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Abstract
Stochastic blockmodels have been widely proposed as a probabilistic random graph model for

the analysis of networks data as well as for detecting community structure in these networks. In
a number of real-world networks, not all ties among nodes have the same weight. Ties among
networks nodes are often associated with weights that differentiate them in terms of their strength,
intensity, or capacity. In this paper, we provide an inference method through a variational expectation
maximization algorithm to estimate the parameters in binomial stochastic blockmodels for weighted
networks. To prove the validity of the method and to highlight its main features, we set some
applications of the proposed approach by using some simulated data and then some real data sets.
Stochastic blockmodels belong to latent classes models. Classes defines a node’s clustering. We
compare the clustering found through binomial stochastic blockmodels with the ones found fitting
a stochastic blockmodel with Poisson distributed edges. Inferred Poisson and binomial stochastic
blockmodels mainly differs. Moreover, in our examples, the statistical error is lower for binomial
stochastic blockmodels.

Keywords Binomial stochastic blockmodel; Clustering; Poisson stochastic blockmodel; Text mining;
Variational inference; Weighted networks.

1 Introduction
Digital transformation challenges statistics. In many contexts, text mining is becoming a standard useful
tool to find patterns of interest. This is a rising interest in particular in digital humanities and social
sciences.

Beyond elementary descriptive statistics and models counting words, co-citations networks may be
easily built. It means data are represented as a graph whose nodes are words and edges between two
words are weighted according to the number of texts in the considered corpus citing simultaneously this
pair of words. A general question of interest is to find clusters of nodes/words more closely related. Lots
of community detection methods were developed in order to tackle this issue. Some probabilistic random
graph models like Erdös-Renyi or the Stochastic Blockmodel (SBM) family can be used as statistical
parametric models where the unknown cluster are latent classes. Beyond binary SBM (whose edges are
present/absent), SBM with a more general distribution for the value of an edge between nodes belonging
to the same class are of increasing interest and usefulness.

In this paper, we want to consider SBM with a binomial distribution on edges. This question is
motivated by the study of co-citation networks in a text mining context where there is a maximal
weight m possible for an edge corresponding to the number of documents included in the corpus. Beside
developing and implementing the estimation procedure of a binomial SBM, this paper aims at comparing
binomial SBM and SBM with a Poisson distributed weight. Due to the well known closeness between
binomial and Poisson distributions in certain regimes of parameters, are the estimation procedures for
these two models equivalent? For instance, would be a large corpus be better modeled through a Poisson
SBM or through a binomial one? What is the number of clusters found? How is the statistical error
in these cases? Following a known procedure through a Variational Expectation Maximization (VEM)
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algorithm (Blei et al.(2017), we develop and implement the method on simulated datasets (to validate
the procedure) as well as benchmark real datasets: one in a co-citation text mining context (m = 20),
the other one in a social networks context (m = 14).

The Stochastic Block Model (SBM) proposed by Anderson et al. (1992) and Holland et al. (1983)
is a probabilistic random graph model which aims to produce classes, called blocks, or more generally
clusters in networks. It have been used in several fields such as network and biological sciences (Fortunato
2010,P) and statistics and machine learning (Goldenberg et al. 2010). It’s a generalization of the Erdõs-
Reyni model proposed by Erdõs and Rényi (1959) using a latent structure on the nodes. In this model,
the nodes of the network are divided into disjoint blocks such that the nodes belonging to the same
block have the same inter connection probability and the same intra connection probability with nodes
in others blocks. The probability of an edge between two nodes just depends on which blocks they are
in, and is independent across edges.

Mariadassou et al. (2010) proposed some generalization of the SBM model to deal with random
weighted graphs. Jernite et al. (2014) have treated the model with categorical edges, Airoldi et al.
(2008) and Latouche et al. (2011) have focused on the SBM model with overlapping clusters. More re-
cently, Yang et al. (2011), Xu and Hero (2013), Zreik et al. (2017) and Matias and Miel (2017) have
extended the model to deal with dynamic networks where networks evolve over time.

