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Abstract—Cloud infrastructures provide new facilities to build
elaborated added-value services by composing and configuring a
large variety of computing resources, from virtualized hardware
devices to software products. In the meantime, they are further
exposed to security attacks than traditional environments. The
complexity of security management tasks has been increased by
the multi-tenancy, heterogeneity and geographical distribution
of these resources. They introduce critical issues for cloud
service providers and their customers, with respect to secu-
rity programmability and scenarios of adaptation to contextual
changes. In this paper, we propose a software-defined security
approach based on the TOSCA language, to enable unikernel-
based protected clouds. We first introduce extensions of this lan-
guage to describe unikernels and specify security constraints for
their orchestrations. We then describe an architecture exploiting
this extended version of TOSCA for automatically generating,
deploying and adjusting cloud resources in the form of protected
unikernels with a low attack surface. We finally detail a proof-of-
concept prototype, and evaluate the proposed solution through
extensive series of experiments.

Index Terms—Cloud Environments, Software-Defined Security,
Policy-Based Management, Security Orchestration, Unikernels

I. INTRODUCTION

Distributed clouds contribute to the building of elaborated
services based on multiple computing resources, such as vir-
tual machines, network devices, software components [1], that
may be spread across different infrastructures (multi-cloud)
and stakeholders (multi-tenancy). This increases the complex-
ity of management tasks, in particular with respect to security
management. To deal with this complexity, software-defined
security (SDSec) aims at supporting the programmability of
security mechanisms that are used to protect resources offered
by cloud infrastructures. It consists in the decoupling of two
separate planes. The first one corresponds to the control plane
which takes charge of security decisions, while the second one
stands for the resource plane which includes the resources to
be protected together with dedicated programmable security
mechanisms (such as firewalls, intrusion detection systems,
control access mechanisms) [2]. We have already analyzed
the feasibility of such a security programmability layer for
addressing multi-cloud and multi-tenant environments, through
different realistic scenarios in [3]. The foundation of this
layer relies on the SDSec logic to express and propagate
security policies to the considered cloud resources, and on
the autonomic paradigm to dynamically configure and adjust

these mechanisms to distributed cloud constraints. We have
also evaluated the benefits of using unikernel virtualization
techniques to build and maintain specific cloud resources
embedding security mechanisms in [4]. These lightweight
virtual machines are built using a minimal set of libraries,
enabling to reduce the attack surface.

We propose in this paper a TOSCA!-oriented software-
defined security approach for supporting unikernel-based pro-
tected clouds. We exploit the TOSCA language, which sup-
ports the specification of cloud topologies and their orches-
trations, in order to drive the integration and configuration
of security mechanisms within cloud resources in an au-
tomatic manner. This contributes to leverage a security-by-
design cloud, from the specification of multiple levels of
security requirements to the generation (and regeneration) of
specific unikernel-based virtual machines to address them. We
extend the TOSCA language to describe unikernel components
and specify these security requirements, and we detail the
underlying framework, including a security orchestrator and a
generator of unikernel virtual machines. The protected uniker-
nels corresponding to the different orchestrated security levels
can be generated in a proactive manner, and are compatible
with the elasticity and on-demand properties of cloud re-
sources. Our main contributions in this paper are (i) proposing
and formalizing a software-defined security approach based
on TOSCA for protecting cloud services, (ii) extending the
TOSCA language to support our unikernel and multi-level
security requirements, (iii) designing a framework capable of
interpreting this extended language to generate and config-
ure protected unikernels, and (iv) evaluating different SDSec
strategies based on a proof-of-concept prototyping.

The remainder of this article is organized as follows. Sec-
tion II presents existing work in the areas related to cloud
security. Section III gives an overview of our TOSCA-oriented
software-defined security approach. The extensions of the
TOSCA language are described in Section IV, while Section V
details the underlying framework exploiting them to enable
security-by-design clouds. We evaluate the resulting enforce-
ment in Section VI based on a proof-of-concept prototype.
Section VII concludes the paper and points out future research
perspectives.

