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Introduction

Recently, with the advances in hardware, the capacity to simulate the mechanical behavior or manufacturing processes of complex materials such as composites, has increased considerably [START_REF] Azaiez | State-of-the-art on numerical simulation of fiber-reinforced thermoplastic forming processes[END_REF][START_REF] García | A fixed mesh numerical method for modelling the flow in liquid composites moulding processes using a volume of fluid technique[END_REF][START_REF] García | Meshless methods with application to Liquid Composite Molding simulation[END_REF][START_REF] Devalve | Simulation of void formation in liquid composite molding processes[END_REF][START_REF] Naouar | 3D composite reinforcement meso F.E. analyses based on X-ray computed tomography[END_REF][START_REF] Niknezhad | Towards a realistic morphological model for the meso-scale mechanical and transport behavior of cementitious composites[END_REF][START_REF] Durville | Determining the initial configuration and characterizing the mechanical properties of 3D angle-interlock fabrics using finite element simulation[END_REF]. Given such possibilities, the researchers turn to models closely connected to the experimental microstructure of materials. One example is the simulation of Liquid Composite Molding (LCM) where a liquid polymer resin is injected through a fibrous reinforcement. Engineering textiles, commonly used in high-performance composites [START_REF] Shinoda | A-vartm technology application for Japan's new regional jet aircraft[END_REF][START_REF] Vanaerschot | Stochastic characterisation methodology for 3-D textiles based on micro-tomography[END_REF], consist of fiber tows which in turn are bundles of fiber filaments. This results in a dualscale architecture with individual fibers at microscale and fiber tow at mesoscale. As the impregnation behavior strongly depends on the geometry of the reinforcement [START_REF] Lebel | Contrôle De La Fabrication Des Composites Par Injection Sur Renforts[END_REF], a realistic model of the mesoscale geometry together with a microscale fiber volume fraction is required.

Volume imaging techniques such as X-ray microtomography can be used to retrieve the realistic geometry of fibrous reinforcement in composites [START_REF] Somashekar | Compression deformation of a biaxial stitched glass fibre reinforcement: visualisation and image analysis using Xray micro-CT[END_REF][START_REF] Naouar | Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography[END_REF][START_REF] Naouar | 3D composite reinforcement meso F.E. analyses based on X-ray computed tomography[END_REF]. To achieve this, a segmentation process is performed to partition the scans (Fig. 1a) into phase-(Fig. 1b) or structurespecific (Fig. 1c) regions. Existing approaches range from manual fitting of shapes [START_REF] Vanaerschot | Stochastic characterisation methodology for 3-D textiles based on micro-tomography[END_REF], through simple algorithms such as thresholding [START_REF] Neves | 3D-microleakage assessment of adhesive interfaces: exploratory findings by micro-CT[END_REF][START_REF] Rolland | Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests[END_REF][START_REF] Hassan | Contribution of processing parameters on void content in the vacuum bagging configurations of L-shaped composite laminates[END_REF] to machine learning solutions [START_REF] Madra | Image-based model reconstruction and meshing of woven reinforcements in composites[END_REF]. While segmentation of phases is quite consistent, especially in materials science, where the phase-specific coefficient of attenuation µ is relatively constant, the same is not true for structure segmentation. The identification of structures, i.e., spatial conglomerates of phases, requires a more comprehensive approach than in case of phases. In the latter, the intensity of µ is a sufficient feature to obtain plausible results [START_REF] Aravand | Internal geometry of woven composite laminates with fuzzy carbon nanotube grafted fibers[END_REF][START_REF] Yousaf | Digital element simulation of aligned tows during compaction validated by computed tomography (CT)[END_REF][START_REF] Vanaerschot | Stochastic characterisation methodology for 3-D textiles based on micro-tomography[END_REF], although the presence of imaging-related artifacts may contribute to the overall error of further measurements. In case of structures, the µ may not be enough to perform the segmentation, since spatial conglomerates such as fiber tows may consist of multiple phases, including polymer matrix and residual voids trapped between individual fibers. Thus an approach that takes into account the underlying geometry of the tows has to be employed.

