifi-
cation are summarized in Alg.3 presented in Appendix B. The co-
ordinates x y( , )i i

0 0 are equivalent to the expected value of Pc (Fig. 9) in
the subregion i of size ×l l

= = …x
P x y x d
P x y d

i n
( , )
( , )

, 1, ,i
c i

c i
t

0 i

i

0

(19)

with the variance

= = …
P x y x x d

P x y d
i n

( , )( )
( , )

, 1, , .
x

c i

c i
t

2
0

2

i

i

i
0 0

(20)

The integration is analogous for yi
0 and yi

0. In the algorithm, this op-
eration is performed by convolving data matrices with a ×l l all-ones
matrix filter J (Alg.3 lines 6–14)

=J . (21)

The choice of l depends on the resolution of the scan. For high re-
solutions, larger values of l reduce the impact of local disturbances
introduced by the individual fibers. Smaller values of l are more ade-
quate for low resolutions to maintain the detail of tow contour

Fig. 8. Geometry of the composite specimen and location of the sample used in
the microtomographic study.

Table 1
Parameters of data acquisition with X-ray micro-
tomography.

Parameter Value

Acceleration voltage 80 kV
Beam current 280 μA
No. of projections 1500
Scan resolution 3.0 μm

Fig. 9. Contour probability P x y( , )c obtained from P x y( , )s . The result has been
scaled in the 0–1 range.
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geometry.
The points x y( , )0 0 are shown in Fig. 10a compared with the initial

indexes init. The new coordinates (Fig. 10b) are closer to the peak of Pc,
while the initial identification remains within the error of measure-
ment.

The data obtained during the preprocessing step are summarized in
Table 2. The discretization of x y( , )0 0 can be further adjusted through
filtering by curvature energy as in [28], thus reducing the computa-
tional load.

5.3. Fitting of the model

The preprocessing step has yielded data required to build and ca-
librate the stochastic model. The GP is defined by the periodic kernel
(Eq. (11)) and the mean function (Eq. (9)) is considered constant

=µ t µ t( ) ( ) 0x y without loss of generality. The influence of and
has been studied in Fig. 11. It can be observed that for higher values of
, the perimeter of the tow contour tends to a stable value, character-
istic for the smooth reconstruction, similar to the one shown in Fig. 12a.
At the same time, the area of volume cross-section f3 exhibits multiple

local minima in function of , with increasing variability for higher
values of . For larger values of , the area encompassed by the contour
diminishes beyond that of the original reconstruction (Fig. 12b).

This decrease in area also translates into a loss of the total area f1 of
cross-sections of individual fibers contained within the contour. The
graph of f1 within 3 confidence intervals (Fig. 13) in function of
shows that while the increase of the upper bounds of the contour
(Fig. 13b) results in a marginal increase of the cross-sectional area of
fibers included within the contour, for the lower bound (Fig. 13a) the
difference between the target total fiber area volfib and that obtained
becomes substantial. For high values of , such as 0.05, even 16% of
fibers are left out of the reconstructed contour.

5.4. Stochastic characterization of Vf

Once the kernel function is calibrated, we may proceed to the Monte
Carlo sampling of plausible contours (Alg.1). An example of such
sampling is shown in Fig. 14. These samples are now used to determine
the local fiber volume fractionVf of a tow. TheVf is defined as the ratio
of the volume of fibers to the volume of a fiber tow, which in a 2D case
is equivalent to

= =V
x y d

f
volume
volume

( , ) ( )
.f

fibers

tow

( )

3 (22)

Fig. 15 shows two PDF fitted to histograms of distribution of Vf
obtained from 5000 contours sampled from the calibrated GP model.
The first distribution (Fig. 15a) resulted from the model sampled with
= 0.2. The mean of GP and of the samples differed only by 1.5% from
the value of Vf identified in the initial deterministic segmentation.
Knowing that the initial segmentation was not optimal, we augmented
to 2.5, yielding a new mean 4% lower than the initial Vf (Fig. 15b).

Fig. 10. Points x y( , )0 0 identified after evaluating Pc from Ps data: (a) Ps overlaid with x y, ( , )init 0 0 and 3· , 3·x y0 0; (b) Ps and Pc for the point shown in the inset of (a).

Table 2
Input data for reconstruction of one tow contour.

Data No. of points

P x y( , )p 8.89·105

where P x y( , ) 0.5p 3.01·105

P x y( , )s 8.89·105

x y( , )0 0 Before filtering 4.67·103

After filtering 1.66·103

A. Madra, et al. Composite Structures 224 (2019) 111031
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The reason for these discrepancies can be identified by investigating
sampled contours in Fig. 14b. The increase in leads to the inclusion of
individual fibers around the fiber tow. Even though the area of fiber
cross-sections increases marginally (Fig. 13b), the inclusion of in-
dividual fibers surrounded by pure resin or air results in the lower Vf .
Less variation in · leads to less variation in the inclusion of fibers and
thus the identified Vf is closer to the one resulting from deterministic
measurement. It may be concluded, that the use of higher values of is

of value when a calibration of the segmentation process is required. On
the other hand, once calibrated, the smaller would ensure less noise in
the stochastic identification of Vf .