ITopology and Orchestration Specification for Cloud Applications



II. RELATED WORK

The security of cloud infrastructures and services is a
challenge that has already been largely explored in the lit-
erature. Our work concerns the enforcement of security re-
quirements that impact both the orchestration and the building
of resources. From an orchestration perspective, software-
defined networking has already contributed to multiple security
management solutions. For instance, [2] introduces an experi-
mental framework for configuring and benchmarking security
rules applied to network flows. [5] proposes and evaluates
delegation strategies for enforcing security mechanisms at the
level of SDN switches, and [6] defines several access control
methods taking into account the current risk levels. Such
a programmability enables a more flexible composition of
security functions. Approaches such as [7] support modular
security functions that can be then composed into security
chains to protect resources, but are often limited to specific
enforcers. We showed in our previous work [3] an architecture
for programmable security mechanisms in cloud infrastruc-
tures. It relies on the generation of specific resources based on
unikernels, that integrate security mechanisms [4]. However,
it should take advantage of orchestration languages, such as
TOSCA, to drive the building and configuration of protected
virtualized resources.

Virtualization methods constitute an interesting security
enabler for protecting cloud environments [8]. In addition to
isolation properties, they contribute to increase the control on
resources by relying on hypervisors. Solutions such as [9], [10]
define intrusion detection and integrity verification strategies
for analyzing and controlling the behavior of virtualized re-
sources. The minimization of virtual machines to the strict
necessary components and libraries permits to reduce the at-
tack surface. For instance, [11] proposes a Xen-based approach
for removing unecessary components from virtual machines.
This may also rely on containerization, but introducing new
security issues, such as pointed in [12] and [13]. Library OSes,
and more recently unikernels, offer new alternatives for such
minimization. For instance, the LKL library [14] provides
OS drivers as ready-to-go libraries. This enables legacy ap-
plications to have their own hardware resource management.
Unikernels have abandoned any legacy OS support, and have
fully redesigned the system architecture. Applications are ca-
pable to run as independent virtual machines [15], contributing
to a simplified management as discussed in [16]. We argue in
favor of exploiting unikernels to minimize the attack surface
and showed how such unikernel-based virtual machines can
be generated in an on-the-fly manner in [4].

It is essential to take into account the generation of such
protected virtual machines into orchestration languages, in or-
der to support cloud security, right from the design phase. Ex-
tensions are therefore required to describe the software com-
ponents that compose unikernel virtual machines. Description
languages have already been proposed in software engineering
and service design areas. Historically, software programming
has contributed to several description standards [17] to address

internal software interactions amongst routines. Extensions
have also been specified to integrate security requirements,
such as [18]. These descriptions are often too fine-grained and
do not address exploitation considerations. In the meantime,
service design efforts provide another description scale. For
instance, [19] provides service descriptions, by considering
packages and their dependencies on Linux operating systems.
Cloud orchestration languages, such as TOSCA [20], should
take into account such descriptions. While they support the
specification of the topology and orchestration of distributed
cloud services, they only rely on off-the-shelves software de-
scriptions [21]. This integration is an important lack to support
security requirements from the design to the orchestration
of services.

III. TOSCA-ORIENTED SOFTWARE-DEFINED SECURITY
APPROACH FOR PROTECTING CLOUDS

We propose a software-defined security approach based on
the TOSCA language, in order to protect cloud services by
using unikernel resources. We consider the TOSCA orchestra-
tion language rather than other alternatives, as it is fully in
phase with the software-defined paradigm. It supports the de-
scription and orchestration of distributed cloud services, while
abstracting technical implementation details. We extend it to
describe unikernel resources and to specif security require-
ments according to different orchestrated levels. It then serves
as an input for our security framework, which drives the de-
sign, deployment and operation of protected cloud resources,
as depicted on Fig. 1. These resources rely on unikernels,

Specification Design Deployment & Operation
Cloud service TOSCA-native
based on Cloud resource
cloud 3
secured instances
orchestration
umkernels
Extended Reccnf\guratlon Remnhgura(lon Security
TOSCA through unikernel through unikernel context
definition rebuilding parameterization monitoring
Security policy Security Multl—llevel
for the cloud — security
service =| orenestration *| configuration
Figure 1. From the specification of TOSCA-based security requirements to

the generation and operation of secured unikernel virtual machines.

that are lightweight virtual machines characterized by a low
attack surface. They only contain the strict necessary software
components and libraries, and integrate security mechanisms
for their protection. The adaptation to contextual changes, in
line with security levels, can be performed through the on-the-
fly rebuilding of unikernel resources. In the following of the
paper, we describe the extensions considered for the TOSCA
language, as well as the framework supporting them to enforce
security requirements on distributed cloud services.

