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SURFACE GROUPS IN THE GROUP OF GERMS OF ANALYTIC DIFFEOMORPHISMS IN ONE VARIABLE

.

(1.1)

We denote by Diff(R, 0) ⊂ Diff(C, 0) the subgroup of real germs in this chart, i.e. with a i ∈ R for all i ∈ N (this inclusion depends on the choice of the coordinate z). The main goal of this note is the following result, that answers a question raised by E. Ghys (see [START_REF] Cerveau | Quelques problèmes en géométrie feuilletée pour les 60 années de l'IMPA[END_REF], §3.3, or also [START_REF] Brudnyi | Some algebraic aspects of the center problem for ordinary differential equations[END_REF], Problem 4.15).

Theorem A. Let Γ be the fundamental group of a closed orientable surface, or of a closed non-orientable surface of genus ≥ 4. Then Γ embeds in the group Diff(R, 0) and in particular in Diff(C, 0).

We shall present three proofs of Theorem A. For simplicity, in this introduction, we restrict to the case where Γ is is the fundamental group of an orientable surface of genus 2, and we consider the presentation

Γ 2 = a 1 , b 1 , a 2 , b 2 | [a 1 , b 1 ] = [a 2 , b 2 ] .
(1.2)

Our proofs of theorem A are inspired by [START_REF] Breuillard | Dense embeddings of surface groups[END_REF], where it is proved that a compact topological group or a connected Lie group which contains a dense free group of rank 2 contains a dense subgroup isomorphic to Γ 2 .

Recently, and independently, A. Brudnyi proved a similar result for embeddings into the group of formal germs of diffeomorphisms (see [START_REF] Brudnyi | Subgroups of the group of formal power series with the big powers condition[END_REF]) 1.2. Compact groups. Let us describe the argument used in [START_REF] Breuillard | Dense embeddings of surface groups[END_REF] to prove the following result.

Theorem 1.1 ([3]). If a compact group G contains a free group F of rank 2, then there is an embedding ρ : Γ 2 → G such that F ⊂ ρ(Γ 2 ).

Proof. Denote by F m the free group on m generators. The first ingredient is a result by Baumslag [START_REF] Baumslag | On generalised free products[END_REF] saying that Γ 2 is fully residually free; this means that there exists a sequence of morphisms p N : Γ 2 →F 2 which is asymptotically injective: for every g ∈ Γ 2 \ {1}, p N (g) = 1 if N is large enough.

To be more explicit, we use the presentation (1.2) of Γ 2 , and we note that the subgroup a 1 , b 1 of Γ 2 is a free group F 2 = a 1 , b 1 . Let p : Γ 2 → a 1 , b 1 be the morphism fixing a 1 and b 1 and sending a 2 and b 2 to a 1 and b 1 respectively. Let τ : Γ 2 →Γ 2 be the Dehn twist around the curve c = [a 1 , b 1 ], i.e. the automorphism that fixes a 1 and b 1 and send a 2 and b 2 to ca 2 c -1 and cb 2 c -1 respectively. Proposition 1.2 (see [START_REF] Breuillard | Dense embeddings of surface groups[END_REF]Corollary 2.2]). Given any g ∈ Γ 2 \ {1}, there exists a positive integer n 0 such that p • τ N (g) = 1 for all N ≥ n 0 . Now, fix an embedding ι : a 1 , b 1 → G such that ι( a 1 , b 1 ) = F. Composing p • τ N with ι, we get a sequence of points p N := ι • p • τ N in Hom(Γ 2 , G). Now, consider the element h = ι(p(c)) of G, and let T be the closure of the cyclic group h in the compact group G. For t ∈ T , define a morphism ρ t : Γ 2 → G by

ρ t (a 1 ) = ι • p(a 1 ), ρ t (a 2 ) = t • ι • p(a 1 ) • t -1 , (1.3) 
ρ t (b 1 ) = ι • p(b 1 ), ρ t (b 2 ) = t • ι • p(b 1 ) • t -1 ; (1.4)
these representations are well defined and satisfy ρ t = ι • p • τ N when t = h N . Moreover, on the subgroup a 1 , b 1 , ρ t coincides with ι• p, so F ⊂ ρ t (Γ 2 ). Thus, (ρ t ) t∈T is a compact subset R (T ) ⊂ Hom(Γ 2 , G) that contains the sequence of points p N . For every g in Γ 2 \ {1}, the subset R (T ) g = {ρ t | ρ t (g) = 1} is open, and Proposition 1.2 shows that it is dense because {h n | n ≥ n 0 } is dense in T for every integer n 0 . By the Baire theorem, the subset of injective representations ρ t is a dense G δ in R (T ), and this proves Theorem 1.1.

The group Diff(R, 0) contains non-abelian free groups (this is well known, see Section 3.3), and one may want to copy the above argument for G = Diff(R, 0) instead of a compact group. The Koenigs linearization theorem says that if f ∈ Diff(R, 0) satisfies f (0) > 1, then f is conjugate to the homothety z → f (0)z; in particular, there is a flow of diffeomorphisms (ϕ t ) t∈R for which ϕ 1 = f . In our argument, the compact group T introduced to prove Theorem 1.1 will be replaced by such a flow, hence by a group isomorphic to (R, +). Also, in that proof, h = ι(p(c)) was a commutator, and the derivative of any commutator in Diff(R, 0) is equal to 1 at the origin, so that Koenigs theorem can not be applied to a commutator. Thus, we need to change p N into a different sequence of morphisms: the Dehn twist τ will be replaced by another automorphism of Γ 2 , twisting along three non-separating curves. This argument will be described in details in Sections 2 and 3; the reader who wants the simplest proof of Theorem A in the case of orientable surfaces only needs to read these sections. Non orientable surfaces are dealt with in Section 4.

1.3. Lie groups. Now, let us look at representations in a linear algebraic subgroup G of GL m (R). Assuming that there is a faithful representation ι : F 2 → G with dense image, we shall construct a faithful representation Γ 2 → G.

The representation variety Hom(Γ 2 , G) is an algebraic subset of G 4 . Let R be the irreducible component containing the trivial representation. Let p N : Γ 2 → F 2 be an asymptotically injective sequence of morphisms, as given by Baumslag's proposition. When the image of ρ is dense, one can prove that ι • p N is in R for arbitrarily large values of N. For g ∈ Γ 2 \ {1}, the subset R g ⊂ R of homomorphisms killing g is algebraic, and it is a proper subset because it does not contain ι • p N for some large N. Then, a Baire category argument in R implies that a generic choice of ρ ∈ R is faithful.

To apply this argument to G = Diff(R, 0), one needs a good topology on Diff(R, 0), and a good "irreducible variety" R ⊂ Hom(Γ 2 , G) containing ι • p N , in which a Baire category argument can be used. This approach may seem difficult because Hom(Γ 2 , G) is a priori far from being an irreducible analytic variety but, again, the Koenigs linearization theorem will provide the key ingredient.

First, we shall adapt an idea introduced by Leslie in [START_REF] Leslie | On the group of real analytic diffeomorphisms of a compact real analytic manifold[END_REF] to define a useful group topology on Diff(R, 0) (see Section 5). With this topology, Diff(R, 0) is an increasing union of Baire spaces, which will be enough for our purpose. Denote by Cont(R, 0) ⊂ Diff(R, 0) the set of elements f ∈ Diff(R, 0) with | f (0)| < 1; Cont stands for "contractions". Consider the set R of representations ρ : Γ 2 → Diff(R, 0) with ρ(a 1 ) tangent to the identity, and ρ(b 1 ) ∈ Cont(R, 0). Then, the key fact is that the map

Ψ : R →Cont(R, 0) × Diff(R, 0) × Diff(R, 0) ρ → (ρ(b 1 ), ρ(a 2 ), ρ(b 2 ))
is a continuous bijection. Indeed, the defining relation of Γ is equivalent to

a 1 b 1 a -1 1 = [a 2 , b 2 ]b 1 . Given (g 1 , f 2 , g 2 ) ∈ Cont(R, 0) × Diff(R, 0) × Diff(R, 0
), the germs g 1 and [ f 2 , g 2 ]g 1 have the same derivative at the origin and, from the Koenigs linearization theorem, there is a unique f 1 ∈ Diff(R, 0) tangent to the identity solving the equation

f 1 g 1 f -1 1 = [ f 2 , g 2 ]g 1 :
by construction there is a unique morphism ρ : Γ 2 → Diff(R, 0) that maps the a i to the f i , and the b i to the g i , and this representation satisfies Ψ(ρ) = (g 1 , f 2 , g 2 ). With this bijection Ψ and the topology of Leslie, we can identify R with a union of Baire spaces, in which the Baire category argument applies.

1.4. Other fields. Let k be a finite field with p elements. The group Diff 1 (k, 0), also known as the Nottingham group, is the group of power series tangent to the identity and with coefficients in the finite field k. It is a compact group containing a free group (see [START_REF] Szegedy | Almost all finitely generated subgroups of the Nottingham group are free[END_REF]). Thus, by [START_REF] Breuillard | Dense embeddings of surface groups[END_REF], it contains a surface group. Now, let p be a prime number, and let Q p be the field of p-adic numbers. Consider the subgroup Diff 1 (Z p , 0) ⊂ Diff(Q p , 0) of formal power series tangent to the identity and with coefficients in Z p . First, note that all elements f of Diff 1 (Z p , 0) satisfy rad( f ) ≥ 1, so that Diff 1 (Z p , 0) acts faithfully as a group of (p-adic analytic) homeomorphisms on {z ∈ Z p ; |z| < 1}. So, in that respect, Diff 1 (Z p , 0) is much better than the group of germs of diffeomorphisms Diff(C, 0). Moreover, with the topology given by the product topology on the coefficients a n ∈ Z p of the power series, the group Diff 1 (Z p , 0) becomes a compact group. And this compact group contains a free group. By the result of [START_REF] Breuillard | Dense embeddings of surface groups[END_REF] described in Section 1.2, it contains a copy of the surface group Γ 2 . So, we get a surface group acting faithfully as a group of p-adic analytic homeomorphisms on {z ∈ Z p ; |z| < 1}. In Section 7 we give a third proof of Theorem A that starts with the case of p-adic coefficients. Denote by k z the ring of formal power series in one variable with coefficients in k. For every integer n ≥ 0, let A n : k z → k denote the n-th coefficient function:

A n : f = ∑ a n z n → A n ( f ) = a n .
(2.1)

A formal diffeomorphism is a formal power series f ∈ k z such that A 0 ( f ) = 0 and A 1 ( f ) = 0. The composition f • g determines a group law on the set

Diff(k, 0) = { f ∈ k z | A 0 ( f ) = 0 and A 1 ( f ) = 0} (2.2)
of all formal diffeomorphisms. For each n ≥ 1, there is a polynomial

P n ∈ Z[A 1 , B 1 , . . . , A n , B n ] such that if f = ∑ a n z n and g = ∑ b n z n then f • g = ∑ n≥1 P n (a 1 , b 1 , . . . , a n , b n )z n . Similarly, there are polynomials Q n ∈ Z[A 1 , . . . , A n ][A -1 1 ] such that f -1 = ∑ n≥1 Q n (a 1 , . . . , a n )z n if f = ∑ a n z n ; the polynomial function Q n is
given by the following inversion formula:

1 a n 1 ∑ k 1 ,k 2 ,... (-1) k 1 +k 2 +... • (n + 1) • • • (n -1 + k 1 + k 2 + . . .) k 1 ! k 2 ! • • • • a 2 a 1 k 1 a 3 a 1 k 2 • • •
where a i = A i ( f ) and the sum is over all sequences of integers k i such that

k 1 + 2k 2 + 3k 3 + • • • = n -1.
We refer to [START_REF] Jennings | Substitution groups of formal power series[END_REF] where this is proved for f and g tangent to the identity; the general case easily follows.