Additional problem is the ambiguity in the definition of fiber tow geometry. A tow cross-section should be a closed curve that encompasses the smallest area containing all of the individual fibers comprising the tow. At the same time, the perimeter of the cross-section should be the smallest possible, striving towards a compact geometry, permitting accurate measurements of the local fiber volume fraction V f . To our best knowledge, none, if any research in computational material science has addressed the problem of quantification of the two sources of error: structure segmentation algorithm and the ambiguity of tow geometry definition. Most of the segmentation methods are dedicated to maximizing the compliance with "ground truth", namely the manual https://doi.org/10.1016/j.compstruct.2019.111031 Received 27 March 2019; Accepted 20 May 2019 segmentation provided by a human expert. The workload involved in performing manual segmentations is substantial, hence the spectrum of possible results is not thoroughly analyzed. However, in the medical domain, Lê et al. [START_REF] Lê | Sampling image segmentations for uncertainty quantification[END_REF] performed the identification of tumor tissue from X-ray tomographic scans by modeling the tumor boundary with level sets. A Gaussian Random Process (GRP) was then used to generate new partitions. Based on the position and area of the generated samples, the amount of radiation required to eradicate the tumor was estimated. Level sets were also used in [START_REF] Roy | A new method of brain tissues segmentation from MRI with accuracy estimation[END_REF] to obtain a unique segmentation of brain tissues, where the probability of the generated level set contours was described by a multivariate Gaussian distribution, and the contour with the highest likelihood was ultimately chosen. Finally, a unique segmentation of coronary arteries was obtained in [START_REF] Cruz-Aceves | Automatic segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization[END_REF] after sampling thresholds for image filtering and using multi-objective optimization with genetic algorithms to select the most plausible one.

In material studies, the results of segmentation in X-ray microtomography are usually not subject to error estimation, only sometimes accompanied by sensibility studies [START_REF] Mertens | Influence of fibre distribution and grain size on the mechanical behaviour of friction stir processed Mg-C composites[END_REF]. In [START_REF] Madra | Image-based model reconstruction and meshing of woven reinforcements in composites[END_REF], we have proposed a segmentation method based on dual kriging for identifying fiber tows in composite reinforcements. However, the kriging approximation, despite the availability of the error estimator , still provides deterministic results.

In the present work, we focus on constructing a model based on the actual microstructure while taking into account the measurement error and controlling the level of simplification. The kriging model is extended by making use of the structure of the underlying Gaussian Process to automatically generate new, plausible segmentations by affine transformation of independent multivariate Gaussian samples in a Monte Carlo manner [START_REF] Ripley | Stochastic simulation[END_REF]. This approach enables us to characterize the probability distribution of material properties, such as fiber tow volume or microscale fiber volume fraction. The ultimate goal is the uncertainty quantification and propagation across the simulation of resin injection during manufacture.

The rest of this paper is organized as follows. In Section 2 we formulate the conditional GRP distribution of a fiber tow contour that is then applied in Section 3 to generate a range of admissible contours for which a specific material parameter can be calculated, and its probabilistic distribution examined. The model is calibrated in Section 4 by choosing an adequate kernel function with hyperparameters optimized taking into account the geometric metrics of the structure. The metrics are formulated as objective functions and subject to multi-objective optimization. The approach is tested in Section 5 to identify glass fiber volume fraction of a typical composite specimen manufactured by Resin Transfer Molding (RTM).

Stochastic model of a fiber tow geometry

Two levels of segmentation are considered in this work: the phase segmentation determining the distribution of individual fibers and the structure segmentation identifying the geometry of fiber tows. The is defined based on the probability of phase segmentation P x y ( , ) p (Fig. 1c)

= x y P x y d ( , ) 1, if ( , ) 0, otherwise p t (1)
where d t is an empirically determined threshold value. The cross-sec- tion of a tow grouping individual fibers is obtained with structural segmentation (Fig. 1c) that yields probability P x y ( , ) s from which a contour is identified with an error. is expressed in a parametric form with x t y t ( ), ( ) as functions of a curvilinear coordinate t. We represent X t ( ) by a Gaussian Random Process GP 
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where µ x is a mean function

