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Introduction

Big data tools have become pervasive in virtually every aspects of culture and society. In music, application of such techniques in Music Information Retrieval applications are common and well documented. However, a full approach to musical analysis and composition is not yet available for the music community and there is a need for providing a more general education on the potential, and the limitations, of such approaches. From a more fundamental point of view, the abstraction of musical structures (notes, melodies, chords, harmonic or rhythmic progressions, timbre, etc.) as mathematical objects in a geometrical space is one of the great accomplishments of contemporary music theory. Building on this foundation, we have generalized the concept of musical spaces as networks and derive functional principles of compositional design by the direct analysis of the network topology. This approach provides a novel framework for the analysis and quantification of similarity of musical objects and structures, and suggests a way to relate such measures to the human perception of different musical entities. The original contribution of this work is in the introduction of the representation of musical spaces as large-scale statistical mechanics networks:

uncovering their topological structure is a fundamental step to understand their underlying organizing principles, and to unveil how classifications or rule-based frameworks (such as common-practice harmony, for instance) can be interpreted as emerging phenomena in a complex network system. Results from this research and the theoretical and technical foundation for this paper can be found in Ref. [START_REF] Buongiorno Nardelli | Topology of Networks in Generalized Musical Spaces[END_REF].

This paper is intended to introduce the community of computer music practitioners, composers and theorists to the practical use of data science tools (network theory, machine learning etc.) through the MUSICNTWRK package (www.musicntwrk.com), a python library comprised of four modules:

1. pcsPy -pitch class set classification and manipulation; construction of generalized pitch class set networks using distances between common descriptors; the analysis of scores and the generation of compositional frameworks; 2. rhythmPy -rhythmic sequence classification and manipulation; and construction of rhythmic sequence networks using various definitions of rhythmic distance; 3. timbrePy -orchestration color networks; analysis and characterization of timbre from a (psycho-)acoustical point of view; and machine learning models for timbre recognition; and 4. sonifiPy -a module for the sonification of arbitrary data structures, including automatic score (musicxml) and MIDI generation.

In the following we will discuss the API of each module. All theoretical and technical analysis, including the definition of all the quantities that MUSICNTWRK is able to calculate, are not explicitly discussed here. The interested reader can find all this information in Ref. [START_REF] Buongiorno Nardelli | Topology of Networks in Generalized Musical Spaces[END_REF].

MUSICNTWRK

MUSICNTWRK is a python library written by the author and available at https://www.musicntwrk.com or on GitHub: https://github.com/marcobn/musicntwrk. MUSICNTWRK is written in python 3 and requires installation of the following modules via the "pip install" command: § 1. System modules: sys, re, time, os 2. Math modules: numpy, itertools, fractions, gcd, functools 3. Data modules: pandas, sklearn, networkx, community, tensorflow 4. Music and audio modules: music21, librosa 5. Parallel processing: mpi4py 6. Visualization modules: matplotlib, vpython (optional)

The reader is encouraged to consult the documentation of each package to get acquainted with its purposes and use. In what follows we provide the full API of MUSICNTWRK only. § this step is unnecessary if running on a cloud service like Google Colaboratory.

pcsPy

pcsPy is a module for pitch class set classification and manipulation in any arbitrary temperament; the construction of generalized pitch class set networks using distances between common descriptors (interval vectors, voice leadings); the analysis of scores and the generation of compositional frameworks. Order the pcs according to the most compact ascending scale in pitch-class space that spans less than an octave by cycling permutations. def normal0Order(self)

As normal order, transposed so that the first pitch is 0 def transpose(self,t=0)

Transposition by t (int) units (modulo TET) def zeroOrder(self) transposed so that the first pitch is 0 def inverse(self) inverse operation: (-pcs modulo TET) def primeForm(self) most compact normal 0 order between pcs and its inverse def intervalVector(self) total interval content of the pcs def LISVector(self)

Linear Interval Sequence Vector: sequence of intervals in an ordered pcs def operator(self,name) operate on the pcs with a distance operator

• name (str) name of the operator O(ni) -def forteClass(self)
Name of pcs according to the Forte classification scheme (only for TET=12) def jazzChord(self)

Name of pcs as chord in a jazz chart (only for TET=12 and cardinalities 7)

-def commonName(self)
Display common name of pcs (music21 function -only for TET=12)

def commonNamePrime(self) As above, for prime forms def nameWithPitchOrd(self)

Name of chord with first pitch of pcs in normal order def nameWithPitch(self)

Name of chord with first pitch of pcs def displayNotes(self,xml=False,prime=False)

Display pcs in score in musicxml format. If prime is True, display the prime form.

