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Investigation of optimal physical parameters for precise proton irradiation 

of orthotopic tumors in small animals 

 

Abstract 

Purpose: The lack of evidence of biomarkers identifying patients that would benefit from proton 

therapy has driven the emergence of preclinical proton irradiation platforms using advanced small-

animal models to mimic clinical therapeutic conditions. This study aims to determine the optimal 

physical parameters of the proton beam with a high radiation targeting accuracy, since small-animal 

tumors can reach millimetric dimensions at a maximum depth of about 2 cm.  

Material and Methods: Several treatment plans, simulated using Geant4, were generated with 

different proton beam features to assess the optimal physical parameters for small volume irradiations. 

The quality of each treatment plan was estimated by dose-volume histograms and gamma index maps. 

Results: Due to low energy straggling, low energy proton (<50 MeV) single-field irradiation can 

generate homogeneous SOBP to deliver a uniform dose in millimeter-sized tumors, while sparing 

healthy tissues located within or near the target volume. However, multi-field irradiation can limit the 

dose delivered in critical structures surrounding the target for attenuated high energy beams (E>160 

MeV).  

Conclusion: Low energy proton beam platforms are suitable for precision irradiation for translational 

radiobiology studies. 

Keywords: Preclinical proton irradiation, targeted irradiation, dose accuracy, Geant4  
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Introduction 

Despite its common use in the treatment of cancer, radiotherapy has only recently entered the era of 

precision medicine (1). A particularly exciting technology being currently explored for clinical 

applications is proton therapy (PT), which has the potential of higher dose conformity compared to 

photon beams, with less normal tissue being irradiated. However, the dose planning for PT is more 

complex than for conventional radiotherapy. A range error of even a few millimeters can lead to 

underdosage in the target volume and overdosage in the structures at risk (2–4). To date, a semi-

personalized approach can be used with a reoptimization method based on linear energy transfer for 

intensity modulated PT, which is a safer treatment as it mitigates a potentially increased risk of side 

effects that result from the elevated relative biological effectiveness of proton beams near the end of 

the range (5). Recently, studies have focused on predicting patient-specific dosimetric benefits of PT 

(6) and dose escalation; for example, Chan et al. demonstrated low toxicity and high local control rate 

in patients with high-grade meningioma (7). Proton radiation dose escalation improved local control, 

but also increased toxicity (8). However, the inability to identify one or more biomarkers for 

conclusive patient outcomes limits the transfer of PT to personalized medicine. Therefore, small-

animal proton irradiations are required to overcome these issues and refine the current guidelines.  

The use of proper animal models with human-like treatments is necessary to mimic the pathologies 

observed in patients. There is also a growing need to make progress in proton radiation biology – 

focused, for instance, on preclinical studies with linear energy transfer of clinical interest – in order to 

provide practicing radiation oncologists with accessible data. With burgeoning innovative preclinical 

irradiation techniques, new animal models of orthotopic xenografts have been developed, among 

others, for pancreatic (9) and lung cancer models (10). Precise irradiation platforms for preclinical 

studies were already developed with X-rays (11–13), and more recently, with protons (14–16). 

Through a common effort to improve dose delivery and treatment planning in small animals (17), 

radiation biological studies may easily be transferred to the clinic. This information will play a 

decisive role in proposing treatment and follow-up adapted to the characteristics of patients’ tumors 

and individual radiosensitivity. 
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This study aims to define the optimal features of a proton beamline (energy, straggling, and beam size) 

required to accurately irradiate orthotopic xenograft tumors in small animals. Several geometries were 

considered with sizes comparable to brain and lung tumors in mice and rats (18). For each considered 

target volume, different Monte Carlo-based treatment plans were compared using proton energies and 

energy straggling corresponding to the existing preclinical facilities (14, 15, 19, 20). These features are 

proposed to optimize the design of subsequent preclinical studies. 

