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Summary 

African rainforests support exceptionally high biodiversity and host the world's largest 

number of active hunter-gatherers [1-3]. The genetic history of African rainforest hunter-

gatherers and neighboring farmers is characterized by an ancient divergence more than 

100,000 years ago, together with recent population collapses and expansions, respectively [4-

12]. While the demographic past of rainforest hunter-gatherers has been deeply characterized, 

important aspects of their history of genetic adaptation remain unclear. Here, we investigated 

how these groups have adapted — through classic selective sweeps, polygenic adaptation and 

selection since admixture — to the challenging rainforest environments. To do so, we 

analyzed a combined dataset of 566 high-coverage exomes, including 266 newly-generated 

exomes, from 14 populations of rainforest hunter-gatherers and farmers, together with 40 

newly-generated, low-coverage genomes. We find evidence for a strong, shared selective 

sweep among all hunter-gatherer groups in the regulatory region of TRPS1 — primarily 

involved in morphological traits. We detect strong signals of polygenic adaptation for height 

and life history traits such as reproductive age; however, the latter appear to result from 

pervasive pleiotropy of height-associated genes. Furthermore, polygenic adaptation signals 

for functions related to responses of mast cells to allergens and microbes, the IL-2 signaling 

pathway, and host interactions with viruses support a history of pathogen-driven selection in 

the rainforest. Finally, we find that genes involved in heart and bone development and 

immune responses are enriched in both selection signals and local hunter-gatherer ancestry in 

admixed populations, suggesting that selection has maintained adaptive variation in the face 

of recent gene flow from farmers.  
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Results 

Exome Sequencing Dataset and Population Structure 

African rainforest hunter-gatherers (RHG) — historically grouped under the term “Pygmies” 

— live along the dense tropical rainforests of central Africa, in the western and eastern part of 

the Congo Basin [1-3]. Genetic studies have deeply investigated the demographic history of 

these groups, characterized by long-term isolation since the Upper Paleolithic and substantial 

admixture with neighboring Bantu-speaking farmers in the last 1,000 years [4-12]. However, 

their adaptive history has received less attention. Natural selection studies in RHG have 

primarily focused on small adult body size as the only trait characterizing the ‘pygmy’ 

phenotype [13-20], and used SNP genotyping data [14, 15, 19-21] or whole-genome/exome 

sequencing of a few individuals or populations [4, 6, 18, 22, 23]. 

To understand human genetic adaptation to the rainforest, we generated and analyzed 

whole-exome sequencing data (~40 coverage) for seven RHG groups from Cameroon, 

Gabon and Uganda, as well as, for comparison purposes, seven sedentary groups of Bantu-

speaking agriculturalists (AGR) (Figure 1A; Table S1). After quality filters, we obtained a 

final dataset of 566 individuals (298 RHG and 268 AGR), consisting of 266 newly-generated 

exomes that were analyzed with 300 previously reported exomes [4] (Figure S1).  

Genetic differentiation among RHG groups was higher than that between RHG and AGR 

(among-RHG FST = 0.025; among-western RHG FST = 0.021; RHG-AGR FST = 0.017; 

among-AGR FST = 0.007; Figure 1B). To increase SNP density, particularly in the non-coding 

genome, we combined the exome data with SNP array data for the same individuals [12, 24, 

25], yielding a total of 1,253,548 SNPs. When using ADMIXTURE [26] on the dataset 

pruned for allele frequency (MAF>5%) and linkage disequilibrium (r
2
<0.5), RHG separated 

into four clusters at K=5 (Figure 1C), corresponding to Bezan, Baka, BaBongo and BaKoya, 

and BaTwa groups. As previously observed [5, 12, 14, 24], membership proportions to the 
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cluster assigned to AGR were non-negligible and similar among RHG groups (~4-9%; Table 

S1), with the exception of the BaBongo of east and south Gabon, who presented high AGR 

proportions (~43% [s.d. = 11%] and ~24% [s.d. = 17%], respectively). Membership 

proportions to the cluster assigned to RHG were also non-negligible among AGR (~10-30%). 

Our results show that RHG populations are highly structured, emphasizing the importance of 

considering these groups separately in subsequent analyses.  

 

Searching for Signals of Local Genetic Adaptation in Central Africans 

For all natural selection analyses, we increased SNP density to 9,129,103 high-quality 

variants (MAF>1%), through genotype imputation using (i) newly-generated whole genomes 

from 20 RHG Baka and 20 AGR Nzébi from Gabon (5-6 coverage), and (ii) the 1,000 

Genomes Phase 3 panel [27] (STAR Methods; Figure S1). We focused on the five RHG 

populations presenting the lowest average levels of AGR ancestry, and analyzed the highly-

admixed RHG groups differently (see “Recent Genetic Adaptation of Admixed Rainforest 

Hunter-Gatherers”). To identify signals of strong sweeps, we searched for variants with both 

high allele frequency and extended haplotype homozygosity in RHG, relative to AGR (STAR 

Methods). Genome-wide ranks of PBS [28] and XP-EHH [29] were combined into a Fisher’s 

score (FCS), and, to reduce false positives, candidate regions were defined as 100-kb windows 

with the 1% highest proportion of outlier SNPs of the genome.  

We first scanned the genomes of AGR populations (Figure S2), the evolutionary history of 

whom is well characterized [24, 29-32]. We found 18 candidate regions for positive selection 

in both western and eastern AGR, while only ~3.5 were expected to be shared if candidate 

loci were false positives (10,000 random samples; resampling P<10
-4

) (Figure 2A; Data S1). 

Among candidates, we replicated, for example, the signal encompassing the LARGE gene, 
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involved in Lassa virus infectivity [33]. These results provide evidence that the genomic 

regions detected by our approach are enriched in true signals.  