IV. EXTENSIONS OF THE TOSCA LANGUAGE

In order to support our software-defined security solution,
we have first extended the TOSCA orchestration language,



A relationship

between two nodes . i
A node with security

specifications
A node modeling
a unikernel image

A unikernel component with
security specification

Components of a
unikernel image

TOSCA (Cloud service)
u UniTOSCA (Unikernel components)

SecTOSCA (Security requirements)

Figure 2. Extensions of the TOSCA language for describing unikernels
(UniTOSCA) and specifying security requirements (SecTOSCA).

which provides a baseline for describing distributed and
orchestrated cloud services. A topology representing these
extensions is shown on Fig. 2. The first extension, called
UniTOSCA, permits to refine the description level of TOSCA
in the context of services implemented based on unikernels,
by specifying them as a composition of software compo-
nents. This description is then exploited to generate unikernels
required by a cloud service. The second extension, called
SecTOSCA, permits to specify security constraints in the
TOSCA language. As previously mentioned, the scope of
these constraints goes from a single unikernel to a whole
cloud service. These constraints are used to enforce secu-
rity over resources using dedicated mechanisms (firewalls,
intrusion detection systems, access control). This enforcement
is performed in a dynamic manner to adapt to contextual
changes and takes benefit from the orchestration facilities
offered by TOSCA. In particular, it is possible to specify
different security levels to cope with various contexts. After
presenting the key concepts of the TOSCA language, we
will detail successively the two UniTOSCA and SecTOSCA
specifications, with illustrative examples.

A. The TOSCA language

Typically, the TOSCA language serves as a support to cloud
orchestrators for determining the resources to be instantiated
and the operations to configure and operate them, in order
to provide a given service. A cloud service is described
by this language as a topology of resources (also called
nodes) that are interconnected among them through links
(also called relationships), as shown on Fig. 2 with the circle
elements and their interconnections. It is then possible to
specify orchestration procedures over this topology, such as
starting, shutting down a node or changing a relationship. Each
element (node or relationship) takes benefits from inheritance
and template mechanisms offered by the language. Following
an object-oriented paradigm, each type defines a class of
elements sharing a common set of properties and interfaces,
while a template defines a type with a set of pre-defined

1 | unikernel_modules:

2 webserver_unikernel_type:

3 cohttp_lwt_server:

4 capabilities:

5 http_processing: tosca.capabilities.
Endpoint

6 requirements :

7 — available_nic: unikernel. virtualenv.
networking . nic

8 log:

9 capabilities:

10 console_logging: unikernel.virtualenv.
console

11 dispatch:

12 properties :

13 https_port:

14 type: integer

15 http_port:

16 type: integer

17 capabilities:

18 webserver_front: tosca.capabilities.
Endpoint

19 requirements :

20 — http_processing: tosca.capabilities.
Endpoint

21 — console_logging: unikernel.
virtualenv .console

22 | [...]

23

24 node_templates :

25 webserver_unikernel :

26 type: webserver_unikernel_type

27 properties :

28 https_port: 4433

29 http_port: 8080

30 [ [...1

Figure 3. Extract of a UniTOSCA specification.

values affected to properties. An instance can be obtained
from a template and corresponds to an implementation of
the resources in a given contextual environment. Therefore,
a node type, noted T),,4., permits to infer a node template,
noted 77 .. and in turn a node instance, noted I,q.. The
language also permits to specify relationships in an implicit
manner, using requirements (specifying what the node expects
from other nodes on hosting infrastructures) and capabilities
(specifying what the node may provide to other nodes on
the infrastructures). A relationship type, noted Ticiationships
permits to infer a relationship template, noted 77,;,1ionship
and in turn a relationship instance, noted I cjqtionship- In its
current form, the TOSCA specification is non normative with
respect to the orchestration policy. Interfaces are typically used
to define the operations performed on the nodes, following
traditional workflow and process formalisms.