 

Material and Methods 

 

Setup geometry 

 

The simulated geometric configuration was chosen to be similar to the existing preclinical setups (14, 

19, 20). The water target corresponds to the irradiated volume. To obtain a passive modulated proton 

beam, a wheel with a set of attenuators of different thicknesses was placed before the target and after 

the beam exit to decrease the energy of the beam. Polyethylene material was chosen for beam 

attenuation, since it is commonly used for energy modulation. The uniformity of the beam profile after 

attenuation was achieved using aluminum collimators of various diameters (2 and 4 mm).  

Two examples of orthotopic tumors with parallelepiped geometry, accounting for the typical size of 

mouse tumors (18, 21, 22), were chosen to assess the validity of the treatment plans:  

• a 2×2×2 mm3 volume located at a depth of 4 mm in a water volume with a 0.3 mm thick 

compact bone at the beam entrance (corresponding to mouse skull thickness),  

• a 4×4×4 mm3 volume located at a depth of 3 mm in a water volume with a 1 mm thick 

compact bone at the entrance (corresponding to rat skull thickness (23)), 

For each tested tumor configuration, the prescribed dose was set to Dp=1 Gy.  

 

Monte Carlo simulations 
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All results presented in this work were obtained using Monte Carlo simulations performed with 

Geant4 10.03 (24). Geant4 was chosen for its ability to simulate the nuclear reactions, which are not 

negligible at energies higher than 50 MeV. We used the Binary Cascade light ion model (BIC) to 

describe proton interactions. The BIC model, called G4BinaryLightIonReaction, was an extension of 

the binary cascade model described by Folger et al. (25). The pre-defined physics list QGSP_BIC was 

used in our study. In this model, the participating particles, i.e., primary particles or particles generated 

during the cascade process, are described by means of Gaussian wave functions. The electromagnetic 

physics list used was G4EmStandardPhysics_option3, which currently includes the ICRU 73 stopping 

power data up to 1 GeV/u (26). This physics list is recommended for hadrontherapy applications (27). 

The mean ionization potential in water was set to 79.2 eV corresponding to the average value 

previously reported (28). The step size was set to 0.1 mm, and the range cut to 1 mm (29). 

 

Proton beam features 

 

To determine the optimal proton features, several treatment plans were simulated based on available 

data with different proton beam energies (E) and energy straggling (σE) given at the beam exit, before 

modulation. The chosen features were the following: 

• E=25 MeV, σE=0.127 MeV; 

• E=30 MeV, σE=0.353 MeV; 

• E=50 MeV, σE=0.500 MeV; 

• E=68 MeV, σE=0.547 MeV; 

• E=160 MeV, σE=0.855 MeV; 

• E=200 MeV, σE=1.030 MeV. 

These energies as well as their associated straggling correspond to existing facilities that can provide 

proton beam energies ranging from 25 MeV to 200 MeV (15, 30). It should be emphasized that, as the 

modulation of the beam was performed upstream the collimator and the phantom, the energy 
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straggling was considerably increased for higher energy beams. Additionally, three configurations 

were tested to assess the impact of multi-field irradiation on dose deposition: 

• a single-field irradiation;  

• a multi-field irradiation with three incidence angles of the beam at -45º, 0º, and +45º; 

• a multi-field irradiation with five incidence angles of the beam at -45º, -25º, 0º, +25º, and 

+45º. 

For each tumor geometry and physical beam features, a spread-out Bragg peak (SOBP) was built by 

superimposing several Bragg peaks of different energies obtained by modulating the initial beam with 

the attenuator wheel described above. For the mouse-type volume, the reference dose distribution 

comprised 12 proton energies between 19.72 MeV and 23.67 MeV with equally spaced energy levels, 

while it comprised 15 proton energies between 18.76 MeV and 28.37 MeV for the rat-type volume.  