Several authors focus on the estimation of the parameters in the SBM model. First, Snijders and
Nowicki (1997) have proposed a maximum likelihood inference based on the Expectation Maximization
(EM) algorithm for estimating the connection probabilities between nodes and for predicting the blocks
in the model with only two blocks. Then, Nowicki and Snijders (2001) have generalized the previous
work to deal with SBM model with an arbitrary block number using a Bayesian approach based on
Gibbs sampling. Since the EM algorithm requires the computation of the distribution of the labels Z
conditionally on the observations X which is usually intractable since the edges in the network are not
independent, Daudin et al. (2008) and Jaakola (2000) have introduced approximate methods based on
variational approach to estimate the parameters and to classify the clusters. They used the Variational
Expectation Maximization (VEM) algorithm. This approach is known to be consistent under the SBM
model according to Celisse et al. (2012). Furthermore, Latouche et al. (2012) used a variational Bayesian
inference based on variational Bayes EM algorithm (VBEM), while Nowicki and Snijders used the Gibbs
sampling algorithm.

In most of the methods already treated in this context, the SBM is restricted to binary networks, in
which edges are unweighted. Since the most of networks are weighted, Thomas and Blitzstein (2011)
have proposed to apply a threshold to a weighted relationship. This method is not effective since it
produces binary graphs that only a fraction of the relevant information will be kept, and the others will
be destroyed. However, Mariadassou et al. (2010), Karrer and Newman (2011), and Ball et al. (2011)
have been interested in the case of weighted SBM without thresholding. They treated the case of SBM
with Poisson distributed edge’s weights.

We are interested here in the case of weighted networks, where each edge is associated with an integer
value representing the capacity of ties among nodes. We provide a SBM model with binomial distributed
edge weights. The binomial distribution takes the parameters m which means the maximum weight
present on the edges and the parameters πqr which means the matrix of probability connection between
each two clusters q and r.

In this paper, we define the proposed method in section 2. We present a description of the binomial
SBM model in subsection 2.1. Then, we calculate the likelihood of the complete data in subsection 2.2.
We develop the proposed VEM algorithm of resolution in subsection 2.3. In subsection 2.4, we calculate
the optimal number of clusters by using Integrated Classification Likelihood (ICL) criterion method. We
define in section 3, the SBM model with Poisson distributed edges weights to compare it later in section 4
to our method. We set some applications of the proposed algorithm by introducing some simulated data
and then two applications on real dataset in section 4 to prove its effectiveness and highlight its main
features. We compare the results obtained by the proposed method to those obtained by applying the
SBM model with Poisson distributed edges weights (PSBM). The final section is a conclusion of the paper.

2 Proposed method
The dataset here is incomplete since there are some latent variables that influence the distribution of
the data and the formation of the clusters within the network. We compute first the likelihood of the
complete data, then we calculate the likelihood of the incomplete data. Furthermore, we develop an
inference method to estimate the parameters of the model.
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2.1 Mixture model with latent classes
A general weighted undirected network is represented by G := ([n], X), where [n] is the set of nodes
{1, ..., n} for all n ≥ 1 and X is the symmetric edge-weighted matrix of size n which encodes the observed
interactions between nodes. We assume that the nodes are not connected to themselves so that for all
i ∈ {1, . . . , n}, we have Xii = 0. The number of blocks in the graph is chosen equal to Q (Q ≥ 1).

Let Z = (Zi)i∈{1,...,n} be the latent vector of ({0, 1}Q)n describing the belonging of the node i to
cluster q when Ziq = 1 and not when Ziq = 0. Since a node i can belong to only one cluster then we
have ∀i,

∑Q
q=1 Ziq = 1. Moreover, the vectors Zi for i ∈ {1, . . . , n} are independent and sampled from a

multinomial distribution as following

Zi ∼M(1, α = (α1, . . . , αQ)),

where α = (α1, . . . , αQ) is the vector of class proportions such as
∑Q
q=1 αq = 1.

The weighted matrix X = (Xi,j)i,j∈{1,...,n} associated to the network contains the weights of the
edges between each two nodes in the network so that Xi,j = l if there is an edge joining the nodes i and
j and is weighted by the value l. The variables {Xij , i, j ∈ [n], i < j} are independent conditionally on
the sigma-field generated by {Zi, i ∈ [n]}, and are sampled from a binomial distribution

Xij |ZiqZjl = 1 ∼ B(m,πql),

where m is the maximum weight on an edge and π is the Q × Q matrix of connection probabilities
between each two q-labeled and r-labeled nodes for all q, r ∈ {1, . . . , Q}. Note that the parameter m is
fixed according to the context.