 

A Strong, Shared Selective Sweep at TRPS1 across All Hunter-Gatherer Groups 

Our search for sweeps in RHG identified candidates that were shared by RHG groups more 

than expected by chance (resampling P<10
-4

) (Figure 2A; Data S1). Remarkably, we 

identified a single genomic region that exhibits sweep signals in all RHG populations, but not 

in AGR (Figure 2A-C; Figure S3). This region lies upstream of the 5’UTR of TRPS1, which 

encodes a transcription factor (TF) with multiple pleiotropic effects, including skeletal 

development and inflammatory TH17 cell differentiation [34-36]. The six variants presenting 

the highest frequency differences between RHG and AGR (Data S1) define a 5,777 bp region 

that contains a primate-specific THE1B endogenous retrovirus sequence, known to control the 

expression of nearby genes [37]. Given the high expression of TRPS1 in monocytes [38], we 

analyzed published RNA-seq data from monocytes of individuals of central African ancestry 

to test if candidate variants affect TRPS1 expression [39]. A highly-differentiated variant that 

falls within the THE1B fragment was associated with increased expression of a short, non-

canonical TRPS1 transcript upon immune stimulation (rs111351287; regression P = 5×10
-6

). 

These findings suggest that the most robust signal of adaptation to the African rainforest can 

be ascribed to TRPS1, possibly in relation with variation in morphological and/or 

immunological traits.  

 

Detection of Other Classic Sweep Signals in Rainforest Hunter-Gatherers 

Other selective sweep signals were specific to a smaller number of RHG groups (Figure S2; 

Data S1). These include the known 150-kb region encompassing CISH, MAPKAPK3 and 

DOCK3 [6, 14], which we show here to be shared among western and eastern RHG (Baka, 



 6 

BaKoya and BaTwa). We searched the GTEx database [40] for regulatory variation at these 

genes (eQTLs), and found two cis-eQTLs for MAPKAPK3 (rs107457; rs9879397), one for 

DOCK3 (rs12629788), and none for CISH (Data S1). Selection scores at these eQTLs were 

among the highest of the region, particularly for MAPKAPK3 (Figure 2D), which affects 

hepatitis C virus (HCV) infectivity [41].  

We also detected two contiguous regions at the IFIH1 locus [18], which present strong 

enrichments in selection scores that are shared by all western RHG groups. Candidate 

variation at this locus (rs12479043) controls the expression of the nearby FAP gene [40], 

which regulates fibroblast and myofibroblast growth and wound healing during chronic 

inflammation [42]. We also identified two windows — shared by Bezan, Baka and BaKoya 

— encompassing RASGEF1B, whose expression is induced in macrophages by 

lipopolysaccharide, a membrane component of Gram-negative bacteria [43]. Finally, we 

found a window in the Bezan, BaBongo and BaKoya that overlaps PITX1, recently identified 

as a selection candidate in RHG [22]. PITX1 modulates the core development of limb [44], is 

associated with height variation [45], acts as an early TF in the developing pituitary gland 

[46], and regulates interferon- virus induction [47]. These results support the hypothesis that 

development and immunity are key traits in local adaptation to the rainforest. 

 

Evidence for Polygenic Selection Favoring the “Pygmy” Phenotype 

Given the polygenic nature of most adaptive traits [48, 49], we searched for evidence of 

polygenic adaptation focusing on 12 candidate quantitative traits. These include height, body 

mass index, skin pigmentation, life history traits and immune cell counts, the genetic 

architectures of which have been extensively studied [50]. We compared the distribution of 

mean FCS scores in non-overlapping, 100-kb genomic windows containing trait-associated 

SNPs, to that of randomly sampled windows, accounting for SNP density, LD levels and 
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background selection (STAR Methods). Stature-related traits showed the most significant 

polygenic selection signals, in all RHG groups (adj. P<0.05) while being non-significant in 

AGR (Figure 3A). Life-history traits related to reproduction also exhibited selection signals in 

various RHG groups, consistent with the proposed adaptive nature of early reproduction in 

RHG [51, 52]. Furthermore, we replicated selection signals for cardiovascular traits in the 

BaTwa (adj. P<0.001) [23]. Notably, we found significant signals in “Leukocyte count” in the 

Baka and the BaBongo (adj. P<0.05), suggesting polygenic adaptation related to immunity.  

We next examined whether signals of polygenic selection could result from pleiotropy, 

e.g., advantageous height-associated variants affect other correlated traits [49]. Using the UK 

Biobank dataset [50], we computed the genetic correlations from LD-score regressions 

between “Standing height” and the remaining traits, and found significant correlations for 

eight of them (STAR Methods; Data S1). For these, we repeated the analysis after excluding 

windows associated with “Standing height” or “Comparative height at age 10”, and the 

significance of selection signals was lost or dramatically reduced (Figure 3B; Figure S4). 

Conversely, when excluding windows associated to non-height traits (e.g., reproduction-

related traits), we found that “Standing height” was still significant in four RHG populations 

(adj. P<0.05) (Figure 3C). These results show that height has been an adaptive trait in RHG, 

resulting in spurious polygenic selection signals for other correlated traits because of 

pleiotropy. 

 

Evidence of Pervasive Pathogen-Driven Selection in the Equatorial Rainforest  

We further investigated genomic signatures of polygenic adaptation, by searching for 

excesses in mean FCS among windows related to 5,354 gene ontology (GO) terms [53] (STAR 

Methods). We detected 38 terms that were significant in at least three RHG groups but not in 

AGR (Figure 3D; Data S1). Among these, we found positive regulation of “mast cell 
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degranulation” and “the phosphatidylinositol 3-kinase (PI3K) pathway” (FDR P<5%). 

Recognition by mast cells of allergens and antigens induce degranulation, a process mediated 

by the PI3K pathway that results in inflammation and allergy [54]. Enrichments were also 

found in the IL-2 signaling pathway, which activates the PI3K pathway and regulates immune 

tolerance [55]. All enrichments remained significant after removing windows associated with 

height (FDR P<5%), excluding potential pleiotropic effects. To gain further insights into 

pathogen-driven selection, we next focused on 1,553 innate immunity genes (IIGs) [56] and 

1,257 genes encoding virus-interacting proteins (VIPs) [57]. We found significant 

enrichments in selection signals for both gene sets in RHG but not in AGR, in particular for 

VIPs interacting with dsDNA and ssRNA viruses (FDR P<5%; Table S2; Data S1). These 

results collectively support the notion that pathogens have been a major driver of local 

adaptation in the African rainforest.  