To encapsulate this kind of properties, we introduce the following definition. Let m be a positive integer. By definition, a function Q : Diff(k, 0) m → k is a polynomial function with integer coefficients, if there is an integer n, and a polynomial q

∈ Z[A 1,1 , A 2,1 , . . . , A m-1,n , A m,n ][A -1 1,1 , . . . , A -1 m,1 ] such that Q( f 1 , . . . , f m ) = q(A 1 ( f 1 ), . . . , A n ( f m )) (2.3) for all m-tuples ( f 1 , . . . , f m ) ∈ Diff(k, 0) m ; we denote by Z[ Diff(k, 0) m ] this ring of polynomial functions. Let F m = e 1 , .
. . , e m be the free group of rank m. To every word w = e n 1 i 1 . . . e n k i k in F m , we associate the word map w :

Diff(k, 0) m → Diff(k, 0), (g 1 , . . . , g m ) → w(g 1 , . . . , g m ) def = g n 1 i 1 • . . . • g n k i k . (2.4)
Since composition and inversion are polynomial functions on Diff(k, 0), we get:

Lemma 2.1. Let w : Diff(k, 0) m → Diff(k, 0) be the word map given by some element of the free group F m . For each n ≥ 1, there is a polynomial function

Q w,n ∈ Z[ Diff(k, 0) m ] such that A n (w(g 1 , . . . , g m )) = Q w,n (g 1 , . . . , g m )
for all g 1 , . . . , g m ∈ Diff(k, 0). • k is not discrete, equivalently there is an element x ∈ k with |x| = 0, 1;

• k is complete.

Let k{z} be the subring of k z consisting of power series f (z) = ∑ a n z n whose radius of convergence rad( f ) is positive (see Equation (1.1)). When k is complete, the series ∑ a n z n converges uniformly in the closed disk

D r = {z ∈ k | |z| ≤ r} for every r < rad( f ). The group of germs of analytic diffeomorphisms is the intersection Diff(k, 0) := Diff(k, 0) ∩ k{z}; it is a subgroup of Diff(k, 0). A germ f ∈ Diff(k, 0) is hyperbolic if |A 1 ( f )| = 1.
The following result is proved in [START_REF] Milnor | Dynamics in one complex variable[END_REF]Chapter 8] and [START_REF] Herman | Generalizations of some theorems of small divisors to non-Archimedean fields[END_REF]Theorem 1,p. 423] (see also [START_REF] Carl | Iteration of analytic functions[END_REF]Theorem 1] or [START_REF] Koenigs | Nouvelles recherches sur les équations fonctionnelles[END_REF]).

Theorem 2.2 (Koenigs linearization theorem). Let (k, | • |) be a complete, nondiscrete valued field. Let f ∈ Diff(k, 0) be a hyperbolic germ of diffeomorphism. There is a unique germ of diffeomorphism h ∈ Diff(k, 0) such that h( f

(z)) = A 1 ( f ) • h(z) and A 1 (h) = 1.

EMBEDDING ORIENTABLE SURFACE GROUPS

3.1. Abstract setting. Our strategy to construct embeddings of surface groups relies on the following simple remark. Let Γ be a countable group, and G be any group. Consider a non-empty topological space R , with a map Φ :

s ∈ R → Φ s ∈ Hom(Γ, G). Given g ∈ Γ, set R g = {s ∈ R | Φ s (g) = 1}.
Lemma 3.1. Assume that R has the following 3 properties:

(1) Baire: R is a Baire space;

(2) Separation: for every g = 1 in Γ, Φ s (g) = 1 for some s ∈ R ;

(3) Irreducibility: for every g ∈ Γ, either R g = R or R g is closed with empty interior.

Then the set of s ∈ R such that Φ s is an injective homomorphism is a dense G δ in R ; in particular, it is non-empty.

Proof. For any g ∈ Γ \ {1}, one has R g = R by (2), so R g is closed with empty interior by [START_REF] Breuillard | Dense embeddings of surface groups[END_REF]. By the Baire property, R \

(∪ g∈Γ\{1} R g ) is a dense G δ . But R \ (∪ g∈Γ\{1} R g ) is precisely the set of s ∈ R such that Φ s is injective. 3.2. Baumslag Lemma.
As explained in the introduction, it is proved in [START_REF] Baumslag | On generalised free products[END_REF] that the fundamental group of an orientable surface is fully-residually free. We need a precise version of this result; to obtain it, the main technical input is the Baumslag's Lemma (see [START_REF] Yu | On residualing homomorphisms and G-subgroups of hyperbolic groups[END_REF]Lemma 2.4]):

Lemma 3.2 (Baumslag's Lemma). Let n ≥ 1 be a positive integer. Let g 0 , . . . , g n be elements of F k , and let c 1 , . . . , c n be elements of F k \ {1}. Assume that for all 1 ≤ i ≤ n -1, g -1 i c i g i does not commute with c i+1 . Then for N large enough,

g 0 c N 1 g 1 c N 2 . . . c N n-1 g n-1 c N n g n = 1.

Sketch of proof (I).

The group PSL 2 (R) acts on the hyperbolic plane H by isometries, and contains a subgroup Γ such that (0) Γ is isomorphic to F k , (1) every element g = Id in Γ is a loxodromic isometry of H, and (2) two elements g and h in Γ \ {Id} commute if and only if they have the same axis, if and only if they share a common fixed point on ∂H. One can find such a group in any lattice of PSL 2 (R). To prove the lemma, we prove it in Γ. Fix a base point x ∈ H, denote by α i and ω i the repulsive and attracting fixed points of c i in ∂H, and consider the word

g 0 c N 1 g 1 c N 2 g 2 .
For m large enough, c m 2 g 2 maps x to a point which is near ω 2 . If g 1 (ω 2 ) were equal to α 1 , then c 1 and g 1 c 2 g -1 1 would share the common fixed point α 1 , and they would commute. Thus, g 1 (ω 2 ) = α 1 and then g 0 c m 1 g 1 c m 2 g 2 maps x to a point which is near g 0 (ω 1 ) if m is large enough. Thus,

g 0 c N 1 g 1 c N 2 g 2 (x) = x for large N. The proof is similar if n is larger than 2.
Sketch of proof (II). We rephrase this proof, using the action of F k on its boundary, because this boundary will also be used in the proof of Proposition 3.3.

Fix a basis a 1 , . . . , a k of F k , and denote by ∂F k the boundary of F k . The elements of ∂F k are represented by infinite reduced words in the generators a i and their inverses. If g is an element of F k and α is an element of ∂F k the concatenation g • α is an element of ∂F k : this defines an action of F k by homeomorphisms on the Cantor set ∂F k . If g is a non-trivial, its action on ∂F k has exactly two fixed points, given by the infinite words ω(g

) = g • • • g • • • and α(g) = g -1 • • • g -1 • • •
(there are no simplifications if g is given by a reduced and cyclically reduced word). Then we get: (1) every element g = Id in F k has a north-south dynamics on ∂F k , every orbit g n • β converging to ω(g), except when β = α(g), and (2) two elements g and h in F k \ {Id} commute if and only if they have the same fixed points, if and only if they share a common fixed point on ∂F k . One can then repeat the previous proof with the action of F k on its boundary.

α 0 η 2 α 1 α 2 η 1 η1 η2 a 0 = a 0 = α 0 a 1 = η 1 α 1 η -1 1 ā2 = η2 α 2 η-1 2 t 1 = η 1 η-1 1 ā1 = η1 α 1 η-1 1 a 2 = η 2 α 2 η -1 2 t 2 = η 2 η-1 2 FIGURE 1. The fundamental group Γ 2 .
-The α i are three loops, while the η j and η j are four paths. The figure is symmetric with respect to the plane cutting the surface along the loops α i .

Write the surface of genus 2 as the union of two pairs of pants as in Figure 1, with respective fundamental groups

a 0 , a 1 , a 2 | a 0 a 1 a 2 = 1 and a 0 , a 1 , a 2 | a 0 a 1 a 2 = 1 . (3.1)
This gives the presentation

Γ 2 = a 0 , a 1 , a 2 , a 0 , a 1 , a 2 , t 1 ,t 2 a 0 a 1 a 2 = 1, a 0 a 1 a 2 = 1, a 0 = a 0 , a 1 = t -1 1 a 1 t 1 , a 2 = t -1 2 a 2 t 2 (3.2)
which can be rewritten as

Γ 2 = a 0 , a 1 , a 2 ,t 1 ,t 2 | a 0 a 1 a 2 = 1, a 0 t -1 1 a 1 t 1 t -1 2 a 2 t 2 = 1 . (3.3)
Denote by p : Γ 2 → a 0 , a 1 , a 2 F 2 the morphism defined by p(a i ) = a i , p(a i ) = a i , and p(t 1 ) = p(t 2 ) = 1. Let τ : Γ 2 →Γ 2 be the (left) Dehn twist along the three curves a 0 , a 1 , and a 2 , i.e. the automorphism fixing a i and sending t i to a i t i a -1 0 for i = 1, 2. Note the following facts:

• τ sends a i to a 0 a i a -1 0 ; in particular, if g is a word in the a i , then τ N (g) = a N 0 ga -N 0 ; • p • τ N fixes a i for every i = 0, 1, 2, and

p • τ N (t j ) = a N j a -N 0 (3.4) for j = 1, 2.
Proposition 3.3. For every g ∈ Γ 2 \ {1}, there exists a positive integer n 0 such that p • τ N (g) = 1 for all N ≥ n 0 .

Proof. To uniformize notations, we define t 0 = 1 so that for all i ∈ {0, 1, 2} the relation t i a i t -1 i = a i holds, and τ maps t i to a i t i a -1 0 . Let A = a 0 , a 1 , a 2 and A = a 0 , a 1 , a 2 . Write g as a shortest possible word of the following form:

g = g 0 t i 1 g 1 t -1 i 2 g 2 t i 3 . . . g n-1 t -1 i n g n (3.5)
where n is even, i k ∈ {0, 1, 2} for all k ≤ n, g k ∈ A for k even, g k ∈ A for k odd, and the exponent of t i k is (-1) k+1 (we allow g k = 1). One easily checks that g can be written in this form because all generators can (for instance

t 1 = 1 •t 1 • 1 •t -1 0 • 1). If k is such that i k = i k+1 , then g k / ∈ a i k if k is even (resp g k / ∈ a i k if k is odd)
as otherwise, one could shorten the word using the relation

t i k a i k t -1 i k = a i k . First claim. If k ∈ {2, . . . , n -2} is even, g -1
k a i k g k does not commute to a i k+1 . If i k = i k+1 , this is because g k ∈ A F 2 and no pair of A-conjugates of a i k and a i k+1 commute. If i k = i k+1 , then g k / ∈ a i k as we have just seen; since a i k is not a proper power in A, this shows that g k .(a +∞ i k ) = a +∞ i k in the boundary at infinity of the free group A, so g -1 k a i k g k does not commute with a i k , and the claim follows. Similarly, using the fact that g k ∈ A for odd indices, we obtain:

Second claim. If k ≤ n -1 is odd, g -1 k a i k g k does not commute to a i k+1 . We have τ N (g k ) = g k if k is even, and τ N (g k ) = a N 0 g k a -N 0 if k is odd. After simplifications, one has τ N (g) = g 0 a N i 1 t i 1 g 1 t -1 i 2 a -N i 2 g 2 a N i 3 t i 3 . . . g n-1 t -1 i n a -N i n g n . (3.6)
For k odd, denote by g k ∈ F r the image of g k under p. Applying p, we thus get

p • τ N (g) = g 0 a N i 1 g 1 a -N i 2 g 2 a N i 3 g 3 . . . g n-1 a -N i n g n , (3.7) 
with g i := p(g i ). Let us check that the hypotheses of the Baumslag Lemma 3.2 apply. For k even, the first claim shows that g -1 k a i k g k does not commute to a i k+1 , as required. For k odd, we use that p is injective on A and that A contains g -1 k a i k g k and a i k+1 , and we apply the second claim to deduce that g -1 k a i k g k does not commute to a i k+1 . Applying Baumslag's Lemma, we conclude that p • τ N (g) = 1 for N large enough.