In the sequel, we are interested in estimating the parameter θ = (α, π) of the model in a weighted
undirected network. However, we claim that all results obtained in this paper can be extended to directed
networks, with or without self-loops.

2.2 Likelihood of the complete data (X, Z)
We develop here the likelihood of the complete data to estimate the parameters of the model. So, we
define the joint distribution by

Pθ(X,Z) = Pπ(X|Z)Pα(Z),

where the laws satisfy

Pπ(X|Z) =
n∏
i<j

Q∏
q,l

Pπql
(Xi,j |Zi = q, Zj = l) =

n∏
i<j

Q∏
q,l

((
m

Xij

)
π
Xij

ql (1− πql)m−Xij

)ZiqZjl

. (2.1)

and

Pα(Z) =
n∏
i

Q∏
q

Pαq
(Zi) =

n∏
i

Q∏
q

αZiq
q . (2.2)

Based on the equations (2.1) and (2.2), the log-likelihood of the complete data can be expressed as follows

logPθ(X,Z) = logPα(Z) + logPπ(X|Z)
=
∑
i

∑
q

Ziq log(αq)+
∑
i<j

∑
q,l

ZiqZjl(logCXij
m +Xij log πql+(m−Xij) log(1− πql))(2.3)

2.3 Variational Inference
The log-likelihood of the incomplete data (in the sense, without knowing the labels Z) can be obtained
through the marginalization logPθ(X) = log

∑
Z Pθ(X,Z) which involves a summation over every pos-

sible matrix Z and thus may not be tractable except for small values of n. To tackle this issue, we
introduce in this section the Expectation Maximization (EM) algorithm developed by Dempster et al.
(1977) and McLachlan and Krishnan (2007). This iterative method allow us to maximize logPθ(X)
without calculating it. However, the E-step is devoted to calculate the probability of the latent vari-
ables Z conditionally on the observed variables X which is intractable in this context since the edges
Xij for i, j ∈ {1, . . . , n} are not independent.
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To tackle this issue, we introduce the Variational Expectation Maximization (VEM) algorithm devel-
oped by Jordan et al. (1999) and Jaakkola and Jordan (2000). This is an approximation maximization
likelihood strategy based on variational approach such as in Daudin et al. (2008). This method over-
comes the issue by maximizing a lower bound of the log-likelihood based on an approximation of the
true conditional distribution of Z given X.

We rely on a variational decomposition of the incomplete log-likelihood as following

logPθ(X) = Jθ(RX(.)) + KL(RX(.) ‖ Pθ(.|X)), (2.4)

where Pθ(Z|X) is the true conditional distribution of Z given Y , RX(Z) is an approximate distribution
of Pθ(Z|X) and KL is the Kullback-Leibler divergence between Pθ(Z|X) and RX(Z) defined by

KL(R(.) ‖ Pθ(.|Z)) = −
∑
Z

RX(Z) log Pθ(Z|X)
RX(Z) .

It measures the closeness of the two distributions Pθ(Z|X) and RX(Z). Furthermore, it is a non-negative
measure:

KL(R(.) ‖ Pθ(.|Z)) ≥ 0. (2.5)
We can underline that the equality is reached when RX(Z) = Pθ(Z|X).

The term J(.) of the equation (2.4) is of the form

Jθ(RX(.)) =
∑
Z

RX(Z) log Pθ(X,Z)
RX(Z)

= ERX
[log(Pθ(X,Z))]− ERX

[logRX(Z)], (2.6)

where ERX
denotes the expectation with respect to RX .

The combination of (2.4) and (2.5) ensure that

logPθ(X) ≥ Jθ(RX).