B. Describing unikernels

We propose an extension, called UniTOSCA, for describing
unikernel virtual machines, as shown on Fig. 2 with the square
elements. The purpose is both to increase the granularity of the
language, and to drive the building of unikernels before their
instantiation. For that, we introduce an additional element,
called unikernel component m, in order to describe routines
and compose them to elaborate unikernels. The relationships



among these components correspond to the dependencies that
may exist among routines. These components are character-
ized by attributes and values that are configurable. However,
taken separately, each of them cannot lead individually to a
resource instance. A minimal set of routines is required to
be composed in order to generate such an instance. In phase
with our approach developed in [4], we take benefits from
the simplified system architecture of unikernels to compose
and build resources. This description of unikernel resources
enables the orchestrator to take charge of the building and
parameterization of these resources. The consistency of images
generated from the descriptions relies on the dependency
relationships among components, the satisfaction of these de-
pendencies is checked before generating unikernel images that
are used to elaborate the services. We consider a description
of unikernel resources in phase with the description of the
other TOSCA resources. An example of such a specification
is given in Fig. 3, where we detail a unikernel resource,
called webserver_unikernel_type, composed of three
unikernel components. These components detail each routine
(cohttp_lwt_server, log, dispatch) on which the
resource is built, considering a finer granularity than regular
TOSCA resources. The unikernel resource modeling infers
the TOSCA type webserver_unikernel_type, which is
used to define the TOSCA node webserver_unikernel.
This fine granularity enables us to drive our software-defined
security solution based on unikernels.

C. Specifying security requirements

We then introduce a SecTOSCA extension, represented by
the striped elements in Fig. 2. This extension serves as a
support to define the security policy, according to different
security levels to be orchestrated. We consider a security
orchestrator, complementary to the cloud resource orchestrator,
taking charge of the security policy and the configuration
of security functions. A security function (access control,
firewalls, encryption mechanisms) corresponds to a feature
aiming at enforcing a set of security requirements (access con-
trol lists, firewall rules) on the cloud resources. The security
requirements can be specified at different scales, from a single
unikernel to a whole cloud service. Some efforts have already
shown the benefits of exploiting the non-normative orchestra-
tion policy of TOSCA in specific use cases, such as access con-
trol in [20]. We argue in favor of exploiting TOSCA to specify
a security policy capable of covering the deployment and
operation phases, but also the building of unikernel resources.
This enables a security enforcement at an early stage through
the generation of specific unikernel components and resources.
In addition, we take benefits from the orchestration facilities
of the TOSCA language in order to specify several security
levels, as shown on Fig. 4. The extract showcases two orches-
trated security levels, noted default_security_ level
and critical_security_level specified on nodes, but
they might also apply on relationships. Our SecTOSCA exten-
sion permits an adaptation to contextual changes in two dif-
ferent manners. First, security mechanisms expose interfaces,

node_templates:
webserver_unikernel :

type: webserver_unikernel_type:
properties :

https_port: 4433

http_port: 8080

vm_security_level:
multi_level_security :
default_security_level:
regular_access_control
10 critical_security_level:
restricted_access_control

O 001NN LN —

12 front_portal:

13 type: tosca.type.loadbalancer

14 properties :

15 Ib_ddos_mitigation_level:

16 multi_level_security :

17 default_security_level:
regular_mitigation

18 critical_security_level:

paranoid_mitigation

Figure 4. Extract of a SecTOSCA specification.

enabling the security orchestrator to adjust their configuration
parameters. This parameterization is performed on the instance
of a node I,,4c, Where the security level (levels..) can be
dynamically changed by the security orchestrator, as given by
Equation 1.

configuresec : (Inode,levelsec) — Inode (1)
Second, the resources themselves can be rebuilt at runtime
to cope with security constraints. In particular, this concerns
unikernel resources embedding security mechanisms, which
can be dynamically re-generated to cope with security con-
straints. To that purpose, we introduce a buildings.. operation
to build a node type T,,4c based on unikernel modules
(mq,...,my) according to a given security level, as shown
by Equation 2. In that case, the result is not an instance, but
a node type T}, 04e, from which we can infer a node template

, .
v ode and then a node instance I, oqe.

buildingsec : ({m1,...,mp), levelsee) — Thode  (2)

The SecTOSCA specification details the different security lev-
els that can be required for the cloud service. The generation
of unikernel virtual machines with different security levels can
be performed in a proactive manner. The security orchestrator
can therefore efficiently order to the resource orchestrator the
deployment of a new instance of a given unikernel, from a
pool of already generated unikernels.