 

Recent Genetic Adaptation of Admixed Rainforest Hunter-Gatherers  

To search for evidence of recent selection in RHG since their admixture with AGR, we 

focused on the highly-admixed BaBongo (Figure 1C), and performed local ancestry inference 

with RFMix [58], using as putative parental populations western RHG and AGR individuals 

with the lowest AGR and RHG membership proportions, respectively (STAR Methods). Six 

contiguous windows on chromosome 1 showed both evidence of selection (i.e. top 1% of the 

proportion of outlier SNPs) and an excess of RHG local ancestry (i.e. higher than the genome-

wide average + 2 s.d.) in admixed RHG (Figure 4A; Figure S2; Data S1). Among the 

strongest candidate variants, we found a non-synonymous mutation (rs6697388) in ZBED6, 

which encodes a TF that controls muscle growth through IGF2 repression [59]. ZBED6 is 

located within the intron of the ZC3H11A gene, whose product is required for the efficient 

growth of several nuclear-replicating viruses [60]. The rs6697388 G allele (p.Leu391Arg) is 
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present at the highest frequency in admixed BaBongo (51%), with lower frequencies in 

parental RHG (42%) and AGR (15%) groups. With respect to the strong, shared selective 

sweep detected at TRPS1 (Figure 2C), the locus also presented selection signals in the 

BaBongo but no excess of RHG or AGR ancestry (Figures S2 and S3), suggesting weaker or 

no positive selection at TRPS1 since admixture. 

Finally, we searched for evidence of polygenic selection since admixture, by testing for 

excesses in AGR or RHG local ancestry in genomic windows related to GO terms in the 

admixed BaBongo (STAR Methods). We found 21 GO terms that were enriched in both RHG 

local ancestry and selection signals in the parental RHG (Figure 4B; Data S1), an overlap that 

was significantly larger than expected (7.3% vs. 4.7%, χ²-test P = 0.042). These terms were 

mostly related to cardiac and skeletal development and immune functions, and included 

“heparin biosynthetic process”, which participates in mast cell-mediated immune and 

inflammatory responses [61], echoing the signals detected for “mast cell degranulation” in 

weakly-admixed RHG (Figure 3D). We also found 16 GO terms that were enriched in both 

AGR local ancestry and selection signals in the parental AGR (Figure 4B; Data S1), including 

stem cell proliferation, exocytosis and muscle composition. Together, these results support 

further the notion that heart and bone development as well as immune responses have been an 

important substrate of selection in RHG, before and after their admixture with neighboring 

farmers.  
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Discussion 

Here we present the first exome-based survey of multiple geographically dispersed groups of 

African rainforest hunter-gatherers, with the aim of investigating how populations have 

adapted to the challenging habitats of the equatorial rainforest. Because positive selection 

often targets regulatory regions [62], we combined the exome dataset with SNP array data, to 

cover both genic and intergenic regions. In doing so, we found evidence of a unique, strong 

sweep that is shared by all RHG groups, targeting the regulatory region of TRPS1, mutations 

in which can cause growth retardation, distinctive craniofacial features [63] and 

hypertrichosis [64]. Furthermore, the transcription factor TRPS1 regulates STAT3, a mediator 

of inflammation and immunity [65], and RUNX2, controlling facial features and viral 

clearance [66, 67]. Interestingly, TRPS1 has been recently shown to carry signals of archaic 

introgression in western Africans [68]. Functional studies should help determining the 

adaptive nature — developmental and/or immune-related — of variation at this locus, which 

possibly introgressed from extinct African hominins [18, 68, 69]. 

This study also extends previous findings of a sweep targeting the CISH-MAPKAPK3-

DOCK3 region [6, 14], by delineating MAPKAPK3 as the most likely target. MAPKAPK3 

expression is regulated by two eQTLs that are among the strongest candidates for positive 

selection at the locus in RHG populations. MAPKAPK3 directly interacts with HCV and 

regulates cell infectivity [41]. A lower prevalence of HCV infection has been reported in 

RHG, with respect to AGR [70, 71]. Our results strengthen the evolutionary importance of the 

CISH-MAPKAPK3-DOCK3 region in both western and eastern RHG, and pinpoint 

MAPKAPK3 variation as a putative, additional risk factor for HCV infection in Africans. 

Our analyses provide robust evidence for polygenic selection of height, which we replicate 

in various RHG groups. Importantly, our results are not affected by biased GWAS summary 

statistics due to partial control for population stratification, which can result in spurious 
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polygenic selection signals [72, 73]. Our approach tests for the colocalization of selection 

signals and trait-associated genes; thus, it does not depend on effect size estimates and does 

not assume that associated variants are the same across populations. More generally, 

polygenic selection of height is unlikely to result from sexual selection [74] but from genetic 

adaptation to equatorial forest environments [75]. Our study sheds new light onto the debated 

adaptive nature of height, and supports that the early reproductive age of RHG is not the 

cause of their small body size, as previously suggested [51, 52]. Instead, our results suggest 

that directional selection of height has resulted in changes in life-history traits because of 

pervasive pleiotropy of height-associated genes.  

We also found signals of polygenic selection in RHG at functions related to the IL-2 

pathway, the sensing of allergens and microbes, and interactions with dsDNA and ssRNA 

viruses. Interestingly, higher seropositivity for more than 30 viruses has been reported in the 

BaTwa from Uganda, with respect to AGR, particularly for dsDNA viruses [76]. That we also 

found an excess of RHG ancestry related to heparin biosynthesis, interleukin production, and 

leukocyte chemotaxis in highly-admixed RHG suggests preferential retention of RHG 

variation at immune-related functions. This finding supports a long-standing history of 

adaptation of rainforest hunter-gatherers to high pathogen pressures. This contrasts with a 

study in southern Africa, which reported a low exposure and adaptation to pathogens of 

hunter-gatherers of the Kalahari Desert, except for those who recently came in contact with 

other populations [77].  