Therefore, Jθ(RX) is a lower bound of logPθ(X).
Moreover, since Pθ(Z|X) is not tractable, the classical property of KL which states that the lower

bound Jθ(RX) has a unique maximum Pθ(X) reached for RX(Z) = P(Z|X) is not helpful. So, we
maximize Jθ(RX) with respect to RX and θ. By using the equations (2.6) and the log-likelihood of the
complete data equation (2.3), the lower bound Jθ(RX) can be written as follows

Jθ(RX) = H(RX) +
∑
i

∑
q

ERX
(Ziq) logαq +

∑
i<j

∑
q,l

ERX
(Ziq, Zjl)(logCXij

m +Xij log πql

+(m−Xij) log(1− πql)), (2.7)

where H(RX) = −
∑
i

∑
q ERX

(Ziq) logERX
(Ziq).

The E-step of the EM algorithm becomes tractable when we assume that the distribution RX(Z) can
be factorized over the latent variable Z as follows

RX(Z) =
n∏
i=1

RX,i(Zi) =
n∏
i=1

h(Zi; τi), (2.8)

where {τi ∈ [0, 1]Q, i = 1, . . . , n} are the variational parameters associated with {Zi, i = 1, . . . , n} such
as
∑
q τiq = 1, ∀i ∈ {1, . . . , n} and h is the multinomial distribution with parameters τi. We have

τiq = P(RX(Ziq = 1)) = E(RX(Ziq)) = ERX
(Ziq) (2.9)

and

τiqτjl = P(RX(Ziq = 1, Zjl = 1)) = E(RX(Ziq, Zjl)) = ERX
(Ziq, Zjl). (2.10)

By using (2.8), (2.9), (3.2) and by developing the equation (2.7), we obtain that Jθ(RX) can be written
as follows

Jθ(RX) = −
∑
i

∑
q

τiq log τiq +
∑
i

∑
q

τiq logαq +
∑
i<j

∑
q,l

τiqτjl(logCXij
m +Xij log πql

+(m−Xij) log(1− πql)).
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During the variational E-step, the parameters of the model are fixed. By maximizing the lower bound
Jθ(RX) with respect to τ , we obtain the estimate of τ by the following fixed point relation

τ̂iq ∝ αq
∏
j

∏
l

(
CXij
m π

Xij

ql (1− πql)m−Xij

)τ̂jl

. (2.11)

The estimation of τ is obtained from (2.11) by iterating a fixed point algorithm until convergence.
Conversely, during the M-step, the parameter τ is fixed. By maximizing the lower bound Jθ(RX)

with respect to α and under the condition
∑
q αq = 1, we obtain the estimate of αq

α̂q = 1
n

∑
i

τiq.

By maximizing the lower bound Jθ(RX) with respect to π, we obtain the estimate of πql

π̂ql =
∑
i<j τiqτjlXij

m
∑
i<j τiqτjl

.

2.3.1 Algorithm of resolution

We present here the algorithm of resolution used to estimate the parameters of the model. We denote
by t the current index for iterations in the algorithm and by ε a fixed threshold of convergence.

Algorithm 1 Variational Expectation Maximization algorithm for inference in SBM

Initialization: Initialize τ0 with the k-means algorithm.
1: Update the parameters τ and θ iteratively

θ(t+1) = arg max
θ

Jθ(RX ; τ (t)) M-step

τ (t+1) = arg max
τ

Jθ(t+1)(RX ; τ) VE-step

2: Repeat Step 1 until ‖θ(t+1) − θ(t)‖ < ε.

2.4 Integrated Classification Likelihood (ICL)
In the sections above, we estimated the parameters of the model by fixing the number of blocks Q since
the SBM model function requires number of latent groups Q as an input argument. We are interested
here in choosing the number of clusters Q̂ that will optimally fit the data. One of the proposed method
consists in iterating the SBM model with different values of Q and then choosing the optimal number of
clusters by evaluating goodness of fit for each group sizes. This method is expensive in terms of time
and computing since we evaluate the goodness of fit for all the groups.

Another approach consists in using the Bayesian Information Criterion (BIC). The optimal number
of clusters is obtained by running the model for different values of Q and then by choosing the one which
provides the higher value of BIC. We have

BIC(G) = logPθ(X)− VQ
2 logn,

where VQ is the number of parameters of the model for the Q groups. However, This method involves
the computation of the log-likelihood of the given data X which is intractable.