It can be observed that some fibers belonging to the tow may be
beyond the reach of the generated samples. Thus a reconstruction with
low may lead to the omission of single fibers around the contour and
surrounded by resin giving a higher Vf . Larger increases the prob-
ability of inclusion of such “floating fibers” in the contour, and

Fig. 11. Influence of and on (a) f2 (contour perimeter) and (b) f3 (tow area) for the contour extracted from X-ray microtomographic data. The values of f2 and f3
are scaled to the 0–1 range.

Fig. 12. Admissible solutions for (a)
small perimeter f2 (b) small tow section
area f3.

Fig. 13. Error in fiber volume f1 with respect to volfib for different within confidence intervals (a) 3 ; (b) + 3 . Please note that the scale in (a) and (b) differs by
one order of magnitude.

Fig. 14. Sampling (green) ofGP superimposed over the results of phase segmentation (black). The mean ofGP is marked in blue and ± 3 confidence interval is
marked in red. For references to color please refer to the online version of this paper.
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consequently also of the surrounding resin, resulting in lower Vf . These
two cases are illustrated in Fig. 15, where the Vf values of samples are
approximated by a Gaussian distribution with a spread of values from
63% (all “floating fibers” included) to 64% (only the core of the fiber
tow with smooth geometry).

5.5. Computational aspects

The whole procedure outlined in Program1 for one cross-section
took 3min on 8×2.80 GH CPU Intel® CoreTM i7-7700HQ processors.
The matrix operations (convolutions and Hadamard product, division
and root) in Alg.3, image segmentation and calculation of f f f, ,1 2 3
were programmed with the help of Python OpenCV library [29] for
calculations on Graphics Processing Units (GPU) and executed on
NVIDIA® GeForce® GTX 1060. After parallelization and adjustment of
parameters of Alg.2 the total execution time was decreased to 22.5 s.
Despite that, with the amount of data averaging 1.5 GB per scan, further
optimization is necessary to perform the reconstruction of the micro-
structure of the entire specimen. Three solutions can be proposed to
decrease the computational load. The first approach is to perform
complete optimization on chosen cross-sections and optimization on
constrained parameters for the intermediate ones. The second solution
relies on the filtering of cross-sections to retrieve only the shapes which
differ significantly and interpolating the rest. The choice depends on the
intended application of the geometry as well as on the type of textile
architecture. Three-dimensional textiles composed of different types of

fibers would certainly benefit from the latter. Another solution consists
of employing a better performing approach to optimize the hy-
perparameters.

6. Conclusions

We have presented a method to generate sets of plausible geome-
tries of a textile reinforcement in composites from X-ray microtomo-
graphic scans. We have formulated a stochastic solution using the
Gaussian Process underlying the deterministic kriging model. The ad-
vantages of this formulation are multiple. First of all, during model
calibration, two extreme types of reconstruction are obtained: smooth,
adequate for generation of a simplified mesh for Finite Element
Analysis; and a detailed one, interesting for prediction of microscale
permeability. The intermediate solution can be used to characterize
local material characteristics such as fiber volume fraction Vf . We have
observed, that the mean Vf obtained from the stochastic model differed
significantly from the one based on the deterministic reconstruction.
For structural applications where larger specimens need to be in-
vestigated, high resolution scans may not be possible, either due to X-
ray scanner limitations and/or data processing costs. In such case, the
presented method can be first calibrated with high resolution data from
another imaging technique, such as Scanning Electron Microscopy, and
then reused for low-resolution X-ray microtomographic scans.

When treating microtomographic scans of compressed textiles,
special care must be taken to avoid intersections of neighboring tows,

Fig. 15. Distribution of Vf for different error strength factors (a) = 0.2 (b) = 2.5. Here, the relates to the distribution of Vf .
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for example by introducing another constraint. The methodology pre-
sented here can be also extended to three-dimensional geometry. These
two issues are the subject of an ongoing study.

Data availability

The raw/processed data required to reproduce these findings cannot
be shared at this time as the data also forms part of an ongoing study.
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Appendix A. Appendix A

The flow of the optimization algorithm is shown in Alg.2 below. The optimization begins by generating a random population of kernel hy-
perparameters with which a contour is fitted to the x y( , )0 0 and objective functions are evaluated. Following a ranking of hyperparameter sets
according to the dominance criterion, a new population is generated by crossover, mutation and niching. The choice of algorithm parameters is
adapted empirically depending on the quality of the initial segmentation, with good initial approximations requiring less generations to provide
satisfactory results.

Algorithm2: Kernel calibration with NSGA-II algorithm.

Appendix B. Appendix B

The probability Pc of the contour can be determined by analyzing the gradient of Ps

= = +P x y P x y P x y
x

P x y
y

( , ) ( , ) ( , ) ( , ) .c s

2 2

(23)

For the discrete representation , the partial derivatives can be approximated by convolution (Alg.3 lines 1–2) with directional Sobel filters

= = = =S S
1 0 1
2 0 2
1 0 1

1
2
1

[1 0 1],
1 2 1
0 0 0

1 2 1

1
0

1
[1 2 1]x y

(24)

resulting in images Fig. 16a and b. Then, the discrete Pc (Alg.3 line 3) will be as in Fig. 9.

Fig. 16. Results of the convolution of
P x y( , )s with the Sobel filter (Eq. (24)):
(a) in the x-direction; (b) in the y-di-
rection. The absolute value of the re-
sult has been scaled in the 0–1 range.
Higher intensity indicates larger value
of the derivative.
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Algorithm3: Identification of x y( , )0 0 and ,
x y0
2

0
2 from P x y( , )s .
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