 

Assessment of the dose distributions 

 

Cumulative dose volume histograms (DVH) (31) were used to assess the quality of the dose 

distribution and determine the minimal tumor size that could be homogeneously irradiated for a given 

energy (E0 = 25, 30, 50, 68, 160, and 200 MeV) and straggling (σE) varying from 0 to 1 MeV. ICRU 

report 62 (32) stated that the acceptable dose heterogeneity (∆��) is +7% to -5% of the prescribed 

dose in X radiotherapy. Therefore, the simulated target volume will be considered to be accurately 

irradiated when at least 100% of this volume received 95% of the prescribed dose (0.95 Gy in our 

case). An overdosage will be considered when the volume received more than 107% of the required 

dose (1.07 Gy in our case).  

For each E0 and σE, different SOBPs with a prescribed dose of 1 Gy were simulated with cubic target 

tumor sizes ranging from sub-millimeter to centimeter, and the corresponding DVH was then used to 

assess the homogeneity of the delivered dose. The smallest volume for which the simulated target was 

irradiated within the dose tolerance ∆�� corresponds to the minimal tumor size that could be 

homogeneously irradiated with one field.   
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Gamma index 

 

The gamma index (33, 34) directly compares the predicted with a reference dose distribution, 

accounting for the dose and spatial resolution. For each measured position ���, it is defined as (33, 35):  

�	���) = ��
�|��� , ���|����� + |�	���) − �	���)|�Δ��  

where ��� is the reference position, |��� , ���| the distance between the analyzed points, |�	���) − �	���)| 
the dose difference, and DTA (distance-to-agreement) and ∆D the required accuracies for the distance 

and dose, respectively. In the following, the passing criteria were set at ∆�� =��%��%, (32) and 

���=0.1, 0.2, or 0.3 mm, which respectively correspond to the ideal spatial dose resolutions for 

mouse, rat, and rabbit X-ray irradiations as recommended by Verhaegen et al. (32). These values 

should combine positioning, stability, and imaging precision. If the �	���) value is less than 1, the 

calculation passes, and the delivered and predicted doses are considered to be in agreement. In our 

study, the gamma index was used only for single-field irradiation to assess the impact of the dose 

spatial resolution on the validity of the treatment plan.  

A reference dose distribution, considered to be an optimal dose delivery to the target volume, was 

simulated using Geant4 for each considered geometry in order to calculate the gamma index. The 

simulated setup was the same as described in the Setup geometry section above using non-attenuated 

proton beam energies without energy straggling.  

 

Results 

 

Influence of energy straggling 

 

Figure 1 shows the minimal tumor size that can be homogeneously irradiated with a single-field 

irradiation as a function of the initial proton beam energy spread. Tumor sizes less than 0.5 mm can be 
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homogeneously irradiated with proton beam energies less than 30 MeV and energy straggling less 

than 0.2 MeV. Higher energy beams attenuated at the beamline exit (160 and 200 MeV) cannot 

achieve homogeneous irradiation for volumes less than 1 cm3 despite an energy straggling less than 

0.2 MeV. This minimal size is constrained by the lateral scattering of the beam in the target.  

 

 

Influence of beam modulation on stereotactic irradiations 

 

Figure 2 compares the SOBP simulated using the initial beam features given in the Proton beam 

features section with the reference SOBP (black line) associated with the reference dose distribution 

defined in the Material and Methods section. The 2 mm (Fig. 2a) and 4 mm (Fig. 2b) volumes were 

irradiated with a single-field proton beam. At E=25 MeV with σE=0.127 MeV, the SOBP that targets 

the 2 mm volume (Fig. 2a) is homogeneous, similarly to the reference SOBP. This is not the case at 

higher energies, especially at 160 and 200 MeV, for which the important beam straggling generated by 

its modulation distorts the SOBP. It is noteworthy that the absorbed dose in the bone (e.g., skull) is 

about twice as high for high energy protons than for low energy ones, for which the absorbed dose in 

the bone insert is around 0.5 Gy (Fig. 2a).  