Collectively, our analyses uncover height, development and immune response as iconic 

adaptive traits of African rainforest hunter-gatherers. It is interesting to note that the PI3K-

signaling pathway — under polygenic selection in four RHG populations — modulates 

inflammatory responses [78], body energy homeostasis [79, 80] and insulin secretion [81]. 

Several studies have highlighted the reciprocal relationship between proinflammatory 
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cytokines and the regulation of the growth hormone through the IGF-1 axis [82]. It is thus 

tempting to speculate that pleiotropic effects between developmental growth and immunity 

could have further participated to the ‘pygmy’ phenotype. Epidemiological work on the 

infectious disease burden in hunter-gatherers should increase our understanding of how 

historical high pathogen-driven selection has contributed to the reduced stature characterizing 

populations of the rainforest. 
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Main-text figure legends 

 

Figure 1. Location, Genetic Differentiation and Structure of Central African 

Populations 

(A) Geographic location of the populations analyzed. Populations of rainforest hunter–

gatherers (diamonds) and neighboring farmers (circles) originating from the three countries 

are shown in the map of Africa. Colors indicate the dominant membership in each population, 

based on ADMIXTURE results (Figure 1C). 

(B) Levels of genetic differentiation between populations measured by pairwise FST calculated 

on the exome data.  

(C) Cluster membership proportions estimated by ADMIXTURE on the merged exome and 

SNP array data. Cross-validation values were lowest at K=5 clusters.  

(B and C) BaBongoC, BaBongoS and BaBongoE stand for BaBongo populations from the 

center, south and east of Gabon, respectively. 

See also Figure S1 and Table S1. 

 

Figure 2. Shared Signals of Classic Sweeps among Rainforest Hunter-Gatherers  

(A) Number of candidate windows for classic sweeps (i.e., windows with proportions of 

outlier SNPs among the 1% highest of the genome) common to western and eastern AGR 

populations (wAGR and eAGR), as well as common to RHG populations. P-values obtained 

based on 10,000 resamples are shown: *P<10
-4

 

(B) Genome-wide map of classic sweep signals in RHG groups. The autosomes of each of the 

five RHG populations (from top to bottom: Bezan, Baka, lowly-admixed BaBongo, BaKoya, 
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and BaTwa) are shown. Colored dots indicate genomic regions that are common to at least 

three RHG populations. 

(C) Selective sweep signal at the locus containing the TRPS1 gene (chr8:116702422-

116802422) in the Baka RHG.  

(D) Selective sweep signal at the locus containing CISH, MAPKAPK3 and DOCK3 genes 

(chr3:50610197-50710197 and chr3:50660197-50760197) in the BaTwa RHG.  

(C and D) Dot colors indicate SNP FCS percentiles, black squares indicate non-synonymous 

mutations, and black dots indicate eQTLs (q-value<0.005) [40]. eQTLs of MAPKAPK3 

(rs107457, rs9879397) and DOCK3 (rs12629788) are shown as yellow diamonds. Not all 

genes of the genomic region are shown for convenience.  

See also Figures S2 and S3 and Data S1.   

 

Figure 3. Signals of Polygenic Selection in African Rainforest Hunter-Gatherers  

(A) Signals of polygenic selection for 12 candidate quantitative traits, based on higher mean 

FCS of trait-associated windows relative to genome-wide expectations.  

(B) Signals of polygenic selection for the candidate quantitative traits, based on higher mean 

FCS of trait-associated windows relative to genome-wide expectations, after removing 

windows associated with “Standing height” and “Comparative height at age 10”. Loss of 

significance was not explained by the reduced number of windows tested (Figure S4). 

(C) Signals of polygenic selection for “Standing height”, based on higher mean FCS of trait-

associated windows relative to genome-wide expectations, after removing windows 

associated with each of the remaining quantitative traits.  

(A–C) Color gradient and circle sizes are proportional to –log10(adjusted P) with adjusted 

P<0.05 (*), P<0.01 (**) and P<0.001 (***). Multiple testing corrections were performed 

using the Benjamini-Hochberg method. wAGR and eAGR stand for western and eastern AGR 
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groups. Signals were generally stronger in Baka and BaTwa RHG, probably because of their 

larger sample size. 

(D) Gene Ontology (GO) terms enriched in selection scores (FDR P<5%) in RHG, but not in 

AGR populations, considering the window mean FCS as selection score. Circle color and size 

indicate the number of RHG populations that show significant evidence of polygenic selection 

for a given GO term.  

See also Figure S4, Table S2 and Data S1.  

 

Figure 4. Selection Signals in Highly-Admixed Rainforest Hunter-Gatherers  

(A) Selective sweep signal and average local RHG ancestry at the chr1:203564464-

203764464 locus in the highly-admixed RHG BaBongo. Dot colors indicate SNP FCS 

percentiles, the black square indicates the non-synonymous variant (rs6697388) at ZBED6, 

and black dots indicate eQTLs (q-value<0.005) [40]. 

(B) GO terms enriched in both local ancestry in the highly-admixed RHG BaBongo, and 

selection scores in each of the two putative parental populations, with respect to the rest of the 

genome (FDR P<5%). Green (brown) dots indicate GO terms enriched in both western RHG 

(western AGR) local ancestry and selection scores in parental western RHG (western AGR) 

populations (FDR P<5%). Enrichments were assessed using the Mann-Whitney-Wilcoxon 

rank-sum test.  

See also Data S1.   
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STAR★METHODS 

LEAD CONTACT AND MATERIALS AVAILABILITY 

This study did not generate new unique reagents. Further information and requests for 

resources should be directed to and will be fulfilled by the Lead Contact, Lluís Quintana-

Murci (quintana@pasteur.fr).  

