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Abstract 
 
Aortic dissection represents a serious cardio-vascular disease and life-threatening event. Dissection is a sudden 

delamination event of the wall, possibly leading to rupture within a few hours. Current knowledge and practical 

criteria to understand and predict this phenomenon lack reliable models and experimental observations of 

rupture at the lamellar scale. In an attempt to quantify rupture-related parameters, the present study proposes 

an analytical model that reproduces a uniaxial test on medial arterial samples observed under X-ray 

tomography. This model is composed of several layers that represent the media of the aortic wall, each having 

proper elastic and damage properties. Finite element models were created to validate the analytical model 

using user-defined parameters. Once the model was validated, an inverse analysis was used to fit the model 

parameters to experimental curves of uniaxial tests from a published study. Because this analytical model did 

not consider delamination strength between layers, a finite element model that included this phenomenon was 

also developed to investigate the influence of the delamination on the stress-strain curve through a sensitivity 

analysis. It was shown that shear delamination strength between layers, i.e. mode II separation, is essential in 

the rupture process observed experimentally. 

Statement of Significance 

 

Most of existing models investigating aortic dissection phenomena are at the macro-scale. In this work, we 

propose a lamellar-scale rupture model based on published experiments. The model reproduces the 

experimental data with great accuracy and provides rupture values for layers of the media and for 

delamination between these layers, which are still scarce in the literature. Thus, this study provides a better 

understanding of the rupture mechanism involved in aortic dissection. 
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1. Introduction 

Aortic dissection, a sudden delamination of the aortic wall in its medial layer, is a life-

threatening arterial event associated with a very poor outcome, and requires rapid diagnosis 

and decision-making; without intervention, up to 90% of patient with acute aortic dissection 

die within weeks [7]. As highlighted by the review of Nienaber et al. [12], dissection is usually 

thought to be caused by an intimal tear in which the blood rushes and propagates in the 

medial layer. Dissection can also be initiated at the site of an intramural hemorrhage, which 

is thought to be less frequent. Aortic dissection has an incidence of 35 cases per 100,000 

people per year in the 65-75 year-old age group. Hypertension, dyslipidaemia and genetic 

disorders like the Marfan syndrome are known risk factors.  

 

Despite its high mortality, few studies have tried to explain the microstructural phenomena 

occurring during initiation and propagation of dissection in the aorta. Advanced mechanical 

analyses of the underlying mechanisms, based on mechanical experiments as well as 

structural observations at the micro- and meso-scales – these two being possibly combined – 

would deeply improve the understanding of such fatal event and could improve clinical 

decision-making criteria.  

 

Regarding the architecture of the tissue, the medial layer is a complex structure consisting of 

several lamellar units separated by elastic laminae [25]. Each unit is mainly composed of 

elastin, collagen and smooth muscle cells. Due to its organization, the media is weaker in the 

radial direction, compared to the axial and circumferential directions [10]. Thus, it is prone 

to dissection separation. 

 

Previous scientific work mainly involved macro-scale testing. Roach and co-workers infused a 

fluid into the media at a constant flow, while recording pressure and volume, in order to 



3 
 

investigate the mechanisms leading to aortic dissection [2]. The measurements showed that 

the peak pressure needed to dissect the aortic media was 77.2 +- 1.5 kPa and the energy 

release rate needed to propagate the dissection was 15.9 +- 0.9 mJ/cm². Another study 

focused on radial tensile and peeling tests to quantitatively assess the properties of the 

medial layer [17]. The results showed that the energy release rates measured in peeling 

were 5.1 +- 0.6 mJ/cm² in the circumferential direction and 7.6 +- 2.7 mJ/cm² in the 

longitudinal direction; the difference was explained by the alignment of components like 

collagen fibers and smooth muscle cells.  