The SecTOSCA specification serves as a basis to define our
security policy. We will then successively infer from it an en-
riched UniTOSCA specification, and a TOSCA specification.
When we refer to Fig. 2 presenting the different extensions, it
looks like we will taked the reverse path to obtain a TOSCA
specification. The purpose is to guarantee the compatibility of
our solution with TOSCA-native architectures.
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Figure 5. Overview of the TOSCA-oriented software-defined security framework for protecting cloud services.

V. SECURITY FRAMEWORK

We will now detail a security framework exploiting these
extensions to protect cloud services. This framework, depicted
in Fig. 5, is organized into three different tasks. First, it takes
charge of the building of protected resources implementing
the cloud service, as represented by yellow blocks on the
figure. These resources have to be compatible with security
programmability. Considering such a resource-centric strategy
enables a fine-grained security enforcement. The UniTOSCA
specification supports the design of protected unikernel im-
ages, embedding SDSec-capable security mechanisms. Sec-
ond, it permits the management of security mechanisms with
respect to security requirements specified by the SecTOSCA
specification. Decoupling this management from protected
resources, as represented by the two planes (security man-
agement plane and security resource plane) facilitates the
support of distributed and heterogenous environments. This
task corresponds to the red blocks in the figure. Third, the
framework supports the adaptation to contextual changes. The
purpose is to maintain security enforcement when changes
occur over resources and their environments. The TOSCA-
based orchestration, represented by blue blocks on the figure,
addresses the whole life cycle of resources and can notify any
changes that may occur on resources. We can also observe two
axes on the figure: one horizontal axis referring to security
programmability and distinguishing the security management
plane from the security resource plane, and another vertical
axis distinguishing the design/building of protected resources
from their deployment and operation.

A. Main Components

The proposed framework includes several components de-
picted on the figure. It takes as input a SecTOSCA specifica-
tion, serving as a starting point to build and orchestrate pro-
tected resources embedding security mechanisms. We detail
now the role of the main components:

o SecTOSCA Interpreter. The role of this interpreter is to
analyze a SecTOSCA specification and provide security
requirements to the security orchestrator. It also pro-
duces a UniTOSCA specification detailing the unikernel
resources to be generated with the embedded security
mechanisms supporting security enforcement.

o Security Orchestrator. This component is responsible
for translating security requirements into a consistent
orchestration of security mechanisms that are distributed
over resources to be protected. It interacts with policy
decision points (PDP) capable of taking into account
specific tenant and host requirements. These PDPs are
then in charge of parameterizing Policy Enforcement
Points (PEP) corresponding to the security mechanisms
embedded on protected resources. As an example re-
lated to access control, security orchestrator is input
with groups of entities allowed to access each others.
The security orchestrator establishes access control lists
aligned with these groups. The PDPs pick up the entries
they require to establish their own list and configure the
PEPs they are in charge of.

o UniTOSCA Interpreter. This interpreter analyzes a Uni-
TOSCA specification and is capable to infer a TOSCA-
native specification. It drives the generator of unikernels
which builds protected unikernel resources from the de-
scription of unikernel components. The TOSCA specifi-
cation refers to the unikernel images that are produced
by the unikernel generator.

o Generator of Unikernel Images. This component is
in charge of building unikernel images based on the
description of unikernel components [4]. This description
includes the components required to build the service,
but also the ones required to protect it (e.g. embedded
security mechanisms). It may also be invoked by the
cloud orchestrator to address changes that may occur
during the operation phase.



e Cloud Orchestrator. It controls the life cycle of cloud
resources in accordance with the TOSCA specifica-
tion. These resources include more particularly protected
unikernel instances that are deployed and managed in the
infrastructure. The proposed architecture is compatible
with any TOSCA-compatible cloud orchestrators.

We start from a SecTOSCA specification, which is succes-
sively translated into a UniTOSCA specification, serving to
build protected resources, and then a TOSCA specification
serving to their orchestration.