Thus, Daudin et al. (2008) proposed the Integrated Classification Likelihood (ICL) criterion to
estimate Q in a SBM model. This method is an approximation of the complete data likelihood. The ICL
is of the form

ICL(Q) =
∑
i

∑
q

τ̂iq log α̂q +
∑
i<j

∑
q,l

τ̂iq τ̂jl(logCXij
m +Xij log π̂ql + (m−Xij) log(1− π̂ql))

−1
2

(
Q(Q+ 1)

2 log n(n− 1)
2 − (Q− 1) logn

)
.

The VEM algorithm is run for different values of Q and Q̂ is chosen such that ICL is maximized.
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3 SBM with Poisson distributed edges weights
In this section, we define the SBM with Poisson distributed edges weights method in order to compare it
later to our method. We assume that the vectors Zi for i ∈ {1, . . . , n} are independent and are drawn
from a multinomial distribution such as:

Zi ∼M(1, α = (α1, . . . , αQ))

and that the edges {Xij , i, j ∈ [n], i < j} are independent conditionally on the sigma-field generated by
{Zi, i ∈ [n]} and are drawn from a Poisson distribution such as:

Xij |Ziq.Zjl = 1 ∼ P(λql).

The parameter λql is Q×Q matrix of mean connection probabilities between the latent groups.
According to Mariadassou et al. (2010) and following the same steps as before, the lower bound of

the log-likelihood can be expressed as follows:

Jθ(RX) =
∑
i

∑
q

ERX
(Ziq) logαq +

∑
i<j

∑
q,l

ERX
(ZiqZjl)(−λql +Xij log(λql)−Xij !)

−
∑
i

∑
q

ERX
(Ziq) logERX

(Ziq). (3.1)

The estimation of the model parameters α and λ can be calculated directly by fixing the parameter τ
and then by maximizing (3.1) with respect to α and λ respectively. They can be expressed as follows

α̂q = 1
n

∑
i

τiq and λ̂ql =
∑
i<j τiqτjlXij∑
i<j τiqτjl

.

By maximizing (3.1) with respect to τ and by fixing the parameters λ and α, we can obtain the estimated
parameter τ̂ by the following fixed point relation

τ̂iq ∝ αq
∏
j

∏
l

(
e−λqlλ

Xij

ql

Xij !

)τ̂jl

. (3.2)

The estimation of τ is obtained from (3.2) by iterating a fixed point algorithm until convergence.

4 Numerical experiments
This section aims at highlighting the main features of the proposed inference algorithm and at proving
its validity by introducing two simulated data and then by applying our algorithm on a real dataset.
Furthermore, numerical comparisons with the Poisson SBM is performed to prove the effectiveness of the
proposed approach.

4.1 Simulated data
First, we perform the stochastic blockmodel using simulated data with a binomial output distribution.
The graph has n = 20 vertices. We choose for this simulation a fixed number of clusters Q equal to
three. We use in the simulation the following parameters:

ᾱ = (0.2, 0.5, 0.3) and π̄ =

0.7 0.2 0.1
0.2 0.5 0.3
0.1 0.3 0.6

 .
We visualize the network in Figure 1 using Gephi software with the layout algorithm Force Atlas. Fur-

thermore, in all the applications below, the width of the lines used to represent the edges is proportional
to its weights.

We can show in Figure 1 the structure of the simulated data graph. There are three apparent
communities. By applying our algorithm implemented in R programming language, we obtained that the
vertices of the network are grouped into three clusters as shown in Table 1.
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Figure 1: First simulated data graph visualization with Gephi.

Clusters Vertices
1 3 8 9 14 20
2 4 5 6 7 10 11 12 13 15 17
3 1 2 16 18 19

Table 1: Grouping first simulated graph vertices into clusters

Table 1 shows clearly that the nodes of the first simulated graph are split into three clusters which
are the same as the three clusters shown in the Figure 1 which confirm the effectiveness of our method.
The time of convergence of the algorithm is 0.22second (CPU Corel3 - 4GB RAM) which is so satisfying.

We sample now S = 8 random graphs according to the same mixture model. Then we calculated in
Table 2 and Table 3, for each parameter, the estimated Root Mean Squares Error (RMSE) defined by:

RMSE(ᾱq) =

√√√√ 1
S

S∑
s=1

(α̂(s)
q − ᾱq)2 and RMSE(π̄qr) =

√√√√ 1
S

S∑
s=1

(π̂(s)
qr − π̄qr)2,

where the superscript s labels the estimates obtained in simulation s.