 

In regard to imaging techniques allowing the investigation of the microstructure of arterial 

wall, multiphoton microscopy is widely used. This technique enables the observation of the 

sample at fiber-scale (with a resolution of about one micron) but it is limited by a small 

volume of observation (no more than 500x500x200 µm3) [8]. Some groups have used X-ray 

tomography to investigate the microstructural architecture of vascular soft tissues. Phase 

contrast techniques provides a good resolution and contrast with a wide field of view; 

however, samples have to be embedded and the time required to obtain images is 

extremely long, preventing in situ testing [20]. Some authors compared different contrast 

agents to observe microstructural components like collagen, but the samples were unloaded 

[13].  

 

In a previous study, an X-ray tomography experiment taking advantage of the versatility of 

the technique to perform in situ tensile testing was developed. Using a specific staining 

technique and a specific tensile machine, this study provided unprecedented observations of 

medial tissue under tension, and a meso-scale description of medial rupture, possibly 

constituting a model for in vitro dissection [6].  

 

In the context of aortic dissections, modeling rupture has been a challenge and only a few 

models have been published in the literature. Gasser et al. [5] developed a non-linear 

continuum framework composed of a continuous material and a cohesive material. The 

continuous material was modeled as a fiber-reinforced composite with collagen fibers 

embedded in a non-collagenous isotropic ground matrix. The two materials were 

independent from each other. The framework was then implemented in a finite element 
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model to reproduce a peeling test and investigate the propagation of arterial dissection. 

Ferrara et al. [4] presented a numerical model of dissection based on cohesive fracture 

theory. The model was implemented in a numerical simulation of a peeling test. A sensitivity 

analysis was then performed to evaluate the influence of the cohesive parameters driving 

the interlamellar propagation of the dissection in the media and the influence of the 

reinforcing collagen fibers on the separation of the layers. Wang et al. [22] proposed a 

computational model to study the propagation of a tear in a fiber-reinforced tissue. The 

energy release rate was calculated, allowing them to determine the values of pre-existing 

tear length and internal pressure needed to propagate the tear. The effect of fiber 

orientation and surrounding connective tissues were also investigated. Later, Wang et al. 

[21] developed a residually stressed two-layer arterial model. The material properties were 

modelled using the Gasser-Ogden-Holzapfel model, and the propagation of the tear was 

described with a linear traction-separation law. The extended finite element method was 

used for the simulation. The effect of residual stresses in the arterial wall on the dissection 

propagation was investigated. Notably, these models studied dissection at the scale of the 

whole wall. For a better understanding of the phenomena involved in this disease, a 

lamellar-scale model is needed. 

 

The present study aimed at characterizing and quantifying the mechanisms triggering and 

propagating a dissection in medial tissue. To this aim, an analysis of the previously published 

experimental work [6] is proposed based on analytical and numerical approaches using 

linear cohesive models, first introduced by Dugdale and Barrenblatt  [1,3], and as often used 

in commercial codes to model crack opening and rupture. The approach was used to identify 

the cohesive model’s parameters, which were later used in a finite element (FE) model to 

assess the relative influence of different crack propagation modes in the tissue.  

2. Methods 

2.1. Experimental data 

 

In a previously published experimental study [6], uniaxial rupture tests were performed in 

situ on medial layers of porcine aortic samples under X-ray micro-tomography. Briefly, the 

technique required the use of sodium polytungstate as a contrast agent, applied by 
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immersing the samples in such a solution. This made it possible to image the lamellar units in 

the tissue when performing 3D scans of the samples. X-ray micro-tomography provided a 

mean to monitor damage initiation, delamination and rupture of medial tissue under tensile 

loading. The process was described as an elementary process repeating several times until 

complete failure. This elementary process initiated with a sudden mode I fracture (in the 

loading direction) of a group of lamellar units, followed by an elastic recoil of these units, 

causing mode II separation creating a delamination plane as shown in Figure 1. 

 

Figure 1: schematic representation of the damage initiation and propagation mechanism observed in situ. (a) intact sample, 

(b and c) initial radial crack, opening in mode I, (d) elastic recoil of the ruptured layers, causing a mode II longitudinal crack 

to form and propagate, (f, g, h…) the process repeats until complete failure of the sample. Modified from Helfenstein-Didier 

et al. [6]. 