B. Interpreting SecTOSCA specifications

The SecTOSCA interpreter is responsible for extracting
the security requirements from the SecTOSCA specification,
semantically interpreting them into a set of rules and mecha-
nisms bound to their enforcement, and enriching the TOSCA
topology in order to integrate those mechanisms. We can
distinguish two major tasks: (i) the enrichment of the TOSCA
topology to support the enforcement of security functions,
that can be seen as a policy refinement step enabling the
integration of security mechanisms to the topology; and (ii)
the provisioning of the security orchestrator with security rules
to parameterize these mechanisms during their operation. The
SecTOSCA interpreter is in charge of determining whether
security functions can be enforced on a given topology rep-
resenting a cloud service. For that purpose, it relies on the
properties, capabilities and requirements of resources com-
posing this topology. This includes both the TOSCA nodes
and their TOSCA relationships. In a more formalized manner,
it interprets a SecTOSCA specification, noted Dgecr0504,
and generates a UniTOSCA specification, noted Dn;rosc A
as well as a policy Pso for the security orchestrator, in
accordance with Equation 3.

translate : Dyecrosca — (Dunitosca, Pso)  (3)

The Pso can typically correspond to control acces rules. This
refinement is only possible if the set of security functions,
noted S(Dsecrosca), described in the SecTOSCA speci-
fication is enforceable on the SecTOSCA topology, noted
L(Dsecrosca), for a given execution environment e. This
supposes that these functions are supported by the different
types of resources of the topology, as described by Equation 4.

VSf € S(DsecTOSCA)v

isEnforceable(sf, L(Dsecrosca), €) = 4)

VT € L(DsecTOSCA)a iSSUppOT‘t@d(Sf, T, 6)
The type T can stand for both a node type T4 Or a
relationship type Tciationship- The fact that a given type
supports a given security function does not necessarily mean
that the type requires to integrate specific security mechanisms.
The resulting Dyni7o0sc4 is used to drive the generation of
unikernels.
C. Building and orchestrating unikernel resources

The UniTOSCA interpreter is in charge of driving the
generator of protected unikernel images and of providing a

TOSCA-native specification to the cloud orchestrator. The
UniTOSCA specification describes the different modules re-
quired to build the unikernel images. This also includes
modules implementing security mechanisms. The UniTOSCA
interpreter therefore takes a UniTOSCA specification, noted
Dynitosca, and produces a TOSCA-native specification,
noted Drosca, together with the generation policy, noted
Py for building protected unikernel images, in accordance
with Equation 5.

translate : Dynirosca — (Drosca, Puva) — (5)

The generation of a unikernel image relies on a set of k
modules my, ma...my, as previously given in Equation 2.
This image permits to define a TOSCA type T},04e, Which
is referred by the TOSCA-native specification Drosca. The
composition of modules (or unikernel components) to build
a TOSCA type is only possible if these modules are con-
sistent among them and with the execution environment. This
means that all the requirements of modules, including security
mechanisms, are satisfied by the capabilities provided by other
modules or by the execution environment. The resulting type
corresponds to the building of the unikernel images integrat-
ing security mechanisms. These node types, referred by the
TOSCA specification, can then be deployed and orchestrated
by the cloud orchestrator.

D. Adapting to contextual changes

In order to maintain or change the security level of the
topology implementing a cloud service, the security orches-
trator may proceed in two different ways. It may adjust the
security rules exposed to the policy decision points (PDP), in
order to modify the security configuration of resources. This
corresponds to the con figurese. operation previously defined.
The scope of this option is relatively limited in a unikernel
context, where we try to minimize the configurability of
resources. It may also regenerate the unikernel-based resources
in most cases. This corresponds to scenarios where most
of rules may be statically implemented over the resources,
integrating an internal PDP. This regeneration enables to
modify the parameterization of the resources, but also to insert
or remove security mechanisms from unikernel resources. This
corresponds to the buildings.. operation previously defined.
The regeneration of unikernel images is triggered by the
security orchestrator through the cloud orchestrator. Unikernel
images corresponding to different security levels may be
generated in a proactive manner. Further information regarding
the generation of unikernels can be found in [4], where we
detail a generator framework.

VI. IMPLEMENTATION AND EVALUATION

Our prototyping has focused on the design and implemen-
tation of security mechanisms integrated to unikernels, which
serve as a support for the evaluation of our framework through
extensive series of experimentations. The prototype relies on a
Policy Decision Point (PDP) taking local security decisions in