 

A homogeneous SOBP is obtained with the 4 mm tumor volume at low energies (E=30 MeV; 

σE=0.353 MeV) (Fig. 2b). However, when the energy is increased to 50 and 68 MeV, the edge of the 

SOBP is shifted from 0.7 cm to 0.66 and 0.62 cm, respectively. At 160 and 200 MeV, the SOBP is a 

wide bump, with the maximal dose deposited immediately after the bone insert between 0.1 and 0.3 

cm.  

 

Influence of the spatial dose resolution 

 

The gamma index maps calculated for each simulated configuration as well as the corresponding dose 

distributions are shown in Figures 3 and 4. Gamma index values corresponding to the 2 mm volume 
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irradiated with a 25 MeV beam (Fig. 3a) are always below 1 with a DTA of 0.1 mm. Conversely, 

deviations from the reference depth dose observed in Figure 2a are clearly visible when the energy is 

higher than 50 MeV. A gamma index close to 2 appears in the target volume at 50, 68, and 160 MeV 

for 0.1 mm DTA, which corresponds to an underdosage at the edge of the SOBP according to Figure 

2. The gamma index values remain above 1 when increasing the DTA to 0.2 or 0.3 mm (Fig. 3d). 

Furthermore, when the energy is increased to 160 MeV, important areas with gamma index values of 2 

appear before and after the tumor volume, demonstrating important discrepancies before and after the 

SOBP. This originates from the large spread of the SOBP due to the high attenuation of the proton 

beam. 

 

For the 4 mm volume, the gamma index values are mainly below 1 in the target zone irradiated with a 

30 MeV beam (Fig. 4a), although a region of higher gamma index values appears at the edge of the 

SOBP for a 0.1 mm DTA. Areas with gamma index values close to 2 appear at the distal edge of the 

target volume when the energy is up to 50 MeV (Fig. 4b). However, when the DTA is enlarged to 0.2 

mm, corresponding to the spatial resolution required for rat irradiation, these areas fade to partially 

disappear with a 0.3 mm DTA. Conversely, for energies higher than 50 MeV (Fig. 4c-d), the gamma 

index values are close to 2 at the edges of the SOBP for all DTA values due to the important beam 

straggling generated by its modulation. Additionally, the overdosage in the bone insert highlighted 

above in Figure 2b for 160 MeV translates into high gamma index values. 

 

Influence of the number of fields 

 

Figure 5 presents the DVH for the treatment plans simulated with the six energies for the two target 

volumes with single-field irradiation (top panels). For both target volumes, protons of 25 MeV (2 mm 

volume) and 30 MeV (4 mm volume) achieve homogeneous irradiation within the required dose 

tolerance (indicated by the hashed area). At higher energies, an important part of the target volume 

receives a higher dose than the prescribed one. For example, at 200 MeV, 60% of the 4 mm volume 

receives 1.3 Gy. When the number of fields increases (middle and bottom panels, Fig. 5), the dose 
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uniformity in the target volume is improved for all energies. For the 2 mm volume, the dose delivered 

by the multi-field at 30 and 50 MeV beam energy is accurate within the dose tolerance for three fields. 

Even if the dose homogeneity is significantly enhanced at 160 and 200 MeV, an overdosage still 

remains in the target volume, although it is diminished compared to single-field irradiation. For 

example, 40% of the 4 mm volume receives more than 1.07 Gy using three radiation fields with the 

200 MeV beam (Fig. 5b, bottom panel).  

 

Figure 6 shows the DVH of the bone inserts associated with the dose delivery conditions used to 

produce the DVH in Figure 5. The dose delivered to the bone insert at the entrance of the target is 

always above 0.5 Gy in the 0.3 mm bone insert with a single radiation field (2 mm volume) as well as 

in the 1 mm insert (4 mm volume). Above 160 MeV, the bone insert receives more than 1 Gy. When 

the number of fields increases, the dose in the bone is drastically reduced, with 100% of both target 

volumes receiving between 0.15 and 0.5 Gy using five fields. Similarly to what is observed for single-

field irradiation, medium beam energy (25-68 MeV) irradiations lead to a lower dose in the insert 

compared to energies above 160 MeV. However, this difference is highly attenuated by multi-field 

irradiations, with 100% of the bone receiving less than 0.3 Gy with five-field irradiation.   