 

To build dissection models and identify their parameters, the qualitative observations made 

during the tensile tests performed up to rupture were used, along with the force-

displacement curves obtained at the same time. Ten samples and their corresponding data 

were used in the present study. 

 

2.2 Analytical multi-layer cohesive model 

 

A 1D analytical model was created to numerically reproduce the uniaxial test responses of 

medial tissue. The dimensions taken into account (length, thickness and width of the 
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rectangular samples) were obtained from the X-ray tomography images [6]. The model was 

composed of several layers in parallel, all layers were assumed to have the same dimensions. 

Each layer represented a group of several lamellar units, the number of groups was 

determined based on the traction curve, as detailed in section 2.3 below. The behavior of 

each layer was governed by an incompressible hyperelastic contribution and a cohesive 

contribution, both assumed to work in series (see Figure 2). Note that this 1D model, can 

only include mode I fracture; mode II will be addressed later in the proposed FE model. 

 

 
 Figure 2: Schematic representing the analytical model and its material parameters. 

 
Because the model primarily aims at studying the response at rupture, the medial tissue was 

assumed to have an isotropic mechanical behavior for the hyperelastic contribution which 

was modeled with an incompressible second order reduced polynomial constitutive 

equation [16]. The strain energy function of this model was defined as: 

  

� � ������́ 	 3� � �����́ 	 3�
 (Eq. 1) 

 

with C10 and C20 the material parameters and ��́ the first deviatoric strain invariant defined as  

��́ � ���́. �́ � �́��́ is the deviatoric right Cauchy-Green tensor and �́ is the deviatoric part of 

the deformation gradient tensor.  

The specificity of this analytical model of the media was to also include a cohesive part in 

each layer. The objective was to reproduce the damage initiation and evolution until total 

rupture observed during the uniaxial tests. The motivation to use independent cohesive 
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interfaces in each layer was that layers, comprising several lamellar units, were observed not 

to break at the same time in our previous uniaxial tests [6]. It was assumed that the cause of 

this phenomenon was the presence of defects in the layers. Thus, to reproduce different 

defects with different possible rupture thresholds, cohesive interfaces were introduced, in 

series with the hyper-elastic material. In this model, the global strain is equal to the strain in 

each layer, and the global force is the sum of the contributions from all layers. The response 

of a cohesive interface is illustrated in Figure 3. Only traction (related to mode I of rupture) 

was taken into account in this 1D model.  

 

Figure 3: Cohesive behaviour with the stress as a function of the opening of the crack. 

 
The response of the cohesive zone is defined based on the normal stress as:  

 
��� � �

����
� � 1 (Eq. 2) 

 
where σ (MPa) is the normal stress in the normal direction (ie. the loading direction here) 

and "#$#is the damage initiation criterion which represents the peak value of the normal 

stress. This criterion indicates the beginning of damage in the cohesive zone. Damage 

evolution was then defined by a decreasing linear law which describes the rate of 

degradation of the cohesive zone stiffness. This law was defined based on the fracture 

energy Gc which is the amount of energy dissipated during the complete rupture of the 

cohesive zone.  The choice of this cohesive zone model was motivated by the study of Miao 

et al. [11], which compared the effects of four types of cohesive zone model shapes: 



8 
 

triangular, trapezoidal, linear-exponential and exponential-linear, on the predictability of 

arterial wall failure. The results indicated that triangular and exponential-linear cohesive 

zone models were able to reproduce the aortic tissue failure behavior well, justifying the 

choice of the simplest model in this study. 

In summary, the constitutive response of the model under uniaxial tension was governed by 

the following parameters:  

 

• C10 and C20, the material parameters defining the hyperelastic behaviour. They were 

identified by an inverse curve-fitting method (see next section).  

 

• "#$#, the damage initiation criterion. In the present model, there were as many 

damage initiation criteria as layers. They were set manually based on the uniaxial 

tension curves.  

 

• Gc, the critical fracture energy and is defined as the area under the damage part of 

the cohesive response curve (Figure 3). There were as many critical fracture energies 

as layers. They were identified using an inverse method (see section 2.3). 