phase with the security orchestrator (SO), a Policy Enforce-
ment Point (PEP) enforcing these decisions on a unikernel
resource and a generator responsible for generating unikernel
images embedding security mechanisms. Technically, the con-
sidered resource is a secured HTTP server over a MirageOS
unikernel [22], which was extended to implement an access
control mechanism including authorization and authentication.
The security orchestrator comes from the MOON project. The
generation of unikernel images is supported by a generator
prototyped in Java, based on the RabbitMQ message broker.
The PEP is implemented as an external OCaml module serving
as a hook for control access on the resource. Unikernels
are supervised by a uKVM monitor running over a KVM
hypervisor. This permits to generate a specific VM monitor
for each unikernel, whose unused features can be preventively
disabled. Three different approaches have been implemented
for the PDP: (i) an internal PDP, which is directly integrated
to the unikernel image, (ii) a pushing PDP, which is external
to the unikernel and interacts in a push-based manner, and (iii)
a pulling PDP, which is external to the unikernel and interacts
in a pull-based manner. From a qualitative perspective, we
have demonstrated that TOSCA can be extended to both
constrain the design and orchestrate the resources according
to security requirements. The distributed cloud service they
support therefore complies with security-by-design approach
as its is framed by these requirements all along its life-cycle.
We have also performed experiments on the following testbed.
The host system features an Intel Xeon E5-1620 CPU at 8x3.6
GHz with 8 GB of RAM. It executes an up-to-date version
of the Ubuntu 16.04 LTS distribution with the Linux kernel
4.4.0-112. Unikernel images are built with MirageOS 3.0.8
development kit. The virtual machines are instantiated with
the uKVM monitor 0.2.2-1, with 1 vCPU and 512 MB of
RAM. The PDP interacts with the security orchestrator based
on the moon_bouchon interface (version 2018-01-30) from
the MOON project. The performance evaluation has been done
using the ApacheBench framework.

In a first series of experiments, we wanted to evaluate
the performance of the three approaches, and in particular
quantify the overhead induced by the outsourcing of the PDP
(pull or push approaches) from the protected unikernel virtual
machines. In our TOSCA-based security framework, the PDP
outsourcing is a decision which is taken by the SecTOSCA
interpreter, for a given security mechanism and according
to a given service topology to be protected. The security
requirements are transmitted by the SecTOSCA interpreter to
the security orchestrator through the security policy Pso. In
the case of an internal PDP, the security requirements can be
directly integrated to the unikernel images, through dedicated
modules, enforcing a decision process internal to the protected
unikernels. We first quantified the size of generated unikernel
images implementing the three approaches. We expected the
size of the image corresponding to an internal approach to
be higher than the two other external approaches. In fact, it
appears that the size of the internal approach is of 7.5 MB,
with the size of the external approaches reaches 8.1 MB. This
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Figure 7. Network performance with the different approaches.

overhead of 600 KB for the external approaches is due to
the additional modules required to support the interactions
between the PDP and the PEP components of our solution.
We also evaluated the time required for generating protected
unikernels from the source code, with these different ap-
proaches, as detailed in Fig. 6. We observed a generation time
of around 4.1 seconds with the internal approach, while it
reaches 4.45 and 4.47 seconds with respectively the push-
based and pull-based approaches. The overhead induced by
the external approaches is again observed here, and can be
correlated with the sizes of protected unikernel images.

We were also interested in quantifying the resource con-
sumption of a protected unikernel virtual machine based on
these different images. A particular focus has been given to the
network performance presented on Fig. 7 and to the memory
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Figure 8. Memory consumption with the different approaches.

consumption given on Fig. 8. In both cases, we are varying
the number of active connections from 0 to 1000 connections
during experiments. We can observe on the first figure that the
push-based and pull-based approaches introduce an overhead
of respectively 41.3% and 1.2% in average, in comparison
to the internal approach. The number of requests sent to the
protected unikernel virtual machines is supposed to induce
the same number of responses from them. The differences
at high load are due to the congestion of the machine. A
similar phenomenon is observable on the second figure, where
the memory consumption related to the push-based and pull-
based approaches generate an overhead of 32.7% and 1.2%,
in comparison to the internal approach. For instance with
500 active connections, we obtain a resource consumption of
38 KB with the internal scenario, against 39 KB and 51 KB
with respectively the push-based and pull-based scenarios.
The overhead percentages among the different approaches
are relatively stable, while varying the number of active
connections. Finally, we compared the average time required
for processing HTTP requests, including the authentication and
authorization processing. The different approaches produce
experimental results that are quite similar, with an average
authenticated HTTP processing time of 11 ms, as shown on
Fig. 9. Several peaks can be observed with the pull-based
approach, in particular on the range from 600 and 1000
connections. This can be due to the external PDP which
becomes a bottleneck with respect to authenticated requests,
in such a pull-based scenario.