= µ t p t ( ) ( ) x T x
(3) with x denoting a vector of coefficients of polynomial basis and k x is a covariance function. Similarly

Y t µ k ( ( )) ( , ). t y y (0,1) GP (4)
We assume that a discrete instance of GP at n t sample points t follows a multivariate Gaussian distribution

= X X t x m K ( | ( ) ) ( , ) x 0 0 N (5) conditioned by observed values = … x y i n , , 1, , 
i i t 0 0
0 of a tow contour 0 (Fig. 2) associated with the measurement error variance t ( )

i 2 0 at discrete points = … t t t [ , , ] n 0 1 0 0 t 0 .
The Gaussian regression [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF] yields the conditional mean vector m x of length
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and a conditional covariance matrix K of dimensions ×
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Parameter allows to scale the contribution of the segmentation error and ij is the Kronecker delta (no summation over i). Furthermore, µ x is defined as

= = = … = = … µ µ µ µ p t i n µ p t i n ( ), ( ) , 1, , , ( ) , 1, 
,
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with fitted by Least Squares Fitting. The means m x and m y (obtained in an analogous manner) represent the kriging approximation of the contour . The variance of the estimation is given by diagonal terms of matrix

K = = … K i n , 1, , . i ii t 2 (10)
Considering a closed contour , we propose a periodic exponential squared kernel function

= k t t t t ( , ) exp 1 sin ( •( )) , (0, 1) i j i j 2 2 (11) 
with a single length-scale hyperparameter . Example kernels are shown in Fig. 3 for = … t 0, , 1 i and varying . The value of governs the size of the domain of influence. For = 1 every point contributes equally leading to overfitting, especially for low values of (Fig. 4a), which result in interpolation. Less accurate approximations are obtained for low values of , e.q., = 0.01 and = 0.1 which together with the increase in lead to smoother, elliptical contours (Fig. 4b). The zone of influence of depends also on the density of data coordinates, with sparse values leading to more variability in the reconstruction.

Stochastic sampling

As stated in the introduction, the GP mean vectors m x and m y provide a deterministic approximation of the contour. Here, we take advantage of the formulation of the model as a Gaussian Process to investigate the probability distributions of physical quantities. Namely, we can generate new, plausible contour samples

t m K ( ) ( , )
x N [START_REF] Naouar | Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography[END_REF] through an affine transformation
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of independent multivariate samples u taken from
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where A is determined from Cholesky's decomposition of K = K AA . T [START_REF] Hassan | Contribution of processing parameters on void content in the vacuum bagging configurations of L-shaped composite laminates[END_REF] This decomposition has to be performed only once and then A can be used to generate new contours at the cost of a single matrix-vector multiplication. The examples of such contours are shown in Fig. 5. The scaling factor (Eq. ( 8)) permits to control the influence of the segmentation error on the approximation of the contour. In Fig. 5a, the error is scaled with a coefficient = 0.05, yielding both mean and samples with low variability, almost interpolating data. Increasing is effective when a calibration of the segmentation is required as it enables exploration of contours that are dissimilar from the initial data. The smaller values of are useful in estimating material properties from the model that is already calibrated. This strategy is summarized in Alg. 1 and will be now applied to process experimental microtomographic data.

Algorithm 1: Generation of new contours by sampling of the calibrated GP model.

Kernel calibration

The kernel k modeling covariance C in Eq. ( 8) is calibrated by adjusting the hyperparameter . The choice of is directed by the physical plausibility of the model, i.e., how well it approximates the geometry of the fiber tow. We assume that:

• the number of fibers in a fiber tow is constant, • the diameter of each individual fiber is constant, implying that the total area vol fib of fibers at each section orthogonal to the centroid line of the fiber tow is also constant. As the sections in question are the volumes of thickness z and are represented by voxels, the term "fiber volume" is more appropriate. The measurement of vol fib from a microtomographic scan is further detailed in [START_REF] Madra | Image-based model reconstruction and meshing of woven reinforcements in composites[END_REF]. The following functions need to be considered

= = + = f vol z x y d f dm t dt dm t dt dt f m t dm t dt m t dm t dt dt ( ) ( , ) ( ) , ( ) ( , ) ( , ) , ( ) 1 2 
( , ) ( , ) ( , ) ( , ) 
. Function f 1 measures the difference between vol fib and the total fiber surface within the approximated contour; f 2 is the contour length and f 3 the area of the contour.