• xml (logical) write notes on file in musicxml format • prime (logical) write pcs in prime form Network functions. pcsPy contains specific functions for network generation and analysis. Network functions include:

def pcsDictionary(Nc,order=0,TET=12,row=False,a=np.array(None)) Generate the dictionary of all possible pcs of a given cardinality in a generalized musical space of TET pitches. Returns the dictionary as pandas DataFrame and the list of all Z-related pcs • Nc (int) cardinality • order (logical) if 0 returns pcs in prime form, if 1 retrns pcs in normal order, if 2, returns pcs in normal 0 order • row (logical) if True build dictionary from tone row, if False, build dictionary from all combinatorial pcs of Nc cardinality given the totality of TET. • a (int) if row = True, a is the list of pitches in the tone row def pcsNetwork(input csv, thup=1.5, thdw=0.0,TET=12, distance= 'euclidean', col=2,prob=1) generate the network of pcs based on distances between interval vectors In output it writes the nodes.csv and edges.csv as separate files in csv format • input csv (str) file containing the dictionary generated by pcsNetwork • thup, thdw (float) upper and lower thresholds for edge creation • distance (str) choice of norm in the musical space, default is 'euclidean' • col (int) metric based on interval vector, col = 1 can be used for voice leading networks in spaces of fixed cardinality NOT RECOMMENDED • prob (float) if not 1, defines the probability of acceptance of any given edge def pcsEgoNetwork(label,input csv,thup e=5.0,thdw e=0.1,thup=1.5,thdw=0. inter-onset duration interval content of the sequence • lseq (list of fractions) reference list of duration for evaluating interval content the default list is the same as above.

Network functions. rhythmPy contains specific functions for network generation and analysis. Network functions include:

def rhythmDictionary(Nc,a=None,REF='e') Generates the dictionary of all possible rhythmic sequences of Nc length in a generalized meter space of N durations. Returns the dictionary as pandas DataFrame and indicates all non retrogradable and Z-related cells

• Nc (int) cell length • a (str) list of durations in the rhythm sequence def rhythmPDictionary(N,Nc,REF='e') Generate the dictionary of all possible rhythmic sequences from all possible groupings of N REF durations. Returns the dictionary as pandas DataFrame and indicates all non retrogradable and Z-related cells

• Nc (int) cell length • N (int) number of REF units
def rhythmNetwork(input csv,thup=1.5,thdw=0.0,distance= 'euclidean',prob=1,w=False) Generates the network of rhythmic cells based on distances between duration vectors. In output it writes the nodes.csv and edges.csv as separate files in csv format

• input csv (str) file containing the dictionary generated by rhythm-Network • thup, thdw (float) upper and lower thresholds for edge creation • distance (str) choice of norm in the musical space, default is 'euclidean' • prob (float) if not 1, defines the probability of acceptance of any given edge • w (logical) if True it writes the nodes.csv and edges.csv files in csv format def rLeadNetwork(input csv,thup=1.5,thdw=0.1,w=True,distance= 'euclidean',prob=1) Generation of the network of all minimal rhythm leadings in a generalized musical space of Nc-dim rhythmic cells based on the rhythm distance operator. Returns nodes and edges tables as pandas DataFrames

• input csv (str) file containing the dictionary generated by rhythm-Network • thup, thdw (float) upper and lower thresholds for edge creation • distance (str) choice of norm in the musical space, default is 'euclidean' • prob (float) if not 1, defines the probability of acceptance of any given edge • w (logical) if True it writes the nodes.csv and edges.csv files in csv format

timbrePy

timbrePy comprises of two sections: the first deals with orchestration color and it is the natural extension of the score analyzer in pscPy; the second deals with analysis and characterization of timbre from a (psycho-)acoustical point of view.

In particular, it provides: the characterization of sound using, among others, Mel Frequency or Power Spectrum Cepstrum Coefficients (MFCC or PSCC); the construction of timbral networks using descriptors based on MF-or PS-CCs; and machine learning models for timbre recognition through the TensorFlow Keras framework.

Orchestration analysis. The orchestration analysis section of timbrePy comprises of the following modules:

def orchestralVector(inputfile,barplot=True) Builds the orchestral vector sequence from score in musicxml format. Returns the score sliced by beat; orchestration vector.

• barplot=True plot the orchestral vector sequence as a matrix def orchestralNetwork(seq)

Generates the directional network of orchestration vectors from any score in musicxml format. Use orchestralScore() to import the score data as sequence.

Returns nodes and edges as Pandas DataFrames; average degree, modularity and partitioning of the network.