3.3.

Embeddings of free groups. The group Diff(R, 0) contains non-abelian free groups. This has been proved by arithmetic means [START_REF] White | The group generated by x → x + 1 and x → x p is free[END_REF][START_REF] Glass | The ubiquity of free groups[END_REF], by looking at the monodromy of generic polynomial planar vector fields [START_REF] Yulij | The monodromy group at infinity of a generic polynomial vector field on the complex projective plane[END_REF], and by a dynamical argument [START_REF] Mattei | Generic pseudogroups on (C, 0) and the topology of leaves[END_REF]. We shall need the following precise version of that result.

Theorem 3.4. Let (k, | • |) be a complete non-discrete valued field. For every pair (λ 1 , λ 2 ) in k * , there exists a pair f 1 , f 2 ∈ Diff(k, 0) that generates a free group and satisfies f 1 (0) = λ 1 and f 2 (0) = λ 2 .
This result is proved in [START_REF] Berthier | Sur les feuilletages analytiques réels et le problème du centre[END_REF]Proposition 4.3] for generic pairs of derivatives (λ 1 , λ 2 ). We provide a proof of Theorem 3.4 in the Appendix, extending the argument of [START_REF] Mattei | Generic pseudogroups on (C, 0) and the topology of leaves[END_REF]. We refer to Section 7.1 below for other approaches.

3.4.

Embedding orientable surface groups. We can now prove Theorem A for orientable surfaces: Theorem 3.5. Let Γ g be the fundamental group of a closed, orientable surface of genus g. Then, there exists an injective morphism Γ g →Diff(R, 0).

The group Γ 0 is trivial. The group Γ 1 is isomorphic to Z 2 , hence it embeds in the group of homotheties z → λz, λ ∈ R * + . If g ≥ 2, then Γ g embeds in Γ 2 . To see this, fix a surjective morphism Γ 2 → Z, and take the preimage Λ ⊂ Γ 2 of the subgroup (g -1)Z ⊂ Z. Then, Λ is a normal subgroup of index g -1 in Γ 2 , and it is the fundamental group of a closed surface Σ, given by a Galois cover of degree g -1 of the surface of genus 2. Since the Euler characteristic is multiplicative, the genus of Σ satisfies -2(g -1) = 2 -2g(Σ). Thus, g(Σ) = g and Λ is isomorphic to Γ g . Thus, we now restrict to the case g = 2.

By Theorem 3.4, we can fix an injective morphism

ρ 0 : F 2 = a 0 , a 1 , a 2 | a 0 a 1 a 2 = 1 →Diff(R, 0) (3.8)
such that the images f 1 = ρ 0 (a 1 ), f 2 = ρ 0 (a 2 ), and

f 0 = ρ 0 (a 0 ) = f -1 2 f -1 1 satisfy f 1 (0) = λ 1 > 1, f 2 (0) = λ 2 > 1, f 0 (0) = λ 0 < 1 (3.9)
for some real numbers λ 1 and λ 2 > 1 and λ 0 = (λ 1 λ 2 ) -1 . In particular, f 0 , f 1 , and f 2 are hyperbolic. For λ ∈ R * , denote by m λ (z) = λz the corresponding homothety. For i ∈ {0, 1, 2}, the Koenigs linearization theorem shows that f i is conjugate to the homothety m λ i : there is a germ of diffeomorphism

h i ∈ Diff(R, 0) such that f i = h i • m λ i • h -1 i . Thus f i extends to the multiplicative flow ϕ i : R * + →Diff(R, 0) defined by ϕ s i = h i • m s • h -1 i for s ∈ R * + ; by contruc- tion, ϕ λ i i = f i and ϕ s i commutes with f i for all s > 0. We note that s → ϕ s i is polynomial in the sense that for all k ∈ N, s → A k (ϕ s i
) is a polynomial function with real coefficients in the variables s and s -1 .

Set R = (R * + ) 3 . As in Section 3.2, consider the presentation

Γ 2 = a 0 , a 1 , a 2 ,t 1 ,t 2 | a 0 a 1 a 2 = 1, a 0 t -1 1 a 1 t 1 t -1 2 a 2 t 2 = 1 . (3.10) Given s = (s 0 , s 1 , s 2 ) ∈ (R * + ) 3 , we define a morphism Φ s : Γ 2 → Diff(R, 0) by Φ s (a i ) = f i for i ∈ {0, 1, 2} (3.11) 
Φ s (t i ) = ϕ s i i ϕ s 0 0 for i ∈ {1, 2} (3.12) 
This provides a well defined homomorphism because ϕ i commutes with f i . As we shall see below, this morphism Φ s is constructed to coincide with

ρ 0 • p • τ N for s = (λ N 0 , λ N 1 , λ N 2 ) (see Equation (3.4)).
Remark 3.6. For every s ∈ R , the image of Φ s contains f 1 and f 2 , hence the free group ρ 0 (F 2 ). This will be used in Section 4.3.

To conclude, we check that the three assumptions of Lemma 3.1 hold for this family of morphisms (Φ s ) s∈R .

Clearly, R is a Baire space.

To check the irreducibility property, consider g ∈ Γ 2 and assume that R g = R : this means that there exists a parameter s ∈ R and an index k ≥ 1 such that

A k (Φ s (g)) = A k (Id). The map s = (s 0 , s 1 , s 2 ) → A k (Φ s (g)) -A k (Id) is a polyno- mial function in the variables s ±1 0 , s ±1 1 ,
and s ±1 2 that does not vanish identically on R , so its zero set is a closed subset with empty interior. We now check that R has the separation property. As in Section 3.2, denote by p : Γ 2 →F 2 = a 0 , a 1 , a 2 | a 0 a 1 a 2 = 1 the morphism obtained by killing t 1 and t 2 . For the parameter s = (1, 1, 1), Φ s is equal to ρ 0 • p. More generally, setting

s N = (λ N 0 , λ N 1 , λ N 2 ) for N ∈ N, the morphism Φ s N : Γ 2 → Diff(R, 0) satisfies Φ s N (a i ) = f i for i ∈ {0, 1, 2} (3.13) 
Φ s N (t i ) = ϕ u N i i ϕ u N 0 0 = f N i f N 0 for i ∈ {1, 2}. (3.14) 
This means that Φ s N = ρ 0 • p • τ N where, as in Section 3.2, τ : Γ 2 →Γ 2 is the Dehn twist along the three curves a i . By Proposition 3.3, for all g ∈ Γ 2 \ {1} there exists N ∈ N such that p • τ N (g) = 1. Since ρ 0 is injective, this implies that Φ s N (g) = 1 which shows that R has the separation property.

NON-ORIENTABLE SURFACE GROUPS

Theorem 4.1. Let N g be the fundamental group of a closed non-orientable surface of genus g ≥ 4. There exists an injective morphism N g →Diff(R, 0).

Remark 4.2. The fundamental group N 3 of the non-orientable surface of genus 3 is not fully residually free, and our methods do not apply to this group. (See [START_REF] Lyndon | The equation a 2 b 2 = c 2 in free groups[END_REF], Proposition 9.) 4.1. Even genus. We first treat the case of an even genus g ≥ 4. In this case, the group N g embeds in N 4 . Indeed, the non-orientable surface of genus 4 is the connected sum of a torus R 2 /Z 2 with two projective planes P 2 (R). Taking a cyclic cover of the torus of degree k, we get a surface homeomorphic to the connected sum of R 2 /Z 2 with 2k copies of P 2 (R), hence a non-orientable surface of genus 2(k + 1). Thus, it suffices to prove that N 4 embeds in Diff(R, 0). The non-orientable surface of genus 4 is homeomorphic to the connected sum of 4 copies of P 2 (R), and this gives the presentation (see Figure 2)

N 4 = a 1 , a 2 , b 1 , b 2 | a 2 1 a 2 2 b 2 2 b 2 1 = 1 . (4.1) 
Let p : N 4 → a 1 , a 2 be the morphism fixing a 1 , a 2 and sending b 1 and b 2 to a -1 1 and a -1 2 respectively. Let τ : N 4 →N 4 be the Dehn twist around the curve γ = (a 2 1 a 2 2 ) -1 , i.e. the automorphism that fixes a 1 and a 2 and sends b 1 and b 2 to γb 1 γ -1 and γb 2 γ -1 respectively. Lemma 4.3. Given any g ∈ N 4 \{1}, there exists n 0 ∈ N such that for all N ≥ n 0 , p • τ N (g) = 1.

For the proof. The proof of this statement is completely analogous to the proof of [3, Corollary 2.2], using Baumslag Lemma, we leave it as an exercise to the reader. See also [START_REF] Champetier | Limit groups as limits of free groups[END_REF]Proposition 4.13]. Using Theorem 3.4, we fix two germs of diffeomorphisms f 1 and f 2 ∈ Diff(R, 0) generating a free group and satisfying f 1 (0) > 1 and f 2 (0) > 1. We denote by

b 2 1 a 1 a 2 b 2 b 1 a 2 2 γ = b 2 2 b 2 1 = (a 2 1 a 2 2 ) -1 a 2 1 b 2 2 FIGURE 2.
ρ 0 : F 2 = a 1 , a 2 →Diff(R, 0) (4.2)
the injective morphism sending a i to f i for i ∈ {1, 2}. In particular,

ρ 0 (γ) = ( f 2 1 • f 2 2 ) -1 (4.3)
is a hyperbolic germ: its derivative λ = ((

f 2 1 • f 2 2 ) (0)) -1 is < 1. The Koenigs linearization theorem gives an element h ∈ Diff(R, 0) such that ρ 0 (γ) = h • m λ • h -1 . Consider the multiplicative flow ϕ : R * + →Diff(R, 0) defined by ϕ s = g • m s • g -1 .
As above, ϕ λ = ρ 0 (γ), ϕ s commutes with ρ 0 (γ) for all s > 0, and s → ϕ s is a polynomial map: for all k ∈ N, s → A k (ϕ s ) is a polynomial in the variables s and s

-1 . Set R = R * + . Given s ∈ R * + , consider the morphism ρ s : N 4 → Diff(R, 0) defined by a 1 → f 1 a 2 → f 2 b 1 → ϕ s f -1 1 ϕ -s b 2 → ϕ s f -1 2 ϕ -s
. This gives a well defined homomorphism because ϕ s commutes with f 2 1 f 2 2 .

We now check the three assumptions of Lemma 3.1. Clearly, R is a Baire space. The irreducibility is a consequence of the fact that for any g ∈ N 4 , and any k ∈ N the map s → A k (ϕ s (g)) is a polynomial function in the variables s ±1 . The separation property follows from Lemma 4.3 together with the fact that ρ λ N = ρ 0 • p • τ N and that ρ 0 is injective.