RMSE(ᾱ1) RMSE(ᾱ2) RMSE(ᾱ3)
SBM with binomial distribution on edges 0.05 0.14 0.12
SBM with Poisson distribution on edges 0.33 0.24 0.15

Table 2: Root Mean Squares Error of the parameter ᾱq for the first simulated data using the binomial
SBM model and the Poisson SBM model.

RMSE π̄1. π̄2. π̄3.
π̄.1 0.01 0.06 0.14
π̄.2 0.06 0.12 0.07
π̄.3 0.14 0.07 0.13

Table 3: Root Mean Squares Error of the pa-
rameter π̄qr for the first simulated data using
the binomial SBM model.

RMSE π̄1. π̄2. π̄3.
π̄.1 0.3 0.8 0.88
π̄.2 0.8 0.5 0.68
π̄.3 0.88 0.68 0.4

Table 4: Root Mean Squares Error of the pa-
rameter π̄qr for the first simulated data using
the Poisson SBM model.

Applying the SBM model with Poisson distributed edges weights to this simulated data, we find the
same three clusters of the model. We give in Table 2, 3 and 4, the RMSE of the parameters ᾱ and π̄
obtained by our algorithm and those find by the Poisson SBM model. Results show that the RMSE of
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the parameters of the proposed model are closer to 0 and then the results is more satisfying than those
obtained by the Poisson SBM model.

Since we get better results using our method, we apply on the next simulated data example only the
proposed algorithm (related to the binomial SBM).

We introduce now a graph with a larger number of vertices to confirm that the proposed algorithm
is valid for larger weighted networks. The observed graph here has n = 70 vertices and a fixed number
of clusters Q equal to 5. The parameters used are:

ᾱ = (0.2, 0.1, 0.3, 0.35, 0.05) and π̄ =


0.5 0.1 0.1 0.1 0.2
0.1 0.4 0.2 0.1 0.2
0.1 0.2 0.6 0.05 0.05
0.1 0.1 0.05 0.4 0.35
0.2 0.2 0.05 0.35 0.2

 .
We visualize in Figure 2 the network using Gephi software with the layout algorithm Force Atlas.

Figure 2: Second simulated graph visualization with Gephi.

The structure of network graph in Figure 2 shows clearly five apparent communities. By applying
our algorithm implemented in the software R, we obtain that the optimal number of clusters is five and
that the nodes are grouped into these five clusters as shown in Table 5.

Clusters Vertices Cardinality
1 1 12 13 14 17 20 23 31 33 45 47 49 50 51 52 57 68 17
2 3 5 6 9 11 21 22 25 29 32 34 37 38 39 42 44 46 58 62 64 65 66 67 69 70 25
3 2 4 8 10 18 28 30 36 41 53 54 55 60 63 14
4 15 16 19 35 61 5
5 7 24 26 27 40 43 48 56 59 9

Table 5: Grouping second simulated graph vertices into clusters.

The nodes of the graph are clearly grouped into the same five clusters shown in Figure 2.
We calculate in the Table 6 and Table 7 the RMSE of the parameters ᾱ and π̄.
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RMSE(ᾱ1) RMSE(ᾱ2) RMSE(ᾱ3) RMSE(ᾱ4) RMSE(ᾱ5)
0.07 0.03 0.18 0.23 0.09

Table 6: Root Mean Squares Error of the parameter ᾱq for the second simulated SBM with binomial
output.

RMSE π̄1. π̄2. π̄3. π̄4. π̄5.
π̄.1 0.1 0.01 0.01 0.003 0.39
π̄.2 0.01 0.1 0.1 0.41 0.09
π̄.3 0.01 0.1 0.31 0.05 0.04
π̄.4 0.003 0.41 0.05 0.07 0.26
π̄.5 0.39 0.09 0.04 0.26 0.38

Table 7: Root Mean Squares Error of the parameter π̄qr for the second simulated SBM with binomial
output on edges.

All the obtained values are close to zero which demonstrates that the estimated parameters are closer
to the true parameters. The time of convergence of the algorithm is 0.47second (CPU Corel3 - 4GB
RAM) which is so satisfying.