 

Discussion 

 

The minimal volume size that can be irradiated in single-field irradiation is strongly dependent on the 

initial proton beam energy and its straggling (Fig. 1). For example, low energy beams (<50 MeV) can 

achieve homogeneous irradiation of volumes smaller than 2 mm. Of course, this minimal size has to 

be put into perspective with the maximum reachable depth. The irradiation of very small volumes 

(below 0.5 mm) is possible with low energy beams (25 and 30 MeV) and low energy straggling 

(σE<0.250 MeV), but is limited by the short proton range (~6.0 mm @25 MeV, ~8.0 mm @30 MeV). 

Consequently, the use of this energy range for preclinical irradiation should be limited to specific 

irradiations, such as mouse brain tumors that can be irradiated with 25 and 30 MeV beams.  
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Our results demonstrated that the uniform irradiation of very small volumes with attenuated high 

energy with a single radiation field cannot be achieved without an important over-irradiation of 

surrounding tissues. For example, according to the Figure 5a, more than 60% of the 2 mm volume 

receives more than 1.07 Gy when it is irradiated with a modulated beam above 50 MeV. Indeed, the 

energy straggling, which is usually proportional to the initial energy of the beam (36), is increased by 

the modulation, leading to a large SOBP spread (Fig. 2). For example, to decrease the proton energy 

from 160 MeV in order to irradiate a 4 mm volume, 16 cm of polyethylene is required, which 

increases the energy straggling by almost 4 MeV. This effect cannot be corrected by step-size 

variation in the modulation. Consequently, it will produce an overdosage in healthy tissues as well as 

part of the target volume. This outcome, highlighted by the DVH in Figures 5 and 6, was already 

pointed out by Ford et al. (15), who compared the depth dose profiles of a 30 MeV beam and 

modulated 100 MeV range-shifted beam in water. However, this effect can be significantly decreased, 

and the uniformity of the dose in the target volume can be improved by a multi-field proton beam (Fig. 

5). Indeed, a homogeneous dose delivery in millimetric targets can be achieved by three-field 

irradiation with medium energy proton beams (< 68 MeV) (Fig. 5, bottom panel). Furthermore, the use 

of an energy selection magnet can significantly reduce the energy straggling of attenuated high energy 

beam. The lateral coverage can also be enhanced by enlarging the collimators size for higher energy 

beams, although it will result in an increase dose in surrounding tissues.  

The choice of the optimal beam characteristics for small-animal proton irradiation also strongly 

depends on the required spatial resolution (given here by the DTA), which depends on the type of 

small animal to be irradiated. For example, the use of a 30 MeV single-field proton beam to irradiate a 

2 mm volume is suitable when the DTA is increased from 0.1 mm to 0.2 mm (Fig. 3b). Similarly, the 

underdosage at the edge of the SOBP, observed for the target volume with a 50 MeV single-radiation 

field (Fig. 2), is attenuated when the DTA is increased (Fig. 4b).  

Finally, it should be noted that the precise dose delivery in millimetric volumes is a technical 

challenge that requires very precise imaging (e.g., micro-CT scan, MRI (18)) and positioning systems. 

Several image-guided X-ray irradiation platforms that already exist for small animals can perform 

irradiations of millimetric orthotopic tumor volumes, such as mouse lung tumors that can reach 1 mm 
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in size, with a precision of 0.1 mm or less (21, 37, 38). To perform inter-comparisons between proton 

and X-ray treatments, similar irradiation accuracies between both modalities should be achieved, as 

proposed by Ford et al. (15). 