 

• Nlayer, the number of layers present in the analytical model (typically 1 to 5). 

 

Using a Matlab® code, nominal stress and nominal strain were calculated in each layer and 

the stress-strain curve of the whole model was obtained. The next steps were (i) to validate 

the implementation of the model (see next paragraph), and (ii) propose a strategy to identify 

the parameters of the model based on experimental tensile curves (see next section). 

 

Model implementation validation 

To validate the implementation of the analytical model, two finite element models were 

built in Abaqus®. The first model consisted of a single layer and the second model of two 

layers. The same dimensions were used in the analytical model and the finite element 

models. Cohesive zones were placed at the center of each layer to allow rupture in traction. 

The hyperelastic and cohesive parameters were set at the same values for the finite element 
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and analytical models. Arbitrary, but realistic, fixed parameters were used. The stress-strain 

curves of both models were compared and the coefficients of determination, r², were 

calculated.  

 

2.3 Inverse parameter identification 

 

The following step of this study was an inverse analysis to obtain the set of parameters fitted 

to the experimental curves. The method was based on an cost function which quantifies the 

difference between the result of the simulation and the experimental data, and on an 

optimization algorithm which finds the parameters minimizing this function. The algorithm 

used here was described in Lagarias et al. [9], and was programmed within an in-house 

Matlab® code. Because the developed model involved many parameters to be identified for 

each curve, a global optimization on the whole curve would have given non-unique 

solutions. Instead, a three-step strategy based on separating the elastic response and the 

post-damage initiation response was used, and the damage initiation stresses were directly 

identified. 

The first step aimed at identifying hyperelastic parameters C10 and C20. The cost function 

used in the optimization algorithm was defined as follows: 

 

Cost Function � ∑ /"0num 	 "exp5
6

7
7
�  (Eq. 3) 

 

Where σnum and σexp were the model and experimental stress values at the nth point, 

respectively. N was the total number of points in the range of strain observed experimentally 

on the stress-strain curves. Only the undamaged part of the experimental curve (i.e. before 

any discontinuity in the slope) was used for this identification.  

The second step of the method consisted in a direct identification of the different damage 

initiation criteria. This was performed by the manual selection of break points in the slope of 

the experimental curves (an example is shown Figure 4), considering that break points 

correspond to the rupture of one or multiple layers.  
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Figure 4: Example of experimental stress-strain curve, with manually selected damage initiation points (red arrow). 

 

Last, the third step consisted in an inverse identification of the critical fracture energies of 

each cohesive zone (there was one cohesive zone per layer). To this aim, the same cost 

function as defined in Eq. 3 was used, with n varying in the range of strain beyond elastic 

strain.This identification provided the last set of parameters needed to completely define 

the model.  

 

2.4 FE model to study the influence of mode II separation 

 

During in vitro tensile tests, it was observed that layers initially break in mode I and then 

separate from each other, in mode II [6]. The analytical model presented above was suitable 

to identify the rupture parameters in mode I but did not allow for the identification of the 

parameters related to mode II. Thus, a 2D FE model that included delamination between 

layers was created using Abaqus®. Its dimensions were kept the same as those of the 

analytical model. Cohesive zones were defined (i) in the middle of each layer, in the 

transverse direction, to account for mode I separation, and (ii) between layers, parallel to 

the loading direction, to account for mode II separation which was not included in the 

analytical model. Mode I cohesive properties of each layer were taken from the previous 

analysis, but the weakest one was always chosen on the intimal side as observed 

experimentally [6]. Regarding mode II, a sensitivity analysis was performed to assess the 

influence of mode II initiation criterion and fracture energy. Uniaxial tension boundary 
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conditions were applied. The mesh was comprised 600 CPS4 elements (four-node plane 

stress element) and the quasi-static problem was solved using the implicit solver of Abaqus®. 

 

3. Results 

 

3.1 Verification 

 

The results of the verification of the analytical model against a finite element 

implementation are presented in Figure 5 for the one-layer model (Fig 5a) and the two-layer 

model (Fig 5b). The comparison was focused on the nominal stress as a function of the total 

strain of the specimen. In this work, only the nominal strain was considered. 