4.2 Text mining through terms co-occurence network (Reuters-21578 data
set)

The Reuters-21578 data set contains a collection of documents that appeared on Reuters newswire in
1987. The data set is available online at http://kdd.ics.uci.edu/databases/reuters21578/reuters 21578.html.
For more explanation about this data, we refer the reader to (Lewis 1997). We are interested in this
example in 20 exemplary news articles from the Reuters-21578 data set of topic crude. The data is
available in the package tm (Feinerer et al. 2008) of the software R under the name of crude data where
all documents belong to the topic crude dealing with crude oil. We build a term-by-document matrix
of the corpus crude by doing a text mining treatment. We interpret a term as important according
to a simple counting of frequencies, we chose the frequent terms that co-occur at least six times in the
documents. Then, we compute the correlations between them in the term-by-document matrix and we
chose those out higher than 0.5. The figure visualizing the correlation between these terms is available
in (Feinerer et al. 2008).

We transform the term-by-document matrix into a one mode matrix which is the term-by-term
matrix. The network associated to this matrix is an undirected network of 21 vertices and 97 edges,
where each vertex is a term and there is an edge between a pair of terms if they co-occur together at
least one time in the documents. The edge weights are represented in the obtained matrix where each
cell indicates the number of documents where both the row and the column terms co-occur.

The graph associated with this network is visualized in Figure 3 using Gephi software with the layout
algorithm Force Atlas.

We present some global characteristics of the structure of the associated graph with "non weighted"
edges: the assortativity coefficient is equal to 0.23 which is a positive value, that means that the terms
presented in the documents of the reuters-21578 corpus tends to occur with other terms that have equally
high or equally low number of occurrence. The average clustering coefficient (transitivity) is equal to
0.84 which shows the completeness of the neighborhood of the vertices in the network. The density of the
graph is equal to 0.51 which indicates that the graph of the network is dense. Note that the transitivity
and the density value are close which means that the graph is not highly clustered.

We apply our algorithm. We obtain that the terms are grouped into four clusters as presented in
Table 8. Table 8 shows the distribution of the network’s terms into groups which means that the terms
of each group are frequently co-occuring together in the documents.

We apply now the SBM with a Poisson distributed edge’s weight. We obtain that the terms are grouped
into two clusters as presented in the follwong table 9

We define the total variation distance between two probability distributions µ and v on the sample
space Ω by dTV (µ, v) = 1

2
∑
x∈Ω |µ(x) − v(x)|. The mean of the total variation distance between the

binomial and the Poisson distribution is equal to mdTV = 6.5 which means that the two approaches are
not close and then the two fitted model are so different.

9
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Figure 3: Network of terms of the the Reuters-21578 corpus visualization with Gephi.

Clusters Vertices
1 oil opec prices
2 mln bpd month sources production saudi market
3 billion budget riyals government economics indonesia report
4 exchange nymex futures Kuwait

Table 8: Grouping the terms of the network of terms of the Reuters-21578 corpus into clusters using
binomial SBM.

Clusters Vertices
1 oil opec prices mln bpd sources production saudi market Kuwait
2 billion budget exchange futures riyals government economics indonesia month nymex report

Table 9: Grouping the terms of the network of terms of the Reuters-21578 corpus into clusters using
Poisson SBM.

4.3 Social network: a benchmark dataset (Deep South network)
The data was collected by Davies et al. (1941) in the Southern United State 1930s in order to report
a comparative study of social in black and in white society. They are interested in the percentage of
the contacts between individuals which have approximately the same class levels so they collect the
deep South data which represents the participation of 18 white women in a series of 14 informal social
events over a nine-month period. The data is available in the package manet in software R under the
name deepsouth http://cran.r-projet.org/web/packages/manet/manet.pdf. For more explanation about
this data, we refer the reader to (Linton 2003). This data is considered as a benchmark in comparing
social network analysis method. The authors focus on the analysis of two-mode data which means the
women-by-event matrix data.