We can thus formulate a bi-objective optimization problem

= f f f Arg min( ( ), ( )) ( ) 0 1 2 3 1 ( 17 
)
where f f , 2 3 are objective functions and f 1 is an inequality constraint which restricts the admissibility of the generated contour (Fig. 6)) to the domains containing the required volume of fibers vol fib . Simultaneous minimization of f 2 and f 3 imposes a specific character on the reconstructed geometry by a compromise between minimal contour length ( f 2 ) and minimal volume ( f 3 ). As observed in Fig. 7, the objective functions are nonlinear in and exhibit multiple local minima. Thus, the optimization is performed by an evolutionary algorithm inspired by the Non-dominated Sorting Genetic Algorithm II (NSGA-II) by Deb [25]. The algorithm is described in Appendix A.

Test case: fiber volume fraction of a textile composite

So far, the methodology has been illustrated with abstract cases of simplified fiber tow geometry. Here, we present how the stochastic model performs on the actual microtomographic data. In addition to the exploration of various types of reconstructions, we present an application of the stochastic formulation to characterize the fiber volume fraction V f of a fiber tow. The approach will follow the steps outlined in Program 1. The phase and structure segmentation of raw tomograms are performed following the procedures in [START_REF] Madra | Image-based model reconstruction and meshing of woven reinforcements in composites[END_REF] and further data preprocessing step is performed as described in Section 5.2. The microtomographic data is then used to calibrate the GP model and generate new plausible contour samples. The latter are finally used to analyze the probability density function (PDF) of the local fiber volume fraction V f of the fiber tow. 22));

6return the PDF of Vf ;

Material and data acquisition

The material used in the study is a composite of a vinyl-ester matrix reinforced with three plies of TG96N60E glass fiber textile provided by Texonic [26]. The textile has a 3D orthogonal fabric architecture with unidirectional tows (non-crimp) placed in the warp and weft directions, kept together by a binder yarn. The composite was manufactured by Resin Transfer Molding (RTM). The liquid resin was injected at a constant rate into dry fibrous reinforcement placed in a rigid metallic mold. The intended fiber weight fraction was 50%. The scanned sample was cut from the center of the manufactured specimen (Fig. 8) and had nominal dimensions of 3x3x10 mm. The scans were realized at Laboratoire Mateis of INSA de Lyon, France on a v|tome|x X-ray microtomograph with parameters of acquisition detailed in Table 1.

The radiographic projections were reconstructed with the filtered back-projection algorithm [START_REF] Dudgeon | Multidimensional Digital Signal Processing[END_REF] into tomograms. One volume consisted of 1200 reconstructed slices requiring 1.5 GB of memory. It provided information on ten fiber tows, from which a single tow was selected and an example tomogram was subject to stochastic characterization.

Data preprocessing

The reconstructed tomogram is subject to two types of segmentation with Fast Random Forest learning algorithms as in [START_REF] Madra | Image-based model reconstruction and meshing of woven reinforcements in composites[END_REF]. Firstly, the phase segmentation is performed yielding phase probability P x y ( , ) p (Fig. 1b) from which and vol fib are further determined. Secondly, a structure segmentation is realized giving P x y ( , ) s (Fig. 1c) and the initial contour init discretized with t 0 . The discrete values of P x y ( , ) 

c i c i t 2 0 2 i i i 0 0 ( 20 
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The integration is analogous for y i 0 and y i 0. In the algorithm, this operation is performed by convolving data matrices with a × l l all-ones matrix filter J (Alg. 3 lines 6-14)

= J . ( 21 
)
The choice of l depends on the resolution of the scan. The data obtained during the preprocessing step are summarized in Table 2. The discretization of x y ( , ) 0 0 can be further adjusted through filtering by curvature energy as in [START_REF] Cruchaga | A front remeshing technique for a Lagrangian description of moving interfaces in two-fluid flows[END_REF], thus reducing the computational load.