 

 

 

 

Figure 5: Responses of analytical model (dashed curve) and finite element model (solid curve) with (a) one layer and (b) two 

layers, with the two peaks corresponding to each layers damaging successively. 

 

The different parameters used in the verification are presented in Table 1. For the one-layer 

model, the coefficient of determination r² was 0.997 and for the two-layer model, 0.994, 

confirming proper implementation of the analytical model. 
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Table 1: Parameters used during the verification with 

the one-layer model and the two-layer model. 

 

3.2 Inverse identification of hyperelastic and cohesive parameters 

 

Table 2 provides the values of all the parameters obtained following the three-step 

identification procedure detailed in Section 2.3, for 10 experimental specimens tested in 

Helfenstein-Didier et al. [6].  

Test 

number 

C10 

(MPa) 

C20  

(MPa) 
  σini 1 (MPa) 

σini 2 

(MPa) 

σini 3 

(MPa) 

σini 4 

(MPa) 

σini 5 

(MPa) 
  Gc 1 (MPa.mm) 

Gc 2 

(MPa.mm) 

Gc 3 

(MPa.mm) 

Gc 4 

(MPa.mm) 

Gc 5 

(MPa.mm) 

1 0.00103 0.181 

  0.815 0.815 0.871 1.045     2.40 2.40 3.48 3.41   

  0.887 ± 0.109 MPa     2.92 ± 0.602 MPa.mm   

2 0.758 3.06 

  2.81 3.44 4.30       6.61 9.24 9.08     

  3.52 ± 0.744 MPa       8.31 ± 1.48 MPa.mm     

3 1.64 1.03 

  2.75 3.00 3.32       9.98 10.7 11.0     

  3.02 ± 0.283 MPa       10.6 ± 0.543 MPa.mm     

4 0.125 0.0705 

  0.543 0.750 0.750 0.800 0.800   2.70 3.57 3.57 1.84 1.84 

  0.729 ± 0.107 MPa   2.92 ± 0.832 MPa.mm 

5 0.210 0.0474 

  0.299 0.319 0.774 0.848     0.574 2.32 4.87 4.57   

  0.560 ± 0.291 MPa     3.09 ± 2.02 MPa.mm   

6 0.175 0.0331 

  0.686 0.742 0.759 0.759     4.52 4.19 1.93 1.93   

  0.737 ± 0.0345 MPa     3.15 ± 1.41 MPa.mm   

7 0.184 0.0943 

  0.484 0.522 0.845 0.990 0.990   1.68 3.65 4.74 4.56 4.56 

  0.766 ± 0.248 MPa   3.66 ± 1.40 MPa.mm 

8 0.196 0.00170   0.567           3.76         

9 0.140 0.0574 

  0.484 0.524 0.549       2.37 2.09 1.029     

  0.519 ± 0.0326 MPa       1.83 ± 0.706 MPa.mm     

10 0.0744 0.0988 

  0.434 0.747 0.820       1.62 3.25 3.025     

  0.667 ± 0.205 MPa       2.63 ± 0.884 MPa.mm     

Mean σini 1 (MPa)   0.988                     

 
Table 2: Parameters obtained for all experimental curves. 

 

 C10 

(MPa) 
C20 

(MPa) 
"#$# 

(MPa) 
Gc 

(MPa.mm) 

Model with one layer 

Layer 1 1 3 1 3 

Model with two layers 

Layer 1 1 3 1 2 

Layer 2 1 3 2 6 
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The comparisons between the analytical model and experimental tensile test stress-strain 

curves exhibited a good quantitative agreement considering that the r² values were in a 

range of 0.97 to 0.99 (Figure 6). It can be observed that the global shape of the curves was 

well reproduced by the model although the smallest slope-breaks were neglected. 
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Figure 6: Comparison between the analytical model (dashed curve) and the experimental tensile test (solid curve). The r² are 

in a range of 0.97 to 0.99 
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A comparison between the experimental images from one test and the model is presented 

in Figure 7. The parameters of the model were identified from the corresponding stress-

strain curve. In the first step, one can observe the undamaged media, then a first rupture on 

the intimal side corresponding to a change in slope on the stress-strain curve, followed, in 

the third step, by a second rupture on the adventitial side of the media and finally, in the 

fourth step, the remaining part of the media damaging before complete rupture. Note that, 

in the last step, the middle layer is in a partial damage state where δmax has not been 

reached yet (Figure 3). The finite element model shows a good qualitative agreement with 

the X-ray images.  