 

Conclusion 

 

This work demonstrated that low energy proton beams (E<68 MeV) are appropriate to carry out 

homogeneous irradiation of millimeter-sized tumors while sparing healthy tissues in preclinical 

studies. On the one hand, 25-30 MeV beams are suitable for mouse irradiations, as tumor dimensions 

in mice can be sub-millimetric, although low energies have a limited penetration depth of about 6-8 

mm. On the other hand, a 50 MeV beam is more adapted to rat irradiation, as the organs are larger 

than in mice, thus providing greater flexibility for the choice of orthotopic model and dose accuracy. 

The use of attenuated high energy proton beams to irradiate small tumor volumes (< 1 cm) can be 

considered with a multi-field configuration. However, our results demonstrate that the important 

energy straggling of an attenuated high energy proton beam leads to a substantial overdosage in 

healthy tissues.  
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Figure captions 

 

FIGURE 1. Minimal cubic tumor size that can be irradiated with different proton energies as a 

function of the initial energy straggling of the beam. The points corresponding to the nominal features 

of the proton beams described in this work  (see Proton beam features section) are indicated by 

squares (15, 30). Points are connected to lines to guide the eye. 

 

FIGURE 2. Comparison between simulated SOBPs obtained for a 2 mm tumor (a) and 4 mm tumor 

(b), irradiated with proton beams of 25 (only for the 2 mm tumor), 30, 50, 68, 160, and 200 MeV. 

Reference corresponds to non-attenuated proton beam energies without energy straggling (black line). 

The dose discontinuity at the entrance of the target corresponds to the proton interaction in the bone 

insert.  

 

FIGURE 3. Dose distributions and gamma index maps for the treatment plans generated to irradiate 

the 2 mm volume with a 0.1 mm DTA, with proton beams of 25 (a), 30 (b), 50 (c), 68 (d), and 160 

MeV (e). The target volume is indicated by the white box. The gamma index maps generated with a 

DTA of 0.2 and 0.3 mm are presented in the insert boxes. 

 

FIGURE 4. Dose distributions and gamma index maps for the treatment plans simulated to irradiate 

the 4 mm volume with a 0.1 mm DTA, with proton beams of 30 (a), 50 (b), 68 (c), and 160 MeV (d). 

The target volume is indicated by the white box. The gamma index maps generated with a DTA of 0.2 

and 0.3 mm are presented in the insert boxes. 

 

FIGURE 5. Comparison of the DVH of the target volumes obtained for the treatment plans of the 2 

mm volume (a) and 4 mm volume (b) irradiated with 25 (in the case of the 2 mm volume alone), 30, 

50, 68, 160, and 200 MeV. The middle panel shows DVHs obtained for three radiation fields, and the 

bottom panel for five radiation fields. The hashed area indicates the accepted dose tolerance around 
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the 1 Gy prescribed dose. The DVH were normalized to a common point (requiring 100% of the 

volume receiving 0.95 Gy) for comparative purposes.  

 

FIGURE 6. Comparison of the DVH of the bone inserts obtained for the treatment plans of the 2 mm 

volume (a) and 4 mm volume (b) irradiated with 25 (in the case of the 2 mm volume alone), 30, 50, 

68, 160, and 200 MeV. The middle panel shows the DVH obtained for three radiation fields, and the 

bottom panel for five radiation fields. 
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Investigation of optimal physical parameters for precise proton irradiation 

of orthotopic tumors in small animals 

 

Summary 

The emergence of preclinical proton irradiation platforms dedicated to radiobiological studies drives 

the development of small-animal models, mimicking clinical therapy conditions.  

Targeted irradiations of small volumes are conditioned by the proton beam physical properties. Based 

on available proton beam data and Geant4 simulations, the optimal features to correctly deliver the 

prescribed physical dose in small-animal tumors were determined. In particular cases of millimetric 

tumors, low energy protons are better suited than protons > 50 MeV. 