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

Sample collection. Sampling consisted in human saliva or blood from 157 rainforest hunter-

gatherers and 120 farmers from western and eastern central Africa (Figure S1), including 208 

males and 69 females. Informed consent was obtained from all participants in this study, 

which was overseen by the institutional review board of Institut Pasteur (2011-54/IRB/8), the 

Comité National d’Ethique du Gabon (0016/2016/SG/CNE), the University of Chicago (IRB 

16986A) and Makerere University, Kampala, Uganda (IRB 2009-137). The 277 new samples 

collected for exome sequencing were analyzed together with 317 exomes of central Africans 

from Lopez et al. 2018 [4] and 101 Europeans from Quach et al. 2016 [39] (Table S1). 

 

METHOD DETAILS 

Exome Sequencing. Sample libraries were prepared with the Nextera Rapid Capture 

Expanded Exome Kit, which delivers 62Mb of genomic content per individual, including 

exons, untranslated regions and microRNAs, and were sequenced on Illumina HiSeq2500 

machines. Using the GATK Best Practices recommendations [83], pairs of 101-bp reads were 

mapped onto the human reference genome (GRCh37) with Burrows-Wheeler Aligner (BWA) 

version 0.7.7 [84], using ‘bwa mem -M -t 4 -R’, and reads duplicating the start position of 

another read were marked as duplicates with Picard Tools version 1.94 

(http://broadinstitute.github.io/picard/), using ‘MarkDuplicates’. We used GATK version 3.5 

mailto:quintana@pasteur.fr
http://broadinstitute.github.io/picard/
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[85] for base quality score recalibration (‘Base Recalibrator’), insertion/deletion (indel) 

realignment (‘IndelRealigner’), and SNP and indel discovery (‘Haplotype Caller’) for each 

sample. Individual variant files were combined with ’GenotypeGVCFs’ and filtered with 

‘VariantQualityScoreRecalibration’. We used high confidence variants from the 1000G Phase 

1 and HapMap 3 projects [86, 87] as VQSR training callsets, and applied a tranche sensitivity 

threshold of 99.5%. From the 947,523 sites detected, we removed indels as well as SNPs that 

(i) were located on the sex chromosomes, (ii) were not biallelic, (iii) were monomorphic in 

our total sample, (iv) had a depth of coverage < 5×, (v) had a genotype quality score (GQ) < 

20, (vi) presented missingness > 15%, and (vii) presented a Hardy-Weinberg test P < 10
-6 

in at 

least one of population. As criteria to remove low-quality samples, we required a total 

genotype missingness < 15% (21 excluded samples). In addition, we checked for 

unexpectedly high or low heterozygosity values, suggesting high levels of inbreeding or DNA 

contamination, and excluded 3 individuals presenting heterozygosity levels 4 s.d. higher than 

their population average. We thus retained exome data for 671 individuals, with an average 

depth of coverage after duplicate removal of 38 (s.d.: 9), ranging from 25 to 95. The 

application of these quality-control filters resulted in a final dataset of 682,468 SNPs (Figure 

S1), of which 107,621 SNPs were polymorphic only in the 268 newly-sequenced individuals. 

 

SNP Array Data. In addition to exome sequencing, we retrieved the genotyping data of the 

same 671 individuals from Quach et al. 2016 [39], Patin et al. 2014 [12], Patin et al. 2017 

[24] and Fagny et al. 2015 [25] (Figure S1; Table S1). We removed SNPs located on the X 

and Y chromosomes, problematic genotype clustering profiles (i.e., Illumina GenTrain score 

<0.35) or with call rate <95%. We kept 599,559 SNPs common to different genotyping SNP 

arrays. We removed a total of 53 C/G or A/T SNPs to prevent misaligned SNPs, and excluded 
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a total 5 additional SNPs that were under Hardy-Weinberg disequilibrium in at least one of 

the populations (P < 10
-6

) using PLINK [88], leading to a final dataset of 559,501 SNPs.  

We applied additional filters on the genotyping dataset of the 671 individuals retained for 

exome sequencing. We removed two individuals with heterozygosity levels higher or lower 

than the population mean ± 4 s.d. Although related individuals were avoided during the 

sampling and for exome sequencing (based on published SNP array data) [5, 12, 17, 24, 25], 

we sought to exclude possibly remaining pairs of cryptically related individuals. Indeed, RHG 

populations are small isolated communities, where individuals can be related to many others. 

We considered that two individuals were strongly (cryptically) related if they presented a 

first-degree relationship (kinship coefficient > 0.177), as inferred by KING [89]. Following 

this criterion, only one individual was removed. Additionally, we removed another individual 

who did not present any first-degree relatedness but was related in second-degree to many 

others. After removing these two individuals, the dataset included 77 and 232 pairs of second-

degree (kinship coefficient > 0.0884) and third-degree (kinship coefficient > 0.0442) related 

RHG individuals, respectively. The application of these quality-control filters resulted in a 

final genotyping dataset of 667 individuals and 599,501 SNPs (Figure S1).  

 

Merging Exome and SNP Array Data. Before merging the genotyping array and the exome 

data from the 667 high-quality individuals in common, we flipped alleles for 8,393 SNPs with 

incompatible allelic states, and removed 9 SNPs with alleles that remained incompatible after 

allele flipping from the genotyping dataset. The total concordance rate was evaluated on 

28,403 SNPs common to both datasets. The concordance rates for each of the 667 individuals 

exceeded 98%, confirming an absence of errors during DNA sample processing. The entire 

genotyping and exome datasets (599,492 and 682,468 SNPs, respectively) were then merged, 
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yielding a final dataset of 1,253,548 SNPs for 667 individuals, 566 of whom were African 

farmers or hunter-gatherers (Figure S1). 

 

Whole-Genome Sequencing. We generated whole genomes of 20 RHG Baka and 20 AGR 

Nzébi of Gabon, which were also part of the exome and SNP array datasets. All the samples 

were processed using the paired-end library preparation protocol from Illumina. Libraries 

were sequenced on Illumina HiSeq 2000 machines at the Stanford Center for Genomics and 

Personalized Medicine. 101-pb reads were aligned to the human reference genome (GRCh37) 

using BWA [84], followed by base quality recalibration and realignment around known indels 

with GATK [85]. Genotyping was carried out across all 40 individuals jointly using GATK 

‘UnifiedGenotyper’, and called variants were stratified into variant quality tranches using 

‘VariantQualityScoreRecalibration’ tool (VQSR) from GATK. SNPs with a VQSR tranche > 

99.0 were considered as confidently called. Genotype calls were refined and improved based 

on LD using BEAGLE [90], yielding a final dataset of 17,687,206 variants (Figure S1). All 

individuals presented very low rates of missing values ranging from 0.5% to 4%, and a mean 

depth of coverage of 6.5× (ranging from 4× to 13×). 