 

 

Figure 7: Analyses of an experimental case. The parameters were identified thanks to the stress-strain curve of the test and 

the cohesive interfaces were placed in the same configuration as in the X-ray images. (a) Images of the uniaxial tensile test 

under X-ray tomography at different time steps. The red circles highlight the visible sites of ruptures of layers. (b) Images of 
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the finite element model at the same time steps with the parameters corresponding to the case (a). (c) Stress-strain curves 

of the test (a) and of the model response with the fitted parameters. 

 

3.3 FE model to study the influence of mode II 

 

The stress-strain curves obtained from the finite element simulations including mode II 

separation in longitudinal cohesive zones are shown in Figure 8. The parameters of mode II 

used for the simulation are displayed on the graphs. 

 

 

Figure 8: Comparison of the experiment and the finite element simulations to investigate the influence of the delamination 

parameters "#$# and Gc . (a) Gc is fixed to 0.01 MPa.mm while "#$# varies. When "#$# �0.005 MPa the three layers of the 

finite element model broke successively like the experiment, when "#$# �0.05 MPa the two first layers of the finite element 

model broke at the same time and the third layer broke later, and when "#$# �1 MPa the three layers broke at the same 

time. (b) "#$# is fixed at 0.01 MPa while Gc varies. The three curves are relatively similar, this demonstrates the limited 

influence of Gc . 

 

The simulation showed that, if the mode II damage initiation stress was increased in the 

longitudinal cohesive zone, the two adjacent layers of this zone would not separate. Instead, 

they formed a single unit where the strongest layer (not broken in mode I) supported the 
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weakest one (already broken in mode I) and prevented its elastic recoil. Both layers would 

recoil later, at the same time, when the strongest one failed in mode I. This phenomenon 

can be seen from the dashed curve in Figure 8a where the global resistance of the model 

was increased but the rupture was sudden. 

The latter observation would contradict the experimental observations, which suggests that 

the resistance to mode II separation in the longitudinal direction is probably one of the most 

influential factors in dissection-like propagation. Note however, that the mode II critical 

fracture energy was found to have a relatively low influence on the model response (Figure 

8b). 

4. Discussion 

 

This paper follows up on a series of experimental uniaxial tests made on porcine medial 

aorta samples under X-ray tomography [6]. These tests observed the media at the lamellar-

scale during damage progression and rupture and showed that layers (i.e. a group of lamellar 

units) successively break in tension (mode I) followed by a sudden delamination due to their 

elastic recoil (mode II separation). These findings motivated this study aiming at further 

understanding and quantifying these phenomena. An analytical model was developed with 

the objective of reproducing the uniaxial tests and identifying the different parameters in 

each layer relative to rupture.  

 

The implementation of the model was numerically verified against a finite element model 

based on the same assumptions and parameters. Subsequently, all parameters of the model 

were successfully identified for each available experimental curve with the method 

described herein. It is worth noting that these results did not differ when repeating the 

procedure several times on the same experimental curves, showing the robustness of the 

method, even if part of this method remains operator-dependent since the damage 

initiation stresses are set manually. 

For all experimental samples, the damage initiation stress and the critical fracture energy 

were obtained for a finite number of layers (structurally, these layers include several 

lamellar units). The values of damage initiation stresses are in the range of maximum 

stresses found in literature (750 kPa – 2500 kPa [24]). Regarding the critical fracture energy, 
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it can be noted that a marked variability between the different samples was obtained, which 

is mainly attributable to the variability of the curves themselves as reported by Helfenstein-

Didier et al. [6]. Nevertheless, our study is, to the best of our knowledge, the first to report 

experimentally-supported values of mode I critical fracture energy at the lamellar-scale of 

aortic medial tissue. They can serve as a basis to the development of numerical models of 

arterial damage. 