4.2. Odd genus. We now treat the case of a non-orientable surface of odd genus g = 2k + 1, k ≥ 2. One can write N 2k+1 as (see Figure 3 below)

N 2k+1 = a 1 , . . . , a k , c, b 1 , . . . , b k | a 2 1 . . . a 2 k c 2 b 2 k . . . b 2 1 = 1 . (4.4)
This group splits as a double amalgam of free groups

N 2k+1 = a 1 , . . . a k * a 2 1 ...a 2 k =γ -1 γ, c * c -2 γ=b 2 k ...b 2 1 b 1 , . . . , b k . (4.5)
We shall use the following notation to refer to this amalgam structure:

• A 1 = a 1 , . . . a k and e 1,2 = (a 2 1 . . . a 2 k ) -1 ; • A 2 = γ, c and e 2,1 = γ and e 2,3 = c -2 γ = δ; • A 3 = b 1 , . . . , b k and e 3,2 = b 2 k . . . b 2 1 .
So, each of the A i is a free group and the amalgamation is given by e 1,2 = e 2,1 and e 2,3 = e 3,2 .

Define a morphism p :

N 2k+1 → a 1 , . . . , a k F k by a i → a i for i ≤ k c → a -2 k b i → a -1 i for i ≤ k -1 b k → a k
(the structure of almagam shows that p is well defined).

a 1 a 2 a k b 1 b 2 b k c γ c 2 δ = c -2 γ b 2 1 a 2 1 a 2 k b 2 k FIGURE 3. The fundamental group N 2k+1 .
Lemma 4.4. The morphism p : N 2k+1 →F k is injective in restriction to each of the three subgroups of the amalgam (4.5).

Proof. By construction, it is injective in restriction to a 1 , . . . , a k and in restric-

tion to b 1 , . . . , b k . Then, note that p( γ, c ) = a 2 1 . . . a 2 k , a -2 k is isomorphic to F 2 because
it is a non-abelian subgroup of a free group. Since F 2 is Hopfian, p is necessarily injective in retriction to γ, c .

Consider δ = b 2 k • • • b 2 1 = c -2 γ and note that p(δ) = a 2 k a -2 k-1 • • • a -2 1 .
Let τ be the Dehn twist corresponding to the decomposition above, i.e. the automorphism fixing a i , sending c to γcγ -1 and sending b i to (γδ)b i (γδ) -1 . Since τ is the composition of the twists given by γ and δ and these two twists commute we get

τ N (b) = (γ N δ N )b(γ N δ N ) -1 , ∀b ∈ A 3 .
In this situation, one can prove the following lemma in a similar way to Proposition 3.3.

Lemma 4.5. Given any g ∈ N 2g+1 \ {1}, there exists n 0 ∈ N such that for all N ≥ n 0 , p • τ N (g) = 1.
Proof. Write g as a word in the graph of groups, i.e. g = s 0 . . . s n with s k ∈ A r k (we allow s k = 1) for some r k ∈ {1, 2, 3}, with r k+1 = r k ± 1, and r 0 = r n = 1. We take this word of minimal possible length among words satisfying these contraints. If k is such that r k-1 = r k+1 , then s k / ∈ e r k ,r k+1 since otherwise, one could shorten the word using the structure of amalgam (in particular s k = 1 in this case). Now one easily checks that

τ N (g) = s 0 d ε 1 N 1 s 1 d ε 2 N 2 s 2 • • • d ε n N n s n (4.6)
where d k = e r k-1 ,r k ∈ {γ, δ}, and

ε k = r k -r k-1 ∈ {±1}. We claim that s -1 k d k s k does not commute with d k+1 . If d k = d k+1 , this follows from the fact that γ commutes with no conjugate of δ in A 2 = c, δ . If d k = d k+1 , then r k-1 = r k+1 , so s k / ∈ e r k ,r k+1 = d k . If [s -1 k d k s k , d k ] = 1, then s k preserves the axis of d k in the Cayley graph of the free group A r k , so s k is a power of d k , because d k ∈ {γ, δ} is not a proper power; this contradicts that s k / ∈ d k . Denote by s k , d k ∈ F r the images of s k , d k under p. Since p is injective on each A r k , s -1 k d k s k
does not commute with s k+1 , so the hypotheses of Baumslag Lemma apply to the word

p • τ N (g) = d ε 0 N 0 s 1 d ε 1 N 1 s 2 . . . d ε n-1 N n-1 s n d ε n N n (4.7) so p • τ N (g) = 1 for N large enough.
Now consider k elements f 1 , . . . , f k of Diff(R, 0) generating a free group of rank k with f i (0) > 1 for all i ∈ {1, . . . , k}, and f k (0) < f 1 (0). Such a set can be obtained from two generators g 1 and g 2 of a free group of rank 2 with g i (0) > 1, as in Theorem 3.4, by taking

f i = g i 1 •g 2 2 •g -i 1 for i < k and f k = g k 1 •g 2 •g -k 1 . Let ρ 0 : F k = a 1 , . . . , a k →Diff(R, 0) be the injective morphism sending a i to f i for i ≤ k. In particular, ρ 0 (γ) = ( f 2 1 • • • • • f 2 k ) -1 and ρ 0 (p(δ)) = f 2 k • f -2 k-1 • • • • • f -2 1
are hyperbolic. Using Koenigs linearization theorem as above, there exists two multiplicative flows ϕ and ψ : R * + →Diff(R, 0) and a pair of positive real numbers λ and µ such that (1) ϕ λ = ρ 0 (γ) and ψ µ = ρ 0 (p(δ)), and (2) s → ϕ s and s → ψ s are polynomial mappings.

Set R = (R * + ) 2 and, for every (s, s ) ∈ R , define a morphism ρ s,s : N 2k+1 →Diff(R, 0) by

a i → f i for i ≤ k c → ϕ s f -2 k ϕ -s b i → ϕ s ψ s f -1 i (ϕ s ψ s ) -1 for i ≤ k -1 b k → ϕ s ψ s f k (ϕ s ψ s ) -1
(it is well defined because ϕ s and ψ s commute with ρ 0 (γ) = (

f 2 1 • • • • • f 2 k ) -1 and ρ 0 (p(δ)) = f 2 k • f -2 k-1 • • • • • f -2 1 respectively).
The assumptions of Lemma 3.1 hold: R is a Baire space, and the irreducibility follows from the fact that the maps s → ϕ s and s → ϕ s are polynomials in the variables s ±1 , s ±1 . The separation property follows from Lemma 4.5 together with the fact that ρ λ N ,µ N = ρ 0 • p • τ N , and that ρ 0 is injective. For the second assertion, we start with a representation ρ 0 in Equation (3.8) whose image is equal to F. Remark 3.6 shows that all the injective morphisms Φ s that we get satisfy also Φ s (Γ 2 ) ⊃ F.

-Part II. -

THE FINAL TOPOLOGY ON GERMS OF DIFFEOMORPHISMS

Let (k, | • |) be a complete field. This section introduces a new topology on k{z} and Diff(k, 0), which will be used in our second proof of Theorem A. The reader may very well skip this section on a first reading. 

f A r = max z∈D r | f (z)|, (5.1) 
A r is a Banach algebra. If s < r, the restriction of functions f ∈ A r to the smaller disk D s determines a 1-Lipschitz embedding A r → A s . The space C{z} is the union of the algebras A r and can be thus endowed with the final topology associated to the colimit

C{z} = lim -→ A r . (5.2) 
This means that a subset U ⊂ C{z} is open if its intersection with A r is open for every r > 0. Equivalently, a map ϕ : C{z} → X to a topological space is continuous if and only if its composition with the embedding A r → C{z} is continuous for all r. Unless we say it explicitly, open sets, neighborhoods, and continuous maps refer, from now on, to this topology. A word of warning: for r > s, the inclusion A r → A s is not a homeomorphism to its image, and neither is the inclusion A r → C{z}.

The goal of this section is to obtain several basic properties of this topology. For instance, we are going to prove that there is a filtration of C{z} by compact subsets C c {z} so that the continuity can be checked in restriction to each C c {z}.

Remark 5.1. If s < r, the homomorphism A r → A s is compact: by Montel theorem, the ball of radius 1 in A r is mapped into a compact subset K 1 of A s .

Let K ⊂ A r be a bounded subset. Then, the closure cl s (K) of (the image of) K in A s is compact. If t ≤ s, the image of cl s (K) in A t is compact, hence closed; this implies that cl s (K) = cl t (K) in C{z}. Thus, the closure K of K in C{z} coincides with the closure cl s (K) of K in A s for any s > r. As a consequence, K is compact.

We denote by B A r (ε) the open ball centred at 0 and of radius ε in A r , which we also view as a subset of C{z}. Lemma 5.2. A subset U of C{z} is a neighborhood of 0 if and only if there are decreasing sequences (r n ) and (ε n ) tending to 0 such that U contains the set

B = n n ∑ j≥1 B A r j (ε j ).
Lemma 5.2 shows that the topology defined in this section is the same as the topology introduced by Leslie in [START_REF] Leslie | On the group of real analytic diffeomorphisms of a compact real analytic manifold[END_REF], except that we consider germs of analytic functions at the origin in C instead of real analytic functions on a compact analytic manifold.

Proof. First we argue that any set B as in the statement of Lemma 5.2 is a neighborhood of 0 in C{z}. To do so we need to check that B ∩ A r contains a neighborhood of 0 for all r. The sum ∑ n j=1 B A r j (ε j ) is a subset of C{z} which is contained in A r n . It is open in A r n because one of the summands, namely

B A r n (ε n )
, is itself open. Now, the continuity of the inclusion A r → A r n for r n < r

implies that ∑ n j=1 B A r j (ε j ) ∩ A r is also open in A r . Since ∑ n j=1 B A r j (ε j ) ∩ A r is contained in B ∩ A r ,
the latter is a neighborhood of 0, as we needed to prove.

Suppose now that U is a neighborhood of the origin in C{z}, and fix a decreasing sequence (r n ) tending to 0. For each n ≥ 1, set U n = U ∩ A r n .

We first claim that there is a ball

B 1 in A r 1 such that B 1 ⊂ U. Since U 2 is open in A 2 , consider ε > 0 such that B r 2 (ε, 0) ⊂ U 2 . Now let B 1 = B A r 1 (ε/2, 0). Then for all η > 0, B 1 ⊂ B 1 + B A r 2 (η) so taking η = ε/2, we get B 1 ⊂ B r 2 (ε/2, 0) + B r 2 (ε/2, 0) ⊂ B A r 2 (ε) ⊂ U, which proves our claim.
We now construct by induction open balls B n ⊂ A r n such that for all n, B 1 +

• • • + B n ⊂ U. Given such a set of balls B 1 , . . . , B n , the set K = B 1 + • • • + B n provides a compact subset of A r n+2 contained in U n+2 .
Let ε be the distance from K to the complement of U n+2 in A r n+2 ; by compactness, ε > 0, and K + B A r n+2 (ε/2) ⊂ U. We then define B n+1 = B A r n+1 (ε/4). Then K + B n+1 ⊂ K + B A r n+2 (ε/2, 0) ⊂ U. This concludes the induction step and the proof.

Coefficient functions.

Recall that the coefficients of f ∈ A r can be computed via the Cauchy integral formula:

A n ( f ) = 1 2πi {|z|=r} f (z) z n+1 dz. (5.3) 
This implies that the linear form A n is continuous on each algebra A r with oper-

ator norm A n A * r ≤ r -(n+1) , i.e. |A n ( f )| ≤ r -(n+1) f A r for all f ∈ A r . Since
the maps A n separate points in C{z}, we obtain:

Lemma 5.3. For each n ≥ 0, the map A n : C{z} → C is continuous. The topological space C{z} is Hausdorff.

More generally, we have:

Lemma 5.4. If ∑ n θ n z n is a power series with infinite convergence radius, then the quantity

Θ( f ) = ∑ n θ n |A n ( f )| (5.4)
is well defined for every f ∈ C{z} and the function Θ : C{z} → R + is continuous.