Fitting of the model

The preprocessing step has yielded data required to build and calibrate the stochastic model. The GP is defined by the periodic kernel (Eq. ( 11)) and the mean function (Eq. ( 9)) is considered constant

= µ t µ t ( ) ( ) 0
x y without loss of generality. The influence of and has been studied in Fig. 11. It can be observed that for higher values of , the perimeter of the tow contour tends to a stable value, characteristic for the smooth reconstruction, similar to the one shown in Fig. 12a. At the same time, the area of volume cross-section f 3 exhibits multiple local minima in function of , with increasing variability for higher values of . For larger values of , the area encompassed the contour diminishes beyond that of the original reconstruction (Fig. 12b).

This decrease in area also translates into a loss of the total area f 1 of cross-sections of individual fibers contained within the contour. The graph of f 1 within 3 confidence intervals (Fig. 13) in function of shows that while the increase of the upper bounds of the contour (Fig. 13b) results in a marginal increase of the cross-sectional area of fibers included within the contour, for the lower bound (Fig. 13a) the difference between the target total fiber area vol fib and that obtained becomes substantial. For high values of , such as 0.05, even 16% of fibers are left out of the reconstructed contour.

Stochastic characterization of V f

Once the kernel function is calibrated, we may proceed to the Monte Carlo sampling of plausible contours (Alg. 1). An example of such sampling is shown in Fig. 14. These samples are now used to determine the local fiber volume fraction V f of a tow. The V f is defined as the ratio of the volume of fibers to the volume of a fiber tow, which in a 2D case is equivalent to

= = V y d f volume volume ( , ) ( ) . f fibers tow ( ) 3 (22) 
Fig. 15 shows two PDF fitted to histograms of distribution of V f obtained from 5000 contours sampled from the calibrated GP model. The first distribution (Fig. 15a) resulted from the model sampled with = 0.2. The mean of GP and of the samples differed only by 1.5% from the value of V f identified in the initial deterministic segmentation. Knowing that initial segmentation was not optimal, we augmented to 2.5, yielding a new mean 4% lower than the initial V f (Fig. 15b). The reason for these discrepancies can be identified by investigating sampled contours in Fig. 14b. The increase in leads to the inclusion of individual fibers around the fiber tow. Even though the area of fiber cross-sections increases marginally (Fig. 13b), the inclusion of individual fibers surrounded by pure resin or air results in the lower V f . Less variation in • leads to less variation in the inclusion of fibers and thus the identified V f is closer to the one resulting from deterministic measurement. It may be concluded, that the use of higher values of is of value when a calibration of the segmentation process is required. On the other hand, once calibrated, the smaller would ensure less noise in the stochastic identification of V f . It can be observed that some fibers belonging to the tow may be beyond the reach of the generated samples. Thus a reconstruction with low may lead to the omission of single fibers around the contour and surrounded by resin giving a higher V f . Larger increases the probability of inclusion of such "floating fibers" in the contour, and consequently also of the surrounding resin, resulting in lower V f . These two cases are illustrated in Fig. 15, where the V f values of samples are approximated by a Gaussian distribution with a spread of values from 63% (all "floating fibers" included) to 64% (only the core of the fiber tow with smooth geometry).

Computational aspects

The whole procedure outlined in Program 1 for one cross-section took 3 min on 8 × 2.80 GH CPU Intel® Core TM i7-7700HQ processors. The matrix operations (convolutions and Hadamard product, division and root) in Alg. 3, image segmentation and calculation of f f f , ,

were programmed with the help of Python OpenCV library [START_REF] Itseez | Open source computer vision library[END_REF] for calculations on Graphics Processing Units (GPU) and executed on NVIDIA® GeForce® GTX 1060. After parallelization and adjustment of parameters of Alg. 2 the total execution time was decreased to 22.5 s. Despite that, with the amount of data averaging 1.5 GB per scan, further optimization is necessary to perform the reconstruction of the microstructure of the entire specimen. Three solutions can be proposed to decrease the computational load. The first approach is to perform complete optimization on chosen cross-sections and optimization on constrained parameters for the intermediate ones. The second solution relies on the filtering of cross-sections to retrieve only the shapes which differ significantly and interpolating the rest. The choice depends on the intended application of the geometry as well as on the type of textile architecture. Three-dimensional textiles composed of different types of fibers would certainly benefit from the latter. Another solution consists of employing a better performing approach to optimize the hyperparameters.