 

Imputation of SNP Array and Exome Data. Before imputation, we phased the data with 

SHAPEIT2 using 100 states, 20 MCMC main steps, 7 burnin and 8 pruning steps [91]. SNPs 

and allelic states were then aligned with the 1,000 Genomes Project imputation reference 

panel (Phase 3, [27]), referred to as ‘reference panel 1’, as well as the 40 whole genomes of 

Baka RHG and Nzébi AGR of Gabon, referred to as ‘reference panel 2’ (Figure S1). We 

removed from the reference panels SNPs with MAF < 1%, SNPs with C/G or A/T alleles and 

414,679 multiallelic SNPs in the reference panel 1. We evaluated the allelic concordance 

between the two reference panels and excluded 9,649 additional sites from the reference panel 
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2, yielding to final datasets of 11,501,018 SNPs in the reference panel 1 and 14,252,666 SNPs 

in the reference panel 2.  

Genotype imputation was performed with IMPUTE v.2 [92] considering 1-Mb windows 

and both reference panels simultaneously, with the ‘-merge_ref_panels’ option. We used 

genotype calls instead of genotype probabilities, which are not handled by downstream 

programs, and considered as confident genotype calls genotypes with posterior probability > 

0.8. Of the 13,092,258 SNPs obtained after imputation, we removed SNPs that: (i) presented 

an information metric < 0.8, (ii) had a duplicate, (iii) presented a call rate < 95%, and (iv) 

were monomorphic. The final imputed dataset included 10,262,236 SNPs, and 9,129,103 after 

filtering SNPs with MAF < 1%. To evaluate imputation accuracy, we estimated correlation 

coefficients r
2
 between true genotypes (i.e., obtained by Illumina genotyping array or exome 

sequencing) and imputed genotypes for the same SNPs (i.e., obtained by artificially removing 

genotyped SNPs from the data before imputation and then imputing them). The average 

correlation coefficient across all genotyped SNPs with information metric > 0.8 were 0.86 and 

0.85 for reference panels 1 and 2, respectively, showing that our quality filters ensure to keep 

accurately imputed SNPs for further analysis. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Genome Scans for Selective Sweeps. Genomic regions candidate for positive selection were 

detected in seven populations of RHG (Bezan, Baka, BaBongo of central Gabon, BaKoya, 

BaBongo of south and east Gabon and BaTwa) and two populations of AGR (western and 

eastern AGR), with an outlier approach that considers two interpopulation statistics: PBS 

(Population Branch Score [28]), and XP-EHH [29]. We combined these scores into a Fisher’s 

score (FCS) equal to the sum, over the two statistics, of –log10(rank of the statistic for a given 

SNP/number of SNPs). Interpopulation statistics require a reference population, and PBS 
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statistics an outgroup population. We performed separate scans of classic sweeps for each 

population, using Europeans as outgroup, and different reference populations: western AGR 

for each western RHG population, eastern AGR for eastern RHG, pooled western RHG for 

western AGR, and eastern RHG for eastern AGR. PBS was calculated for each SNP using 

AMOVA-based FST values computed with home-made scripts (available upon request). The 

derived allele of each SNP was defined based on the 6-EPO alignment. XP-EHH was 

computed in 100-kb sliding windows with a 50-kb pace, with home-made scripts (available 

upon request). Only SNPs with a derived allele frequency (DAF) between 10% and 90% were 

analyzed further. XP-EHH scores were normalized in 40 separate bins of DAF. An outlier 

SNP was defined as a SNP with an FCS among the 1% highest of the genome. A putatively 

selected genomic region was defined as a 100-kb window presenting a proportion of outlier 

SNPs among the 1% highest of all windows, in five bins of SNP numbers. Windows 

containing less than 50 SNPs were discarded as well as 500-kb regions around gaps, to avoid 

biases in the outlier enrichment scores.  

 

Polygenic Selection of Complex Traits. We retrieved the results of the Genome Wide 

Association studies from UK BIOBANK (round 2, http://www.nealelab.is/uk-biobank/) of 12 

complex traits that we selected as candidates for adaptation of RHG, based on previous 

hypotheses from biological anthropology studies [51, 73, 93-97]. Our genomic dataset was 

split into non-overlapping 100-kb windows. We considered a window as associated with a 

trait if it included a SNP with a genome-wide significant association with this trait 

(Passoc<5×10
-8

). We computed for each genomic window, associated or not with the trait, the 

average FCS, the proportion of conserved SNP positions based on GERP scores > 2 [98], and 

the recombination rate using the combined HapMap genetic map [99], to account for the 

confounding effects of background selection.  
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In order to test for polygenic selection, we generated a null distribution by randomly 

sampling x windows (x being the number of windows associated with a tested trait) among 

windows with a similar number of SNPs, proportion of GERP > 2 sites and recombination 

rate observed in the trait-associated windows. We then calculated the average of the mean of 

the FCS across the x resampled windows. We resampled 100,000 sets of x windows for each 

trait. To test for significance, we computed a resampling P-value by calculating the 

proportion of resampled windows which mean FCS was higher than that observed for the 

tested trait. All P-values for polygenic adaptation were then adjusted for multiple testing by 

the Benjamini-Hochberg method, to account for the number of traits tested, and traits with an 

adjusted P < 0.05 were considered as candidates for polygenic selection.  

To test if polygenic selection signals are due to pleiotropy of height-associated genes, we first 

estimated genetic correlations between candidate traits from LD-score regression using the 

ldsc tool [100]. We used precomputed European LD-scores 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/). P-values were corrected for multiple 

testing using the Bonferroni correction, and adjusted P-values < 0.05 were considered as 

significant. 