Proof. The estimate A n A * r ≤ 1 2π r -(n+1) implies that the map

A r → C, f → ∑ n θ n |A n ( f )| (5.5)
is continuous for any power series ∑ n θ n z n with convergence radius greater than 1 r . By definition of the topology on C{z} we get that this map is continuous on the whole space if the power series in question has infinite convergence radius. By compactness, the topology on C c {z} induced by A r and by C{z} agree.

Proof. From Lemma 5.3, we deduce that

C c {z} is closed in C{z}. If f ∈ C c {z} and r < c -1 , then f A r ≤ ∑ n c n+1 r n ≤ c 1 -cr (5.7)
This means that C c {z} is a bounded subset in A r . Since the inclusion A r → A s is compact for r > s, C c {z} has compact closure in A s , hence in C{z}. Since

C c {z} is closed, it is compact.
To prove the second assertion, assume by contradiction that there is a compact subset Λ ⊂ C{z} such that for every integer m > 0 there exists f m ∈ Λ \ C m {z}. By definition, there is an index n m ≥ 0 with |A n m ( f m )| > m n m +1 . By Lemma 5.4, each individual coefficient is continuous and thus bounded on the compact Λ. It follows that n m goes to +∞ as m does. We can thus assume, passing to a subsequence if necessary, that the n m 's are pairwise distinct.

Set θ n m = ( 1 m ) n m , and θ n = 0 if n is not one of the indices n m . Then θ 1/n n converges towards 0 as n goes to +∞, meaning that the power series ∑ n θ n z n has infinite convergence radius. By Lemma 5.4, the map

f → Θ( f ) = ∑ n θ n |A n ( f )|
is continuous on C{z} and thus bounded on our compact set Λ. On the other hand we have

Θ( f m ) ≥ θ n m |A n m ( f m )| ≥ m.
This yields the desired contradiction.

Remark 5.6. Given r > 0, introduce

B r = f ∈ C{z} | rad( f ) ≥ r, sup D r | f | ≤ 1 r . (5.8)
This is the closure in C{z} of a ball in A r and is therefore compact (Remark 5.1).

There are functions c 1 , c 2 , r 1 , and r 2 : R * + → R * + such that

C c 1 (r) {z} ⊂ B r ⊂ C c 2 (r) {z} and B r 1 (c) ⊂ C c {z} ⊂ B r 2 (c) .
It follows that one could equivalently state the results of this section in terms of the filtration (B r ) r>0 instead of (C c {z}) c>0 .

The following corollary allows us to view the final topology on C{z} as the weak topology associated to the filtration by the compact sets C c {z}.

Corollary 5.7. A subset F ⊂ C{z} is closed if and only if for all c > 0, F ∩C c {z} is closed. A map F : C{z} → X to a topological space is continuous if and only if its restriction to C c {z} is continuous for all c > 0.

Proof. Clearly, it suffices to prove the first assertion. If F is closed, so is F ∩ C c {z}. Assume conversely that F ∩ C c {z} is closed for all c > 0, and let us prove that F is closed. By definition of the final topology, we need to prove that given r > 0, its preimage j -1 r (F) under the inclusion j r : A r → C{z} is closed. It suffices to prove that for any R > 0, its intersection with the ball

B A r (R) is closed in A r . Since B A r (R) has compact closure, there exists c > 0 such that B A r (R) ⊂ C c {z}. Since F ∩ C c {z} is closed, B A r (R) ∩ j -1 r (F) = B A r (R) ∩ j -1 r (F ∩ C c {z})
is a closed subset of A r which concludes the proof.

Although one can show that the topology on C{z} is not metrizable, each space C c {z} is a metric space. Being compact, the topology on C c {z} can be described in many equivalent ways: Proposition 5.8. Let c be a positive real number. Let ( f m ) be a sequence in C c {z} and let f ∞ be an element of C c {z}. The following are equivalent:

(1) ( f m ) converges to f ∞ in C c {z}; (2) for some (any) r < c -1 , ( f m ) converges uniformly toward f ∞ on D r ; (3) ( f m ) converges toward f ∞ uniformly on every compact subset of D c -1 ; (4) for every index n, A n ( f m ) converges toward A n ( f ∞ ).
Proof. As seen before, C c {z} is contained in A r for all r < c -1 and the topology induced by • A r agrees with the topology induced by C c {z}. This proves the equivalence of the first three assertions.

To prove the equivalence with the last assertion, consider the map Φ :

C c {z} → [0, 1] N defined by Φ( f ) = ( A n ( f ) c n+1 ) n∈N
, where [0, 1] N is endowed with the product topology. This map being continuous and injective, it is a homeomorphism to its image, and the result follows. for c > 0. We endow k c {z} with the product topology, via the embedding f ∈

k c {z} → (A n ( f )) n ∈ k N : a sequence ( f k ) k∈N of elements of k c {z} converges to f ∞ ∈ k c {z} if and only if A n ( f k ) → A n ( f ∞ ) for all n. For c ≤ c , k c {z} is closed in k c
{z} and the inclusion is a homeomorphism to its image. We then endow k{z} with the topology associated to this filtration: a subset F ⊂ k{z} is closed if and only if F ∩ k c {z} is closed in k c {z}. Equivalently, a map ϕ : k{z} → X to a topological space is continuous if and only if its restriction to k c {z} is continuous for every c > 0. By construction, the maps f → A n ( f ) are continuous on k{z}. Proposition 5.8 shows that, when k = C, this topology agrees with the final topology defined in Section 5.1.

If k is locally compact, each k c {z} is compact. In general, since k c {z} is a countable product of complete metric spaces, we get: Proposition 5.9. If k is a complete field, then k c {z} is a metrizable complete space. In particular, it is a Baire space.

On the other hand, k{z} is not a Baire space since it is a countable union of k c {z}, each of which is closed and has an empty interior. 5.5. The topological group of germs of diffeomorphisms. Any f ∈ Diff(k, 0) can be written as f = λ(z + z 2 f ) for some f ∈ k{z} or equivalently as

f = λ(z + ã2 z 2 + • • • + ãk z k + . . . ) (5.10)
for some λ ∈ k * and ãn ∈ k. Thus, we define the maps Ãn :

Diff(k, 0) → k by Ãn ( f ) = A n ( f )/A 1 ( f ) = ãn . (5.11) 
Given two real numbers c > 0 and λ 0 > 1, we define the two subsets

Diff c (k, 0) = f ∈ Diff(k, 0) ; | Ãn ( f )| ≤ c n-1 for all n (5.12)
and

Diff λ 0 ,c (k, 0) = f ∈ Diff c (k, 0) ; 1 λ 0 ≤ |A 1 ( f )| ≤ λ 0 (5.13)
Observe that if we denote by m α : z → αz the multiplication by some scalar α ∈ k * then we have

m α Diff c (k, 0)m -1 α = Diff cα (k, 0) (5.14)
and

m α Diff λ 0 ,c (k, 0)m -1 α = Diff λ 0 ,cα (k, 0) (5.15)
Lemma 5.10. A map ϕ : Diff(k, 0) → X to a topological space is continuous if and only if it is continuous in restriction to Diff c (k, 0) (or equivalently to Diff λ 0 ,c (k, 0)) for every c > 0 and λ 0 > 1.

Proof. It suffices to check the continuity of ϕ on the open set

U λ 0 = { f ; 1 λ 0 < |A 1 ( f )| < λ 0 } for all λ 0 > 1.
By definition of the final topology, it suffices to check its continuity on U λ 0 ∩ k c {z} for every c > 1. But U λ 0 ∩ k c {z} is a subset of Diff λ 0 ,c (k, 0) as soon as c ≥ max(λ 0 , c 3 ); since we know that ϕ is continuous on Diff λ 0 ,c (k, 0), this proves the lemma. Proposition 5.11. If k is a complete field, then Diff λ 0 ,c (k, 0) and Diff c (k, 0) are complete metric spaces. In particular, they are Baire spaces.

Proof. By definition, Diff c,λ 0 (k, 0) is homeomorphic to a countable product of closed subsets of k; so, k being complete, its topology is induced by a complete metric. Since k * is homeomorphic to the closed subset {(x, y)|xy -1} ⊂ k 2 , the same argument applies to Diff c (k, 0). Theorem 5.12. Let (k, | • |) be a field with a complete absolute value. With the final topology, Diff(k, 0) is a topological group. Lemma 5.13. For every real number c > 1, there exists a real number c > 1 such that the following holds: if f and g are in Diff c,c (k, 0), then f • g and f -1 lie in Diff c ,c (k, 0).

Proof. Let f = λ(z + ∑ n≥2 ãn z n ), g = µ(z + ∑ n≥2 bn z n ) with | ãn |, | bn | ≤ c n-1 and |λ|, |µ|, |λ| -1 , |ν| -1 ≤ c. Let F = c(z + ∑ n≥2 c n-1 z n ) = cz
1-cz ∈ R{z} so that the absolute value of the coefficients of f and g are bounded by the coefficients of F. Then the absolute value of the coefficients of f

• g = ∑ n≥1 a n (∑ m≥1 b m z m ) n are bounded by the coefficients of F • F = cz(1-cz)
1-cz-c 2 z . Since F • F has positive convergence radius, there exists c ≥ c 2 such that Ãn (F • F) ≤ c n-1 for all n ≥ 2. The first assertion follows.

We now prove the second assertion. Let f = λ(z + ∑ n≥2 ãn z n ), and let f -1 = λ -1 (z + ∑ n≥2 bn z n ). The inversion formula from Section 2.1 gives

| bn | ≤ |λ| |λ| n ∑ k 1 ,k 2 ,... (n + 1) • • • (n -1 + k 1 + k 2 + . . .) k 1 ! k 2 ! • • • • | ã2 | k 1 | ã3 | k 2 • • • ≤ c n-1 ∑ k 1 ,k 2 ,... (n + 1) • • • (n -1 + k 1 + k 2 + . . .) k 1 ! k 2 ! • • • (c) k 1 (c) 2k 2 • • • = c 2n-2 ∑ k 1 ,k 2 ,... (n + 1) • • • (n -1 + k 1 + k 2 + . . .) k 1 ! k 2 ! • • • .
Thus, we have to bound the quantity

K n := ∑ k 1 ,k 2 ,... (n + 1) • • • (n -1 + k 1 + k 2 + . . .) k 1 ! k 2 ! • • • .
But the numbers K n are the coefficients of the power series expansion of the reciprocal diffeomorphism g -1 of

g(z) = z -z 2 -z 3 -z 4 • • • = z 2 - 1 1 -z = z -2z 2 1 -z .
In close form, we obtain

g -1 (y) = (1 + y) 4 - 1 4 1 -6y + y 2 .
Since g -1 has positive convergence radius, there exists c 0 such that for all n ≥ 2,

K n ≤ c n-1 0 hence | bn | ≤ (c 0 c 2 ) n-1
and the result follows.

Proof of Theorem 5.12. By definition of the topology, given c > 0, one only needs to check the continuity of the group laws in restriction to Diff c,c (k, 0). Since A n ( f • g) and A n ( f -1 ) are given by polynomials in the coefficients Ãi

( f ), Ãi (g), A 1 ( f ) ±1 , A 1 (g) ±1 , the maps ( f , g) → A n ( f • g) and f → A n ( f -1 )
are continuous on Diff c,c (k, 0). By Lemma 5.13 there exists c such that for all f , g ∈ Diff c,c (k, 0), f • g and f -1 lie in Diff c ,c (k, 0). Since the topology on Diff c ,c (k, 0) is the product topology, the continuity of the coefficients implies the continuity of the group laws. 5.6. Other topologies. First, we would like to point out that there are other reasonable and useful topologies on C{z}, but for which the group laws are not continuous. This the case for the so-called Takens topology [START_REF] Mattei | Generic pseudogroups on (C, 0) and the topology of leaves[END_REF][START_REF] Broer | From a differentiable to a real analytic perturbation theory, applications to the Kupka Smale theorems[END_REF]; this is the topology induced by the distance

dist( f , g) = sup n |A n ( f ) -A n (g)| 1/n .
(5.16)

Note that in particular the convergence radius of fg is large if f and g are close to each other in the Taken topology, and this implies that the right translation R f : g → g • f is not continuous if the radius of convergence of f is finite. Indeed, a small perturbation g(z) + εz is mapped to R f (g + εz) = g • f + ε f , and the difference ε f is not small in the Takens topology because its radius of convergence does not depend on ε.