• seq (int) list of orchestration vectors extracted from the score def orchestralVectorColor(orch,dnodes,part,color=plt.cm.binary)

Plots the sequence of the orchestration vectors color-coded according to the modularity class they belong. Requires the output of orchestralNetwork() • seq (int) list of orchestration vectors extracted from the score Sound classification. The sound classification section of timbrePy comprises of modules for specific sound analysis that are based on the librosa python library for audio signal processing. We refer the interested reader to the librosa documentation at https://librosa.github.io/librosa/index.html. Fore a more complete discussion on the descriptors defined in MUSICNTWRK please refer to the work in Ref. [START_REF] Buongiorno Nardelli | preparation[END_REF]. Specific audio signal processing functions are: assumed. MUSICNTWRK module timbrePy contains many auxiliary functions to deal with such tasks. Here we limit to report the API for the main machine learning functions:

def trainNNmodel(mfcc,label,gpu=0,cpu=4,niter=100,nstep=10, neur=16,test=0. Parameters are defined as above.

sonifiPy

sonifiPy contains functions for the sonification of data in multi-column or csv format and produces output as WAV (it requires an installation of csound and direct reference to the ctcsound module -), or musicxml or MIDI. Two sonification protocols are available: spectral -data are mapped to a single sound using subtractive synthesis (FIR filter); and linear -individual data points are mapped to pitches in a time-series structure. See Ref. [START_REF] Buongiorno Nardelli | materialssoundmusic: a computer-aided data-driven composition environment for the sonification and dramatization of scientific data streams[END_REF][START_REF] Buongiorno Nardelli | Beautiful Data: Reflections for a Sonification and Post-Sonification Aesthetics[END_REF] for a complete description of this protocol. sonifiPy contains: The most computationally intensive parts of the modules can be run on parallel processors using the MPI (Message Passing Interface) protocol. Communications are handled by two additional modules: communications and load balancing. Since the user will never have to interact with these modules, we omit here a detailed description of their functions.

Finally, a full set of examples is provided as Jupyter notebooks with the distribution.
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 1 Fig. 1. Orchestration map of the first movement (Allegro) of J.S. Bach's Brandenburg Concerto n. 2, BWV 1047, as produced by the orchestralVectorColor function. Different shades of gray represent the sections of similar orchestral color as measured by their modularity class in the network.
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 2 Fig. 2. Map of the MFCC0 for a repository of 180 impact sounds.

  08,num classes=2,epoch=30,verb=0,thr=0.85,w=False) train a 2 layer neural network model on the ful MFCC spectrum of sounds. Returns: model,training and testing sets,data for re-scaling and normalization,data to asses the accuracy of the training session. • mfcc (float) list of all the MFCCs (or PSCCs) in the repository • gpu, cpu (int) number of GPUs or CPSs used for the run • niter (int) max number of model fit sessions • nstep (int) how often the training and testing sets are redefined • neur (int) number of neurons in first layer (it is doubled on the second layer • test (float) defines the relative size of training and testing sets • num classes=2 (int) dimension of the last layer • epoch (int) number of epochs in the training of the neural network • verb (int) verbose -print information during the training run • thr (float) keep the model if accuracy is ¿ test • w (logical) write model on file if accuracy is above thr def trainCNNmodel(mfcc,label,gpu=0,cpu=4,niter=100,nstep=10, neur=16,test=0.08,num classes=2,epoch=30,verb=0,thr=0.85,w=False) train a convolutional neural network (CNN) model on the full MFCC/PSCC spectrum of sounds. Returns: model,training and testing sets,data for rescaling and normalization,data to asses the accuracy of the training session.

Fig. 3 .

 3 Fig. 3. Training and validation accuracy and loss in a typical Neural Network model learning run
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 4 Fig. 4. Data, MIDI map and score from the sonification protocol in MIDIscore

  Generation of the network of all minimal voice leadings in a generalized musical space of TET pitches based on the minimal distance operators select by distance. In output returns nodes and edges tables as pandas DataFrames.• input csv (str) file containing the dictionary generated by pcsNetwork • thup, thdw (float) upper and lower thresholds for edge creation • distance (str) choice of norm in the musical space, default is 'euclidean' • w (logical) if True it writes the nodes.csv and edges.csv files in csv format def vLeadNetworkByName(input csv,thup=1.5,thdw=0.1,TET=12,w=True, distance='euclidean',prob=1) Generation of the network of all minimal voice leadings in a generalized musical space of TET pitches based on the minimal distance operators select by name. In output returns nodes and edges tables as pandas DataFrames.Available also in vector form for computational efficiency as vLeadNetworkByNameVec • input csv (str) file containing the dictionary generated by pcsNetwork • name (str) name of operator for edge creation • distance (str) choice of norm in the musical space, default is 'euclidean' • w (logical) if True it writes the nodes.csv and edges.csv files in csv format def scoreNetwork(seq,TET=12)Generates the directional network of chord progressions from any score in musicxml format • seq (int) list of pcs for each chords extracted from the score def scoreDictionary(seq,TET=12)Builds the dictionary of pcs in any score in musicxml format def readScore(inputxml,TET=12,music21=False)The RHYTHMSeq class rhythmPy is comprised of the RHYTHMSeq class and its methods (listed below) and a series of functions for rhythmic network manipulations. The RHYTHMSeq class deals with the classification and manipulation of rhythmic sequences. The following methods are available:

	• thup, thdw (float) upper and lower thresholds for edge creation	
	among alters	
	• distance (str) choice of norm in the musical space, default is 'eu-	
	clidean'	
	-def vLeadNetwork(input csv,thup=1.5,thdw=0.1,TET=12,w=True,	
	distance='euclidean',prob=1) def class RHYTHMSeq	
	-init ( self,rseq,REF='e',ORD=False)	
	• rseq (str/fractions/floats) rhythm sequence as list of strings/fractions/floats
	name	
	• REF (str) reference duration for prime form the RHYTHMSeq class	
	contains a dictionary of common duration notes that uses the fraction	
	module for the definitions (implies import fraction as fr): {'w':fr.Fraction(1,1),
	-def augment(self,t='e')	
	Augmentation by t units	
	• t (str duration of augmentation	
	-def diminish(self,t='e')	
	Diminution by t units	
	• t (str) duration of diminution	
	-def retrograde(self)	
	Retrograde operation	
	-def isNonRetro(self)	
	Check if the sequence is not retrogradable	
	-def primeForm(self)	
	reduce the series of fractions to prime form	
	-def durationVector(self,lseq=None)	
	Reads musicxml score and returns chord sequence total relative duration ratios content of the sequence	
	• inputxml (str) score file • lseq (list of fractions) reference list of duration for evaluating • music21 (logical) if True search the music21 corpus interval content the default list is: [fr.Fraction(1/8),fr.Fraction(2/8), TET=12,distance='euclidean') fr.Fraction(3/8), fr.Fraction(4/8),fr.Fraction(5/8), fr.Fraction(6/8), Generates the network for a focal node (ego) and the nodes to whom ego is di-rectly connected to (alters). In output it writes the nodes ego.csv, edges ego.csv and edges alters.csv as separate files in csv format fr.Fraction(7/8), fr.Fraction(8/8), fr.Fraction(9/8)] rhythmPy. -def durationVector(self,lseq=None) 2.2	1,
	• label (str) label of the ego node rhythmPy is a module for rhythmic sequence classification and manipulation;	
	• thup e, thdw e (float) upper and lower thresholds for edge creation and the construction of rhythmic sequence networks using various definitions of	
	from ego node rhythmic distance.	

'h':fr.Fraction(1,2),'q':fr.Fraction

[START_REF] Buongiorno Nardelli | Topology of Networks in Generalized Musical Spaces[END_REF][START_REF] Buongiorno Nardelli | Beautiful Data: Reflections for a Sonification and Post-Sonification Aesthetics[END_REF]

, 'e':fr.Fraction(1,8), 's':fr.Fraction(1/16),'t':fr.Fraction

[START_REF] Buongiorno Nardelli | Topology of Networks in Generalized Musical Spaces[END_REF]32)

, 'wd':fr.Fraction(3,2), 'hd':fr.Fraction

[START_REF] Buongiorno Nardelli | materialssoundmusic: a computer-aided data-driven composition environment for the sonification and dramatization of scientific data streams[END_REF][START_REF] Buongiorno Nardelli | Beautiful Data: Reflections for a Sonification and Post-Sonification Aesthetics[END_REF]

,'qd':fr.Fraction(3,8), 'ed':fr.Fraction

[START_REF] Buongiorno Nardelli | materialssoundmusic: a computer-aided data-driven composition environment for the sonification and dramatization of scientific data streams[END_REF]16)

, 'sd':fr.Fraction

[START_REF] Buongiorno Nardelli | materialssoundmusic: a computer-aided data-driven composition environment for the sonification and dramatization of scientific data streams[END_REF]32)

,'qt':fr.Fraction(1,6), 'et':fr.Fraction(1,12), 'st':fr.Fraction(1,24), 'qq':fr.Fraction(1,5), 'eq':fr.Fraction(1,10), 'sq':fr.Fraction(1,20)}. This dictionary can be extended by the user on a case by case need.

• ORD (logical) if True sort durations in ascending order def normalOrder(self)

Order the rhythmic sequence according to the most compact ascending form.
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def computeMFCC(input path,input file,barplot=True,zero=True) read audio files in repository and compute a normalized MEL Frequency Cepstrum Coefficients and single vector map of the full temporal evolution of the sound as the convolution of the timeresolved MFCCs convoluted with the normalized first MFCC component (power distribution