In a second series of experiments, we wanted to evaluate the
performance of our solution with a pool of protected uniker-
nels. It can be composed of unikernels implementing the pull-
based and push-based approaches. We performed the same
experiments than previously to quantify the memory consump-
tion, the networking performance, and the authenticated HTTP
request processing time with such a pool of 100 protected
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Figure 9. Authenticated HTTP processing time with the different approaches.

unikernels. During experiments, we varied the ratio of uniker-
nel implementing each of the two approaches, and considered
a workload from 1 to 1000 incoming concurrent connections.
As we expected, the memory consumption increases when the
incoming workload is growing. In particular, we noticed that
a higher proportion of push-based unikernel virtual machines
can shrink the memory consumption by 22% on average
during experiments. These results can be explained by the
requirement for unikernel virtual machines using the pull-
based approach to include further features in their networking
stack (e.g. DNS resolver, HTTP client library) compared to
the push-based approach. The same observation has been
done for the networking performance. A higher ratio of push-
based unikernel virtual machines improves the performances.
However, the impact might be less significant, when consid-
ering an enhanced pull-based approach integrating caching
facilities. We also evaluated the performance on authenticated
HTTP processing with the different workload scenarios. The
experimental results are detailed on The results showed that
increasing the number of push-based unikernels decreases such
a processing time for all the considered scenarios. Most of
the time, the processing time is growing with the number of
concurrent active connections. Except for the scenarios with
a ratio of more than 90% of push-based unikernels, the one
connection workload induces a significantly longer processing
time than any other workload scenarios. These results may be
due to the DNS resolution time, which takes a more important
part in the overall request processing.

In a last series of experiments, we were interested in evalu-
ating the time required for the propagation and enforcement of
a security policy with the different approaches. We quantified
the delay time between the update of the security policy
specification and its enforcement on the cloud resource. The
obtained results showed a behavior close to linearity with
respect to the size of the policy (control access list). We



expected that the delay times obtained with the push-based
approach will be better than the ones induced by the pull-
based approach, which was the case. The push-based approach
leads to a shorter delay time, in comparison to the pull-based
approach showing an overhead of 48,6% on average. The delay
times obtained with the internal approach are sensitively higher
than the two other approaches, and are more distributed. The
overhead induced by the internal approach is 5.82 times higher
due to the compilation time. The update of the security policy
requires to regenerate the unikernel images implementing the
internal approach. Proactive strategies permit to anticipate
changes in the security policy and to regenerate unikernel
images at an early stage. From a scalability viewpoint, the
pull-based approach operates successfully for the different
experimental scenarios from 0 to 50,000 security rules, while it
generated additional network traffic. The push-based approach
was capable of supporting up to 33,500 rules with a single
unikernel, due to memory depletion, while the internal ap-
proach supported up to 21,750 rules with a single unikernel,
due to unikernel compilation. This corresponds to a high num-
ber of security rules with respect to a single unikernel scenario.
These experiments have shown the compared performances of
three different approaches to implement our TOSCA-oriented
security framework.

VII. CONCLUSIONS

We have proposed in this paper a software-defined secu-
rity approach based on the TOSCA language, in order to
support the protection of cloud resources using unikernel
techniques. The TOSCA language enables the specification
of cloud services and their orchestration. We have extended
this language to drive the integration and configuration of
security mechanisms within cloud resources, at the design and
operation phases, according to different security levels. We
rely on unikernel techniques to elaborate cloud resources using
a minimal set of libraries, in order to reduce the attack surface.
We have designed a framework to interpret this extended
language and to generate and configure protected unikernel
virtual machines, in accordance with contextual changes. The
adaptation is typically performed through the regeneration of
protected unikernel virtual machines in a dynamic manner.
Unikernel images corresponding to the different security levels
can be proactively generated by the security framework. We
have implemented a proof-of-concept prototype to evaluate
the performances of our solution, with a focus on unikernel
security mechanisms. In particular, we have quantified the
benefits and limits of three different approaches to support
their integration. As future work, we are interested in perform-
ing complementary experiments of our security framework in
a massively distributed environment. We are also planning
to investigate further optimization methods and techniques
for supporting the regeneration and/or the reconfiguration of
security mechanisms. The purpose is to minimize the costs
induced by the regeneration of unikernels, while keeping a
low attack surface in line with the required security levels.
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