We comment now on another important topology on Diff(C, 0), but for which the Baire property fails. Let Jets (C, 0) be the group of -jets of diffeomorphisms a 1 z + • • • + a z mod (z +1 ), with a 1 = 0; it can be considered as a solvable algebraic group and thus as a solvable complex Lie group. Let

j : Diff(C, 0) → Jets (C, 0) (5.17)
denote the homomorphism that maps a power series f = ∑ n a n z n to ∑ n=1 a n z n . We can then define a topology on Diff(C, 0) (resp. on Diff(C, 0)): the weakest topology for which all projections j are continuous. With this topology, Diff(C, 0) is a topological group, because the projections j are homomorphisms. Moreover, a sequence ( f m ) converges toward a germ of diffeomorphism g if and only if the coefficients A n ( f m ) converge to A n (g) for all n. In other words, this is the topology of simple convergence on the coefficients. In particular, Diff(C, 0) is not a closed subset of Diff(C, 0) for this topology. With this topology, Diff(C, 0) is a Baire space, but Diff(C, 0) is not (Proposition 5.11 fails if Diff(C, 0) is endowed with this topology).

Continuity in the Koenigs linearization Theorem

. A contraction f ∈ Diff(k, 0) is an element with |A 1 ( f )| < 1.
In this case, Koenigs theorem says that the unique formal diffeomorphism h f tangent to the identity that conjugates f to the homothety z → A 1 ( f )z has positive convergence radius. The following result shows that f → h f is continuous for the final topology on the set of contractions

Cont(k, 0) = { f ∈ Diff(k, 0) | |A 1 ( f )| < 1}.
(5.18)

Theorem 5.14. Let k be a field with a complete non-trivial absolute value. For every germ f ∈ Cont(k, 0), the unique formal diffeomorphism h f such that

h f ( f (z)) = A 1 ( f ) • h f (z) and A 1 (h f ) = 1
has positive convergence radius, and the map

h : f ∈ Cont(k, 0) → h f ∈ Diff(k, 0)
is continuous for the final topology. The coefficients of h f are polynomial functions with integer coefficients in the variables A i ( f ) and (A 1 ( f ) j -1) -1 , for i, j ≥ 1.

When k = C, it is shown in [START_REF] Milnor | Dynamics in one complex variable[END_REF]Chapter 8] that h f is convergent and its coefficients depend holomorphically on f . Theorem 5.14 is just a variation on this classical result.

Proof. We refer to [START_REF] Carl | Iteration of analytic functions[END_REF] for the real and complex cases, and to [START_REF] Herman | Generalizations of some theorems of small divisors to non-Archimedean fields[END_REF] for the nonarchimedian ones.

The coefficients of h f can be computed inductively and turn out to be polynomials with integer coefficients in the variables A i f ) and (A 1 ( f ) j -1) -1 , for i, j ≥ 1 (see for instance [START_REF] Carl | Iteration of analytic functions[END_REF]Eq 4]

). If |A 1 ( f )| ≤ α for some α in the interval [0, 1[, then |(A 1 ( f )) n -1| ≥ 1 -α (5.19)
for all n > 0. By [20, Theorem 1] and [START_REF] Herman | Generalizations of some theorems of small divisors to non-Archimedean fields[END_REF]Theorem 1] in the archimedean and non-archimedean cases respectively, h f is convergent and for all c, λ > 1, there exists c such that

h f ∈ Diff c (k, 0) if f ∈ Diff λ,c (k, 0).
The topology on Diff c (C, 0) is the product topology on the coefficients. Since the coefficients of h f are continuous functions of f , it follows that the restriction of f → h f to Diff λ,c ( f ) is continuous. By definition of the final topology, this proves the continuity of h.

A LARGE IRREDUCIBLE COMPONENT OF THE REPRESENTATION

VARIETY

This section describes our second proof strategy for Theorem A. For simplicity, we consider only the fundamental group of a closed orientable surface of genus 2, but we work over any field k with a complete absolute value | • |.

An irreducible set of representations. Using the presentation

Γ 2 = a, b, a, b | [a, b] = [a, b] , (6.1) 
we get an idenfication

Hom(Γ 2 ; Diff(k, 0)) = {( f , g, f , g) ∈ Diff(k, 0) 4 | [ f , g] = [ f , g]}. (6.2) 
Let X ⊂ Hom(Γ 2 , Diff(k, 0)) be the set of representations ρ : Γ 2 → Diff(k, 0)) such that ρ(a) is tangent to Id and ρ(b) is a contraction. As in Equation (5.18), we denote by Cont(k, 0) the set of contractions. For c > 0, we let (6.4) and denote by π : X → R the projection

X c = X ∩ Diff c (C, 0). Set R = Cont(k, 0) × Diff(k, 0) × Diff(k, 0), (6.3) R (c) = Cont c (k, 0) × Diff c (k, 0) × Diff c (k, 0),
π(ρ) = (ρ(b), ρ(a), ρ(b)) (6.5) 
Proposition 6.1. The map π is a homeomorphism for the final topology, and its inverse

π -1 : (g, f , g) → ( f , g, f , g) is a polynomial map, in the following sense: for each n ∈ N * , the map (g, f , g) → A n ( f ) is polynomial in (finitely many of) the variables A k (g), A k ( f ), A k (g), A 1 (g) -1 , A 1 ( f ) -1 , A 1 (g) -1 and (A 1 (g) k -1) -1 (k ≥ 1).
Proof. The projection π is continuous because both X and R come with the topology induced by the same topology on Diff(k, 0).

Consider a triple (g, f , g) ∈ Cont(k, 0) × Diff(k, 0) × Diff(k, 0). Since [ f , g] is tangent to the identity, the germs g and [ f , g] • g have the same derivative λ = A 1 (g) at 0. Since |λ| < 1, we can apply Koenigs Theorem 5.14: we get two germs h 1 and h 2 ∈ Diff(k, 0) tangent to the identity such that

h 1 • g • h -1 1 = m λ and h 2 • ([ f , g] • g) • h -1 2 = m λ (6.6) 
where m λ (z) = λz is the multiplication by λ. Then, the map

f := h -1 2 • h 1 con- jugates g to [ f , g] • g so f • g • f -1 = [ f , g] • g and [ f , g] = [ f , g].
This means that one can define the preimage π -1 (g, f , g) ∈ Hom(Γ 2 , Diff(k, 0)) by the 4-tuple ( f , g, f , g): the fact that π -1 • π = Id R follows from uniqueness in Koenigs Theorem.

The continuity of π -1 is a consequence of the continuity of the conjugacy in Koenigs Theorem 5.14 and of the continuity of the map (g, f , g) → [ f , g]•g. The fact that A n ( f ) is polynomial in the given variables is a direct consequence of the corresponding fact in Koenigs Theorem, and the fact that group operations are polynomial mappings.

We denote the inverse map π -1 by Φ:

∀s ∈ R , Φ s = π -1 (s). (6.7) Thus, if s = (g, f , g), then Φ s is the morphism Γ 2 →Diff(k, 0) such that Φ s (b) = g, Φ s (a) = f , Φ s (b) = g,
and Φ s (a) is the unique germ of diffeomorphism f which is tangent to the identity and satisfies the relation

[ f , g] = [ f , g].
To conclude the proof, our goal now is to prove that for every c > 0, the family of morphisms Φ s , for s ∈ R (c), satisfies the assumptions of Lemma 3.1. Proposition 5.11 shows that R (c) is a Baire space. The following corollary proves the irreducibility of R (c).

Corollary 6.2. For any w ∈ Γ 2 , denote by R (c) w ⊂ R (c) the set of homomor- phisms in R (c) that kill w. Then either R (c) w = R (c) or R (c) w is a closed subset of R (c) with empty interior. Proof. Since the functions s ∈ R → A k (Φ s (g)) -A k (Id) are continuous, R (c) w is closed. Now, assume that R (c) w = R (c): there exists k ≥ 1 and a point s = (g 0 , f 0 , g 0 ) in R (c) such that A k (Φ s (w)) = A k (Id). According to Proposition 6.1 the map s → A k (ϕ s (w)) -A k (Id) is a polynomial function in finitely many of • the coefficients A n (g 0 ), A n ( f 0 ) and A n (g 0 ) (n ≥ 1), • the inverses A 1 (g 0 ) -1 , A 1 ( f 0 ) -1 , A 1 (g 0 ) -1 and (A 1 (g 0 ) k -1) -1 (k ≥ 1)
(note that A 1 (g 0 ), A 1 ( f 0 ), A 1 (g 0 ) and (A 1 (g 0 ) k -1) do not vanish on R ). Our assumption says that this function does not vanish identically on R (c). Assume that R (c) w contains a non-empty open subset U, and choose a point

s = (g 1 , f 1 , g 1 ) in U. If k = R or C, we denote by B k the interval [0, 1] ⊂ R; in the non-archimedean case we set B k = {t ∈ k, |t| ≤ 1}. Then, we consider the convex combination s t = g t = t f 1 + (1 -t) f 0 , f t = t f 1 + (1 -t) f 0 , g t = tg 1 + (1 -t)g 0 (6.8)
with t in B k . According to Lemma 6.3 below, g t , f t and g t are in R (c ) for some c ≥ c, and t → s t is continuous; thus {t ; s t ∈ U} is an open neighborhood of 1. The function t → A n (ϕ s t (w)) -A n (Id) does not vanish for t = 0, it is the restriction of a rational function of the variable t to the interval [0, 1], and it vanishes identically on the open set {t ; s t ∈ U}. This is a contradiction, which shows that the interior of R (c) w is empty.

Let B k be the interval [0, 1] ⊂ R if k = R or C, or the ball {t ∈ k, |t| ≤ 1} in the non-archimedean case. Lemma 6.3. Let f 0 ∈ Diff c 0 (k, 0) and f 1 ∈ Diff c 1 (k, 0), and for t ∈ k, let f t = (1 -t) f 0 + t f 1 . Let p ∈ k be the value of t (if any) such that f p (0) = 0. If c 0 ≤ c 1 and c 0 | f 0 (0)| ≤ c 1 | f 1 (0)|, then for all t ∈ B k \ {p}, f t ∈ Diff c 1 (k, 0). Proof. Denote λ 0 = | f 0 (0)| and λ 1 = | f 1 (0)|. By assumption, for all n ≥ 2, |A n ( f 0 )| ≤ λ 0 c n-1 0 and |A n ( f 1 )| ≤ λ 1 c n-1 1 . Consider first the case k = R or C. Since λ 0 c 0 ≤ λ 1 c 1 , we get for all t ∈ [0, 1], |A n ( f t )| ≤ (1 -t)λ 0 c n-1 0 + tλ 1 c n-1 1 (6.9) ≤ (1 -t)λ 1 c 1 c n-2 0 + tλ 1 c n-1 1 ≤ λ 1 c n-1 1 . (6.10) 
This shows that f t ∈ Diff c 1 (k) as soon as f t (0) = 0.