Conclusions

We have presented a method to generate sets of plausible geometries of a textile reinforcement in composites from X-ray microtomographic scans. We have formulated a stochastic solution using the Gaussian Process underlying the deterministic kriging model. The advantages of this formulation are multiple. First of all, during model calibration, two extreme types of reconstruction are obtained: smooth, adequate for generation of a simplified mesh for Finite Element Analysis; and a detailed one, interesting for prediction of microscale permeability. The intermediate solution can be used to characterize local material characteristics such as fiber volume fraction V f . We have observed, that the mean V f obtained from the stochastic model differed significantly from the one based on the deterministic reconstruction. For structural applications where larger specimens need to be investigated, high resolution scans may not be possible, either due to Xray scanner limitations and/or data processing costs. In such case, the presented method can be first calibrated with high resolution data from another imaging technique, such as Scanning Electron Microscopy, and then reused for low-resolution X-ray microtomographic scans.

When treating microtomographic scans of compressed textiles, special care must be taken to avoid intersections of neighboring tows, for example by introducing another constraint. The methodology presented here can be also extended to three-dimensional geometry. These two issues are the subject of an ongoing study. 
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 1112313 Fig. 11. Influence of and on (a) f 2 (contour perimeter) and (b) f 3 (tow area) for the contour extracted from X-ray microtomographic data. The values of f 2 and f3
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 14 Fig.14. Sampling (green) of GP superimposed over the results of phase segmentation (black). The mean of GP is marked in blue and ± 3 confidence interval is marked in red. For references to color please refer to the online version of this paper.
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 15 Fig. 15. Distribution of V f for different error strength factors (a) = 0.2 (b) = 2.5. Here, the relates to the distribution of V f .

Algorithm 3 :

 3 Identification of x y

Program 1 :

 1 Methodology for stochastic characterization of fiber tows.

	Input: tomogram		
	Parameters: parameters for Alg. 1, Alg. 3, and Alg. 2
	1 extract P x y P x y ( , ), ( , ) p s	and	init after [16]
	2 data preprocessing with Alg. 3;
	3 calibrate kernel with Alg. 2;	
	4 sample new contours with Alg. 1;
	5 calculate Vf for each contour (Eq. (

Table 1

 1 Parameters of data acquisition with X-ray microtomography.

	Parameter	Value
	Acceleration voltage	80 kV
	Beam current	280 μA
	No. of projections	1500
	Scan resolution	3.0 μm

Table 2

 2 Input data for reconstruction of one tow contour.

	Data P x y ( , ) p P x y ( , ) s	where P x y ( , ) 0.5 p	No. of points 8.89•10 5 3.01•10 5 8.89•10 5
	x y ( , ) 0 0	Before filtering	4.67•10 3
		After filtering	1.66•10 3
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Appendix A. Appendix A

The flow of the optimization algorithm is shown in Alg. 2 below. The optimization begins by generating a random population of kernel hyperparameters with which a contour is fitted to the x y ( , ) 0 0 and objective functions are evaluated. Following a ranking of hyperparameter sets according to the dominance criterion, a new population is generated by crossover, mutation and niching. The choice of algorithm parameters is adapted empirically depending on the quality of the initial segmentation, with good initial approximations requiring less generations to provide satisfactory results. For the discrete representation , the partial derivatives can be approximated by convolution (Alg. 3 lines 1-2) with directional Sobel filters

x y [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF] resulting in images Fig. 16a andb. Then, the discrete P c (Alg. 3 line 3) will be as in Fig. 9.