To correct for pleiotropy for each trait genetically correlated with height, we removed 

windows significantly associated with ‘Standing Height’ and ‘Comparative height at age 10’ 

in both windows associated with the candidate trait and resampled windows. Similarly, we re-

tested for polygenic adaptation on “Standing height” and “Comparative height at age 10” 

associated regions using the same approach, but by removing all trait-associated windows, 

except height-associated windows. To test if loss of significance was due to a decrease in 

power, we down-sampled the number of tested trait-associated windows to the same number 

as after removing height-associated windows. We down-sampled a 100 times trait-associated 

windows, and estimated a hundred P-values as described above. We finally compared the 
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distribution of the 100 obtained P-values with the estimated P-value (non-adjusted for 

multiple testing) both before and after removing height-associated windows.  

 

Polygenic Selection of Gene Ontologies. To detect enrichment of FCS scores in sets of genes 

corresponding to a given biological pathway, we compared the distributions of FCS between 

genes that were part of the gene ontology (GO) term tested, relative to the rest of the genes of 

the genome, using a Mann-Whitney-Wilcoxon rank-sum test. To limit the effect of clusters of 

genes on the enrichment calculation, we assigned to each 100-kb non-overlapping genomic 

window both a GO term, based on the presence of at least one gene from the corresponding 

term, and a mean FCS score. We tested if mean FCS of windows assigned to a given GO term 

were different from genome-wide expectations, accounting for multiple testing. We restricted 

the enrichment analysis to 5,354 GO terms with levels comprised between levels 3 and 7 [53], 

using the python library goatools [101], and that include at least 5 genes. We examined a total 

of 15,503 windows and determined P-values corresponding to 5% and 1% of false 

discoveries, FDR P = 9.24×10
-3

 and FDR P = 4.03×10
-4

, respectively, by randomly 

resampling y genes (y being sampled from the distribution of the number of genes assigned to 

each GO term). We also studied additional gene sets, including 1,553 manually-curated genes 

involved in innate immunity [56] and 1,257 genes encoding proteins known to have physical 

interactions with multiple families of viruses [57]. 

 

Local Ancestry Inference. To perform local ancestry inference in the genomes of the highly-

admixed BaBongo RHG from south and east Gabon, we first constituted putative parental 

populations that were representative of RHG and AGR ancestry. We considered as the 

parental AGR population, 163 individuals with less than 20% of their ancestry assigned to the 

RHG component, based on the ADMIXTURE analysis at K=5. Likewise, we considered as 
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the parental RHG population, 101 individuals with less than 5% AGR ancestry. The genomes 

of the highly-admixed BaBongo were decomposed into segments of RHG or AGR ancestry 

with RFMix v.1.5.4 [58], including two EM steps. We excluded 2-Mb regions from the 

telomeres of each chromosome. Based on RFMix ancestry estimations, the mean AGR 

ancestry was 94% [s.d. = 1.6%] in the parental AGR population, 62% [s.d. = 5.9%] in the 

highly-admixed BaBongo, and 27% [s.d. = 3.7%] in the parental RHG population. These 

ancestry proportions were highly correlated with ADMIXTURE membership proportions at 

K=2 (Pearson’s correlation coefficient R² = 0.99). We then searched for excesses in RHG or 

AGR ancestry in pathways by assigning ancestry proportions to 100-kb windows across the 

genome, with the same approach used for GO enrichments.  

 

DATA AND CODE AVAILABILITY 

The newly generated exomes (n = 266) and genomes (n=40) of central African rainforest 

hunter-gatherers and agriculturalists have been deposited in the European Genome-phenome 

Archive under accession code EGAS00001003722. Data accessibility is restricted to 

academic research on human genetic history and adaptation. Exome sequencing data for the 

remaining, previously published samples are available under accession codes 

EGAS00001002457 and EGAS00001001895.  
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Legends for any Supplementary Excel Table 

Data S1. Candidate loci and summary statistics for classic sweeps and polygenic 

selection analyses. Related to Figures 2, 3 and 4.  

(A) Number of candidate windows shared among AGR or among RHG populations. 

Candidate windows are defined as 100-kb genomic windows with a proportion of FCS outlier 

SNPs in the 1% highest of the genome for the test population, and absent from the top 5% for 

the other reference population. P is the P-value for excess of population sharing, based on 

10,000 sets of randomly resampled windows. Related to Figure 2. 

(B) Candidate loci for classic sweeps in western and eastern AGR populations. Candidate 

windows are defined as 100-kb genomic windows with a proportion of FCS outlier SNPs in the 

1% highest of the genome for the AGR test population, and absent from the top 5% for the 

RHG reference populations. Pemp for a given genomic window is the ratio between its rank 

based on its proportion of outlier SNPs, over the total number of windows. An outlier SNP is 

defined as a SNP with FCS in the top 1% of the genome. Related to Figure 2. 

(C) Candidate loci for classic sweeps shared by at least three RHG populations. Candidate 

windows are defined as 100-kb genomic windows with a proportion of FCS outlier SNPs in the 

1% highest of the genome for the RHG test population, and absent from the top 5% for the 

AGR reference populations. Pemp for a given genomic window is the ratio between its rank 

based on its proportion of outlier SNPs, over the total number of windows. An outlier SNP is 

defined as a SNP with FCS in the top 1% of the genome. Related to Figure 2. 

(D) Population derived allele frequencies of candidate SNPs located in the chr8:116,739,605-

116,745,382 (TRPS1) region. Asterisks indicate variants located inside the endogenous 

retroviral sequence THE1B. The ranking of the mean allele frequency differences between 
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RHG and AGR over 255 SNPs inside the 100kb candidate window is reported in brackets. 

Related to Figure 2C. 

(E) Selection scores (FCS) of eQTLs with q-values<0.005 associated to MAPKAPK3 and 

DOCK3 genes in the GTEx database, located in chr3:50610197-50710197 and 

chr3:50660197-50760197 candidate windows, respectively. Pemp for a given SNP is the ratio 

between its rank based on its FCS score, over the total number of SNPs. Related to Figure 2D. 