In the non-archimedean case, one has |t -1| ≤ 1 for t ∈ B k . Similarly, we get

|A n ( f t )| ≤ max{ |1 -t|λ 0 c n-1 0 , |t|λ 1 c n-1 1 } (6.11) ≤ max{ λ 1 c 1 c n-2 0 , λ 1 c n-1 1 } ≤ λ 1 c n-1 1 . (6.12) 
This shows that f t ∈ Diff c 1 (k) as soon as f t (0) = 0. Then, the continuity follows from the continuity of the coefficients t → A n ( f t ). 

Set ρ

N := ρ • p • τ N . For N ≥ n 0 ρ N (g) = 1. Thus, π(ρ N ) lies in R \ R g ; but it might not lie in R (c).
Let c N > 0 be such that π(ρ N ) ∈ R (c N ). Given α ∈ k * , let ad α be the inner automorphism of Diff(k, 0) given by f → m α • f • m -1 α . As noticed in Equation (5.12), we have ad α (Diff c N (k, 0)) = Diff αc N (k, 0). Thus, the representation

ρ N = ad α • ρ N satisfies π(ρ N ) ∈ R (c) if α is sufficiently small. Since ρ N (g) = 1
this concludes that R (c) satisfies the separation condition of Lemma 3.1. -Part III. -7. A p-ADIC PROOF 7.1. Free groups with integer coefficients. A theorem of White [START_REF] White | The group generated by x → x + 1 and x → x p is free[END_REF] shows that the homeomorphisms of R defined by f : z → z + 1 and g : z → z 3 generate a free group. Conjugating the maps f and g f g -1 by z → 1 3z , as in [START_REF] Glass | The ubiquity of free groups[END_REF] 1 , one gets two formal diffeomorphisms

f 0 (z) = z 1 + 3z = ∞ ∑ n=1 (-3) n-1 z n g 0 (z) = z (1 + (3z) 3 ) 1/3 = ∞ ∑ n=0 -1 3 n 3 3n z 3n+1 (7.1) 
that generate a non-abelian free group f 0 , g 0 ⊂ Diff(Q, 0) ⊂ Diff(k, 0). It is remarkable that f 0 and g 0 are tangent to the identity at the origin and have integer coefficients:

Theorem 7.1. The group Diff(Q, 0) contains a non-abelian free group, all of whose elements are tangent to the identity and have integer coefficients.

Thus, one can produce an explicit free group in Diff(k, 0) for every field k of characteristic 0. In characteristic p > 0, Szegedy proved that almost every pair of elements in the Nottingham group Diff(Z/pZ, 0) generates a free group [START_REF] Szegedy | Almost all finitely generated subgroups of the Nottingham group are free[END_REF]. Every element f ∈ G p satisfies rad( f ) ≥ 1. The ultrametric inequality and the Inversion formula show that G p is a subgroup of Diff(Q p , 0). With the product topology on coefficients (as in Section 5.6), it is a compact topological group, and the morphism j : G p → Jets (Q p , 0) is continuous for every integer ≥ 1.

The kernel of j will be denoted G p, . From Theorem 7.1, we know that G p contains a free group of rank two generated by two germs f 0 and g 0 whose coefficients are in Z. Corollary 7.2. Let p be a prime number and be a positive integer. The group G p, contains a non-abelian free group. The group G p contains a free group f , g of rank 2 such that A 1 ( f ) is a transcendental number while g is tangent to the identity up to order .

Proof. Start with a non-abelian free group F in G p . Since the group of jets Jets (Q p , 0) is solvable, the restriction of j to F is not injective. Its kernel is a free group (as any subgroup of F), and if is large it is not cyclic. Thus, the kernel is a non-abelian free group. This proves the first statement.

Set R = {t ∈ Z p ; |t| = 1}. Now, take a pair of generators f 0 and g 0 of a free group of rank 2 in G p, , and for t ∈ R consider the family of representations ρ t : F 2 = a, b → G p defined by ρ t (a) = m t • f 0 and ρ t (b) = g 0 (here, as usual, m t (z) = tz). If w is an element of F 2 , and n is a positive integer, then A n (ρ t (w)) is a polynomial function in t and 1/t (see Section 2.1). If w = 1, there is an integer n ≥ 1 such that A n (ρ 1 (w)) = A n (Id). Thus, the set R w ⊂ R of parameters s such that ρ s (w) = Id is finite, the union ∪ w =1 R w is at most countable, and there are transcendental numbers in its complement. For such a parameter t, ρ t is injective and A 1 (ρ t (a)) = t is transcendental. Now, we apply the result of [START_REF] Breuillard | Dense embeddings of surface groups[END_REF] described in Section 1.2 to get: We can now prove the following version of Theorem A. This will be our third and last proof of it. and if P(a 1 , . . . , a m ) = 0, then

P = 0; (b) |a n | ≤ 2 -n for all n ≥ 1.
Such a sequence exists because C is uncountable. Concrete examples can be obtained from the Lindemann-Weierstrass theorem (see also [START_REF] Waldschmidt | Independance algébrique des nombres de liouville[END_REF] for the constructions of von Neumann, Perron, Kneser, and Durand of uncountably many, algebraically free complex numbers). We shall consider the a i as indeterminates for the field of rational functions Q(a 1 , a 2 , . . .). Armed with such a set we consider the following three formal diffeomorphisms

g = a 1 z + ∞ ∑ i=1 a 3i+1 z i+1 , f = z + ∞ ∑ i= a 3i+2 z i+1 , ḡ = z + ∞ ∑ i= a 3i+3 z i+1 . (7.3)
From the decay relation (b), these three power series have a positive radius of convergence. Since |a 1 | ≤ 1/2, the Koenigs linearization theorem gives a unique element f ∈ Diff(C, 0) with f (0) = 1 such that

f g f -1 = [ f , ḡ]g. (7.4)
The four elements ( f , g, f , ḡ) determine a representation ϕ of Γ 2 into Diff(C, 0). Let us prove that this representation is faithfull. Fix a non-trivial element w of Γ 2 , and write it as a word in a, b, a, b and their inverses. For every integer n, the coefficient A n (ϕ(w)) is a polynomial function Q w,n in the variables a n (for n ≥ 1), a -1 1 , and the (a k 1 -1) -1 (for k ≥ 1) with integer coefficients. Now, take a faithful representation ρ : Γ 2 → Diff(C, 0) that satisfies the conclusion of Corollary 7.4. There is an integer n ≥ 1 such that A n (ρ(w)) = A n (Id). This implies that Q w,n = A n (Id) when we specialize the indeterminates a i to the coefficients of the generators ρ(a), ρ(b), and ρ(b). Since Q w,n = A n (Id), ϕ(w) = Id and ϕ is the identity.

-Part IV. -8. COMPLEMENTS AND OPEN QUESTIONS 8.1. Takens' theorem and smooth diffeomorphisms. To conclude this chapter, we mention the following result which allows to realize any faithful representation of a surface group in the group of formal germs as a group of C ∞ germs. Note that the p-adic method provides many embeddings of surface groups in Diff(R, 0) (see Corollary 7.4).

Recall that Γ g denotes the fundamental group of the closed orientable surface of genus g.

Theorem C. Let ρ : Γ g → Diff(R, 0) be a faithful representation of the surface group Γ g in the group of formal diffeomorphisms in one real variable. Then, there exists a faithful representation ρ : Γ g → Diff ∞ (R, 0) into the group of germs of C ∞ -diffeomorphisms such that the Taylor expansion of ρ(w) coincides with ρ(w) for every w ∈ Γ g .

The proof will be a consequence of the following result (this theorem is easily derived from the Sternberg linearization theorem and Theorem 2 of [START_REF] Takens | Normal forms for certain singularities of vector fields[END_REF]): Theorem 8.1 (Sternberg [START_REF] Sternberg | On the structure of local homeomorphisms of euclidean n-space[END_REF], Takens, [START_REF] Takens | Normal forms for certain singularities of vector fields[END_REF]). Let f , g : (R, 0) → (R, 0) be two germs of C ∞ -diffeomorphisms, and let f and ĝ denote their Taylor expansions. Suppose that f is not flat to the identity, that is f = Id. Then, if f and ĝ are conjugate by a formal diffeomorphism ĥ, there exists a germ of C ∞ -diffeomorphism h : (R, 0) → (R, 0) such that • the Taylor expansion of h coincides with ĥ; • h conjugates f to g. Proof of Theorem C. Denote by âi , bi , 1 ≤ i ≤ g the images of the standard generators of Γ g by the representation ρ; they satisfy the relation â1

• b1 • â-1 1 = ( g ∏ j=2 [ â j , b j ]) • b1 . (8.1)
By the theorem of Borel and Peano, one can find germs of diffeomorphisms b 1 and a j , b j , j ≥ 2, whose respective Taylor expansions coincide with b1 , â j , and b j respectively. Then, Theorem 8.1 provides a germ of diffeomorphism a 1 such that a

1 • b 1 • a -1 1 = (∏ g j=2 [a j , a j ]) • b 1 .
Thus, one gets a representation ρ of Γ 2 into Diff ∞ (R, 0) with Taylor expansion equal to ρ. Since the initial representation ρ is injective, so is ρ. 

(C, 0) → (C, 0) such that ϕ • Γ 1 • ϕ -1 = Γ 2 , and are formally conjugate if there is a formal dif- feomorphism φ such that φ • Γ 1 • φ-1 = Γ 2 . A germ of homeomorphism ϕ is anti-holomorphic if its complex conjugate z → ϕ(z) is holomorphic.
Theorem 8.2 (Nakai, Cerveau-Moussu). Let Γ 1 and Γ 2 be two subgroups of Diff(C, 0) which are not solvable.

(1) If ϕ is a local homeomorphism that conjugates Γ 1 to Γ 2 , then ϕ is holomorphic, or anti-holomorphic. (2) If φ is a formal conjugacy between Γ 1 and Γ 2 , then φ converges and is therefore a holomorphic conjugacy.

Thus, (the images of) two embeddings of Γ g in Diff(C, 0) are topologically or formally conjugate if and only if they are analytically conjugate. 8.3. Two questions. 8.3.1. It would be interesting to exhibit an embedding α of the group Γ g , g ≥ 2, into the group of analytic diffeomorphisms of the circle R/Z fixing the origin o ∈ R/Z. If such an embedding exists, the suspension of this representation α gives a compact manifold M α of dimension 3 that fibers over Σ g , together with a foliation F α of co-dimension 1 which is transverse to the fibration π : M α → Σ g and whose monodromy is given by τ. The fixed point gives a compact leaf of F α with holonomy given by the same representation τ.

Question.-Does there exist an embedding of Γ 2 into the group of analytic diffeomorphisms of the circle fixing the origin ?

This question was the original motivation of Cerveau and Ghys when they asked for a proof of Theorem A (see [START_REF] Cerveau | Quelques problèmes en géométrie feuilletée pour les 60 années de l'IMPA[END_REF]). 

(k, 0) → Jets 1 (k, 0). Proof. If f is a commutator [g, h] then f (0) = 1. If f (0) = 1, compose f with the homothety m λ (z) = λz for some λ ∈ k * of norm |λ| = 1,

and apply Koenigs linearization theorem to find an element

h ∈ Diff(k, 0) such that m λ • f = h • m λ h -1 and h (0) = 1. Then f = [h, m λ ].
This proves that the derived subgroup of Diff(k, 0) is the kernel of j 1 ; since h is in the kernel of j 1 , all subsequent terms of the lower central series coincide with the derived subgroup. Now, consider the upper central series. The first terms are Diff(C, 0) and its derived subgroup Diff(k, 0) (1) . Then comes Diff(k, 0) (2) := [Diff(k, 0) (1) , Diff(k, 0) (1) ].