 

Because the analytical model did not take into account mode II strength and separation of 

different layers, a finite element model was built which included this phenomenon between 

layers. The same values of hyper-elasticity and mode I rupture were used as in the analytical 

model, while for mode II, a sensitivity analysis on the associated values was performed to 

assess the influence of mode II separation in this mechanical rupture test. The analysis 

showed that the role of mode II is essential in maintaining layers together. If mode II 

strength is too high, two adjacent layers would not separate and they would recoil at the 

same time when the strongest one fails in mode I. Our experiments showed, however, that 

after breaking in mode I, a layer suddenly recoils and separates from its neighbouring layer 

in a mode II separation. The combination of these observations suggests that mode II 

separation may play a major role in crack propagation, as occurring in dissection.  

More specifically, our model confirmed that a first crack forms due to mode I failure, which 

then propagates in mode I in the transverse direction until the elastic recoil stress exceeds 

the mode II strength of a longitudinal plane. The crack will then propagate in the direction of 

less energy, hence following this plane and forming a delamination plane, as observed 

clinically and experimentally. 

Several studies investigated the mechanisms of dissection using different experiments. Tam 

et al. [19], created blebs in the media by injecting saline solution. Sommer et al. [17] and 

Wang et al. [23], used peeling test (hence mode I longitudinal separation), which are 

probably more suitable for the analysis of dissection propagation when a relatively long flap 

is already formed, or for plaque delamination. The present work is believed to be more 

appropriate for the onset of dissection.  

 

Pasta et al. [15] demonstrated the presence of radially-running fibers of collagen and elastin 

that create “bridges” between lamellae and support the load induced by delamination. Pal 
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et al. [14] proposed a predictive mechanistic model that investigated the effect of these 

fibers and reproduced the response of the peeling tests. The results showed that the 

number density and failure energy of the radially-running collagen fibers to be the main 

contributors to the delamination strength. However, the mode of rupture in this study and in 

the present work are not the same. In the delamination model of Pal et al. [14], the fibers 

between the two strips of the peeling test rupture in mode I, whereas in the present model, 

the different layers separate from each other in mode II. From the present work, it is 

hypothesized that the separation in mode I between layers would not be activated until a 

channel is formed and blood rushes into that channel, thus pushing the layers apart. Mode II 

separation would be the precursor to this channel formation. 

 

As it was shown, delamination is triggered when the recoil of ruptured lamellar units induces 

shear stress which exceeds mode II strength of the adjacent lamellar unit. Thus, the present 

study suggests that wall defects may be directly involved in determining the initiation 

location of the delamination process. Indeed, they could locally weaken this mode II 

strength. In other words, it is likely that a disease or an intra-mural hematoma already 

present at the beginning of the rupture of the intima would promote dissection. It is even 

possible that the delamination between lamellae has already been propagating when the 

intimal tear appears.  

 

Limitations of this work are detailed herein. First, it was based on uniaxial tests, while the in 

vivo loading corresponds to a biaxial or even triaxial stress state. In a study closer to in vivo 

conditions of dissection, this aspect should be considered by implementing a 3D model. 

Another limitation of the present model based on cohesive zone modeling is that the path of 

the crack is pre-defined. Here, all experimental observations were consistent regarding the 

rupture pattern and our cohesive zones were positioned accordingly (transverse and 

longitudinal). However, in another loading configuration, a different configuration should be 

considered.  

 

This work provided valuable data toward the characterization of arterial rupture at the 

lamellar-scale, which could be used in further modeling endeavors. Also, it yielded useful 

insights into the determinants and conditions that promote dissection in vivo. While 
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additional experimental validation is warranted to precisely address in vivo dissection 

conditions, this work opens a way to potentially important clinical applications in monitoring 

patient-specific vascular risk factors, and management of patients with dissection. 
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