(F) Statistical significance of genetic correlations for all possible pairs of quantitative traits 

tested for polygenic selection, based on LD score regression in the UK Biobank. P-values 

were corrected for multiple testing using the Bonferroni method. The number of independent 

associated SNPs is indicated in brackets. Related to Figure 3A-C. 

(G) Evidence for polygenic selection across Gene Ontology (GO) terms in RHG populations, 

based on their enrichment in high FCS selection scores (FDR P<0.05), relative to genome-

wide expectations. GOs shared by at least 3 RHG populations and absent from AGR 

populations are shown. Related to Figure 3D. 

(H) Candidate genomic windows for classic sweeps enriched in RHG ancestry (average ± 

2s.d.) in the admixed BaBongo of south and east Gabon. Pemp for a given genomic window is 

the ratio between its rank based on its proportion of outlier SNPs, over the total number of 

windows. An outlier SNP is defined as a SNP with FCS in the top 1% of the genome. Related 

to Figure 4A. 

(I) Gene ontology (GO) terms enriched in RHG or AGR local ancestry in the admixed 

BaBongo of south and east Gabon, relative to genome-wide expectations (FDR P<0.05). Only 

windows with a significant enrichment in mean FCS score (FDR P<0.05) in wRHG and 

wAGR parental populations for the same GO are shown. Related to Figure 4B.  
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Figure 1.  Location, Genetic Differentiation, and  Structure  of Central African Populations 

A) Geographic location of the populations  analyzed.  Populations  of rainforest hunter-gatherers  (diamonds) and 

neighboring farmers (circles) originating from the three  countries  are shown in the map  of Africa. Colors indicate the 

dominant membership  in each  population, based  on ADMIXTURE results (C). 

(B) Levels of genetic  differentiation between  populations  measured   by pairwise  FST   calculated  on the exome data. 

(C) Cluster membership  proportions estimated  by ADMIXTURE on the merged exome and SNP array data.  Cross-

validation values were lowest at K = 5 clusters. (B and C) BaBongoC,  BaBongoS,  and  BaBongoE stand  for BaBongo  

populations  from the center, south, and  east of Gabon, respectively. 
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Figure 2.  Shared Signals of Classic Sweeps among Rainforest Hunter-Gatherers 

A) Number  of candidate windows for classic sweeps (i.e., windows with proportions of outlier SNPs  among the 1% highest of the genome) 

common to western and eastern AGR populations (wAGR and eAGR), as well as common to RHG populations. p values  obtained based on 10,000  

resamples are shown:  *p < 10-4. (B) Genome-wide map  of classic sweep signals in RHG groups. The autosomes of each of the five RHG 

populations (from top to bottom: Bezan, Baka,  lowly admixed BaBongo, BaKoya,  and  BaTwa) are shown. Colored  dots  indicate genomic 

regions that are common to at least  three  RHG populations. 

(C) Selective sweep signal at the locus containing the TRPS1 gene (chr8:116702422-116802422) in the 

Baka  RHGs. 

(D) Selective sweep signal at the locus containing CISH, MAPKAPK3, and DOCK3 genes (chr3:50610197-50710197 and chr3:50660197-50760197) 

in the BaTwa  

RHGs. 

(C and  D) Dot colors  indicate SNP FCS percentiles, black  squares indicate non-synonymous mutations, and  black  dots  indicate eQTLs (q value < 

0.005) [33]. eQTLs of MAPKAPK3 (rs107457 and  rs9879397) and  DOCK3 (rs12629788) are shown as yellow diamonds. Not all genes of the 

genomic region are shown for convenience. 
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Figure 3.  Signals of Polygenic Selection in African Rainforest Hunter-Gatherers 

(A)  Signals  of polygenic selection  for 12  candidate  quantitative traits,  based on  higher  mean FCS  of trait-associated  windows relative  to  

genome-wide expectations. 

(B) Signals  of polygenic selection for the candidate quantitative traits,  based on higher mean FCS of trait-associated windows relative to genome-

wide expec- tations, after removing  windows associated with ‘‘Standing  height’’ and ‘‘Comparative height at age 10.’’ Loss of significance was not 

explained by the reduced number of windows tested (Figure S4). 

(C) Signals  of polygenic selection for ‘‘Standing  height,’’ based on higher  mean FCS of trait-associated windows relative  to genome-wide 

expectations, after removing  windows associated with each of the remaining  quantitative traits. 

(A–C) Color gradient and circle sizes  are proportional to –log10(adjusted p) with adjusted *p < 0.05, **p < 0.01, and ***p < 0.001. Multiple testing 

corrections were performed using  the Benjamini-Hochberg method. wAGR and  eAGR stand for western and  eastern AGR groups. Signals  were 

generally  stronger in Baka  and BaTwa RHGs, probably because of their larger sample size. 

(D) Gene  Ontology  (GO) terms enriched in selection scores (FDR p < 5%) in RHG, but not in AGR, populations, considering the window mean FCS 

as selection score. Circle color and  size indicate the number of RHG populations that show  significant  evidence of polygenic selection for a given 

GO term. 
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Figure 4.  Selection Signals in Highly Admixed 

Rainforest Hunter-Gatherers 

(A) Selective sweep signal and  average local RHG ancestry at the chr1:203564464-203764464 locus  in the highly admixed RHG 

BaBongo. Dot colors  indicate 

SNP FCS percentiles, the black  square indicates the non-synonymous variant (rs6697388) at ZBED6, and  black  dots 

indicate eQTLs (q value < 0.005) [33]. 

(B) GO terms enriched in both  local ancestry in the highly admixed RHG BaBongo, and  selection scores in each of the two putative parental 

populations, with respect to the rest of the genome (FDR p < 5%). Green (brown) dots indicate GO terms enriched in both western RHG (western 

AGR) local ancestry and selection scores in parental western RHG (western AGR) populations (FDR p < 5%). Enrichments were assessed using  the 

Mann-Whitney-Wilcoxon rank-sum test 

 

 