We transform the data into a single mode matrix which is the women-by-women matrix by multiplying
the data matrix by its transpose. the network associated to this matrix is an undirected network of 18
vertices and 139 edges, where each vertex represents a Southern women among the 18 and there is an edge
between a pair of women if they participate together in one of the 14 events a least. The edge weights
are represented in the obtained matrix where each cell indicates the number of events co-attended by
both the row and the column women.

The graph associated with the obtained network is visualized in Figure 4 using Gephi software with the
layout algorithm Force Atlas. We present some global characteristics of the structure of the associated
graph with "non weighted" edges: the assortativity coefficient is equal to 0.11 which is a positive value,
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Figure 4: Deep South network visualization with Gephi.

that means that the Southern’s women tends to participate to social events with other women that have
equally high or equally low number of participation in the events. The average clustering coefficient
(transitivity) is equal to 0.93 which shows the completeness of the neighborhood of the vertices in the
network. The density of the graph is equal to 0.9 which indicates that the graph of the network is dense.
Note that the transitivity and the density value are close which means that the graph is not highly
clustered.

We apply our algorithm on the network to cluster the women into groups based on their occurrence
in the events. The results are shown in Table (10). In table 10, each cluster represent the women which

Clusters Vertices
1 Olivia Flora
2 Evelyn Laura Theresa Brenda Charlotte Frances Eleanor
3 Verne Myrna katherine Sylvia Nora Helen
4 Pearl Ruth Dorothy

Table 10: Grouping the women of deep South network into clusters.

are frequently met together in the informal social events.
We compare in the following the results obtained by the proposed method to several already existing

methods: BGR74 proposed by Breiger (1974) and is based on algebraic approaches, FRE92, FRE193 and
FR293 proposed by Freeman (1993) and Freeman (1994) and is based on various algorithms to search for
an optimal partition and OSB00 proposed by Osbourn and Martinez (1995) and is based on the algorithm
VERI. then, we compare it with the Poisson SBM.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
BGR74 W W W W W W W W W W W W WW WW W W
FRE92 W W W W W W W W W W W W W W W
FR193 W W W W W W W W W W W W W W W W W W
FR293 W W W W W W W W W W W W W W W W W W
OSB00 W W W W W W W W W W W W W W W W W W
BSBM W W W W W W W W W W W W W W W W W W
PSBM W W W W W W W W W W W W W W W W W W

Table 11: Clustering the women of the deep South network by different methods.
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Table 11 shows the clusters obtained by different methods. At each line, The symbol "W" corresponds
to women and all the W of the same color correspond to the women in the same cluster. The BSBM line
corresponds to our method while the PSBM line corresponds to the Poisson SBM.

The mean of the total variation distance between the binomial and the Poisson distribution is equal
to mdTV = 3.4 which means that the two model are different.

5 Conclusion
In this paper, we developed an inference method based on a variational expectation maximization (VEM)
algorithm to estimate the parameters in a binomial stochastic blockmodel for weighted graphs. Since the
log-likelihood of the incomplete data logPθ(X) = log

∑
Z Pθ(X,Z) is intractable except for network with

small number of nodes n, we used an expectation maximization (EM) algorithm to tackle this issue. Since
the edges of the network are not assumed to be independent, the computation of P(Z|X) is not possible
and then the E-step of the EM algorithm which requires the calculation of P(Z|X) is intractable. We
performed a variational expectation maximization (VEM) method to overcome this issue. This method is
based on two steps. The first step consists of estimating the parameters α and π of the model by fixing
the parameter τ and then by maximizing the lower bound J of the log-likelihood while the second step
consists of estimating the parameter τ by fixing the model parameters and then by maximizing the lower
bound J of the log-likelihood. We showed the effectiveness of our proposed method by using first, two
simulated data and then on two real dataset. We compared our algorithm to the Poisson SBM model.
Results show that our proposed method gives better results than the other method. We point out that
the computational time of convergence of our proposed algorithm is so satisfying. Furthermore, this
method is very easy to implement using the software R.

Moreover we found completely different fitted models by using the binomial and the Poisson distribu-
tion separately. The number of clusters can be different and clusters may differ. It is not the parameters
regime where a binomial distribution could be approximated by a Poisson, or vice-versa.

We plan to make an extension of our work by proposing an algorithm using variational Bayesian
inference for the binomial SBM model with weighted edges.
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