(8.

2)

The group of jets of order 3 which are tangent to identity, i.e. jets of the form j(z) = z + a 2 z 2 + a 3 z 3 modulo z 4 , is an abelian group; at the level of formal germs, it is known that the kernel of j 3 in Diff(k, 0) (1) coincides with the derived subgroup Diff(k, 0) (2) (see [START_REF] Camina | The Nottingham group[END_REF], §3, for the description of the upper central series of Diff(k, 0)). We don't know if a similar statement holds for germs of diffeomorphisms:

Question.-Does the kernel of j 3 coincide with the second derived subgroup of Diff(C, 0) (2) ? More generally, what is the upper central series of Diff(C, 0) ?

APPENDIX: FREE GROUPS

The following theorem, and its proof, are strongly inspired by [START_REF] Mattei | Generic pseudogroups on (C, 0) and the topology of leaves[END_REF]. The proof given in [START_REF] Mattei | Generic pseudogroups on (C, 0) and the topology of leaves[END_REF] is somewhat difficult because it makes use of a topology on Diff(C, 0) which is not compatible with the group law. We adapt the same proof, without reference to such a topology. Before proving this result, let us introduce some vocabulary and notation. Write w as a reduced word in the generators a and b of the free group:

w = a n b n -1 • • • a n 2 b n 1 (9.1)
where the n i are in Z \ {0}, except maybe if n 1 or n is zero, but conjugating w by a power of a, we only need to consider the case n 1 n = 0. Set N = max |n i |.

Let h be an element of Diff(k, 0), and set f h = h -1 • f • h. Let r > 0 be smaller than the convergence radius of h, f , g and their inverses. Choose R > 0 such that all these germs, and all their compositions of length ≤ 3N map D R inside D r . If z is a point in D R , then its orbit under the action of f h and g stays in D r for all compositions of these germs given by words of length ≤ N in F 2 , in this situation, we say that the orbit of z is well defined up to length N . In particular, if we look at the composition w( f h , g), and pick a point z in D R , we get a sequence of points z 0 = z, z 1 = g n 1 (z 0 ), z 2 = f n 2 h (z 1 ), ..., z = w( f h , g)(z 0 ). (9.2)

To prove the theorem, we construct a triple (h, R, z) such that the orbit of z is well defined and the z i are pairwise distinct; in particular, z = z 0 and w( f h , g) = Id.

Proof. We do a recursion on the length , proving the existence of a triple (h, R, z) such that the z i are pairwise distinct for 0 ≤ i ≤ . Since f and g have infinite order, the union of all fixed points of f m and g m in D r for -N ≤ m ≤ N is a finite set F. For j = 1, we just pick a point z 0 sufficiently near the origin with z 1 := g n 1 (z 0 ) = z 0 ; the only constraint is to take z 0 in the complement of F. The points z 0 and z 1 will be kept fixed in the recursion. Assume that a polynomial germ of diffeomorphism h k has been constructed, in such a way that (a) the points z 0 , z 1 , z 2 , ..., z 2k , and z 2k+1 are pairwise distinct (we just intialized the recursion for k = 0), and (b) h k (z) = z + ε k R k (z) for some small ε k ∈ k and some element R k ∈ k[z] of degree ≤ (2k)! which is divisible by z 2 . Consider a polynomial germ

P k (z) = z + η k z 2 2k ∏ j=0 (z -z j ) (9.3)
with a small η ∈ k; then

• P k fixes z j for all j ≤ 2k,

• P k (z 2k+1 ) = a k η k + b k for some pair (a k , b k ) ∈ k 2 with a k = 0,

• as η k goes to 0, the radius of convergence of P k and its inverse P -1 k go to infinity.

If we compose h k with P k then H = h k • P k is a new polynomial germ such that the orbit of z 0 under f H and g gives the same sequence z 0 , z 1 , . . ., up to z 2k+1 . . These constraints are satisfied for all small non-zero values of η k because f n 2k+2 h k is not the identity and the coefficient a k in P k (z 2k+1 ) = a k η k + b k is not zero.

The next point is z 2k+3 = g n 2k+3 (z 2k+2 ) and we want it to be disjoint from {z 0 , . . . , z 2k+1 , z 2k+2 }. For this, we do a second perturbation of the conjugacy. Let • as β k goes to 0, the radius of convergence of Q k and its inverse Q -1 k go to infinity. Now, we set h k+1 = Q k • H. This does not change the sequence z i for 0 ≤ i ≤ 2k + 1, but the last point z 2k+2 is replaced by c k β k + d k . Since g n 2k+3 = Id and c k = 0 any non-zero, small enough value of β k assures that z 2k+3 / ∈ {z 0 , . . . , z 2k+1 , z 2k+2 }.

To sum up, if we set h k+1 = Q k • P k • h k then the sequence z 0 , . . ., z 2k+3 is now made of pairwise distinct points. Moreover, when the parameters η k and β k go to zero, the germ Q k • P k and its inverse converge uniformly to the identity on the disk D 2R , so we can assume that the orbit of z 0 is well defined for all composition of h k+1 , f , g, and their inverses of length ≤ 3N . The germ Q k • P k is equal to z+S k (z) where S k is divisible by z 2 and deg(S k ) ≤ (2k +1)×(2k +2). Thus, h k+1 (z) = z + P k+1 (z) (

where z 2 divides P k+1 and deg(P k+1 ) ≤ deg(P k ) × (2k + 1) × (2k + 2) ≤ (2k + 2)! (9.9)

This proves the recursion and finishes the proof of the theorem.

Theorem 9.2. Let (k, | • |) be a complete, non-discrete valued field. If f and g are elements of Diff(k; 0) of infinite order, there exists an element h of Diff(k; 0) such that f h := h • f • h -1 and g generate a free group of rank 2. One can choose h such that h (0) = 1.

Note that Theorem 3.4 is a direct corollary of that result; one just need to start with f = λ 1 z or λ 1 z + z 2 if λ 1 is a root of unity, and similarly for g.

Proof. Denote by a n and b n the coefficients of f and g respectively. Let L ⊂ k be the field generated by the a n and b n . Since k is infinite and complete, its transcendental degree over L is infinite: it contains an infinite sequence (c i ) of algebraically independent numbers (over the base field of k, see []). We can moreover assume that all c i are in the unit disk. Set h 0 (z) = ∑ n≥1 c n z n .

Consider a non-trivial element w of F 2 . The N-th coefficient A N (w(h 0 • f • h -1 0 , g)) is a polynomial function in the coefficients of f , g, and h (see Section 2.1). If it vanishes (resp. if it is equal to 1), then A N (w(h • f • h -1 , g)) = 0 (resp. 1) for all formal diffeomorphisms h, because the c i are algebraically independent over k. Thus, Theorem 9.1 implies that w(h 0 • f • h -1 0 , g) = Id, and this shows that f h 0 := h 0 • f • h -1 0 and g generate a free group of rank 2. In this argument, we could start with h 0 = z + ∑ n≥2 c n z n , because we can choose the germ h in Theorem 9.1 with the additional constraint h (0) = 1.
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 1 The main result. Let C be the field of complex numbers and Diff(C, 0) the group of germs of analytic diffeomorphisms at the origin 0 ∈ C. Choosing a local coordinate z near the origin, every element f ∈ Diff(C, 0) is determined by a unique power series f (z) = a 1 z + a 2 z 2 + a 3 z 3 + . . . + a n z n + . . . with f (0) = a 1 = 0 and with a positive radius of convergence rad( f ) = lim sup n→+∞ |a n | 1/n -1

4. 3 .( 1 )

 31 Embeddings in Diff(k, 0). The proofs just given provide the following statement. Theorem B. Let (k, | • |) be a non-discrete and complete valued field. Let Γ be the fundamental group of a closed orientable surface, or a closed non-orientable surface of genus ≥ 4. Then, there is an embedding of Γ into Diff(k, 0). (2) Let F ⊂ Diff(k, 0) be a free group of rank 2, generated by two germs f and g with | f (0)| > 1 and |g (0)| > 1. Then, there is an embedding of Γ 2 , the fundamental group of a closed, orientable surface of genus 2, into Diff(k, 0) whose image contains F. Proof. For the first assertion, we just have to replace R by k in the proofs of Theorem 3.5 and 4.1. The parameter space is R = (k * ) 3 or k * or (k * ) 2 , and it is a Baire space because (k, | • |) is complete.

5. 1 .

 1 The final topology over the complex numbers. Until Section 5.4, we focus on the case k = C. Let r be a positive real number. Consider the subalgebra A r of C{z} consisting of those power series f (z) = ∑ n a n z n which converge on the open unit disk D r (i.e. rad( f ) ≥ r) and extend continuously to the closed unit disk D r . When endowed with the norm

5. 3 .

 3 Another filtration. We now introduce another filtration of C{z}. If c is any positive real number, we defineC c {z} = f ∈ C{z} with |A n ( f )| ≤ c n+1 for all n .(5.6)Then C c {z} ⊂ C c {z} for c ≤ c , and C{z} is the increasing union of all C c {z}.Lemma 5.5. C c {z} is compact, and contained in A r for all r < c -1 . Every compact subset Λ ⊂ C{z} is contained in some C c {z}.

5. 4 .

 4 The final topology on a field with an absolute value. In this section, we explain that the final topology induced by the filtration C c {z} makes sense for every field k with an absolute value | • |; but the results based on Montel theorem (Remark 5.1) may fail for fields k = C. Let k be a complete field k with an absolute value | • | : k → R + . By Ostrowski's Theorem, k is either R or C, or the absolute value is non-archimedean: |x + y| ≤ max(|x|, |y|) for all x, y ∈ k. The algebra k{z} of convergent power series is filtrated by the family of subsets k c {z} = f ∈ k{z} with |A n ( f )| ≤ c n+1 for all n(5.9)
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 2 Separation. To conclude the proof, we fix c > 0 and prove that R (c) satisfies the separation condition of Lemma 3.1. We thus fix g ∈ Γ 2 \ {1} and show that R (c) contains a representation that does not kill g. Write the orientable surface group of genus 2 as Γ 2 = a, b, a, b | [a, b] = [a, b] , and let p : Γ 2 → a, b be the morphism fixing a and b and sending a and b to a and b respectively. Let τ : Γ 2 →Γ 2 be the Dehn twist around the curve c = [a, b], i.e. the automorphism that fixes a, b and sends a and b to cac -1 and cbb -1 respectively. According to Proposition 1.2, there exists a positive integer n 0 such that p • τ N (g) = 1 for all N ≥ n 0 .Apply Theorem 3.4 to get a pair f 1 , f 2 of germs of diffeomorphisms generating a free group f 1 , f 2 of rank 2 and satisfying f 1 (0) > 1 andf 2 (0) > 1. Define a morphism ρ : a, b →Diff(k, 0) by ρ(a) = [ f 1 , f 2 ] and ρ(b) = f -12 . Then ρ is injective, ρ(a) is tangent to the identity, and ρ(b) is a contraction.

6. 3 .

 3 Conclusion. The family of representations Φ s , with s ∈ R (c) satisfies the Baire property, the irreducibility property, and the separation property of Lemma 3.1. This lemma implies that a generic element of s ∈ R (c) gives an embedding Φ s : Γ 2 → Diff(k, 0), proving Theorem A for the group Γ 2 .

7. 2 .

 2 Subgroups of Diff(Q p , 0). In this section, p is a prime number, and Q p is the field of p-adic numbers, with its absolute value | • | normalized by |p| = 1/p. Let G p denote the set of elements f = ∑ n≥1 a n z n in Diff(Q p , 0) such that a n ∈ Z p ∀n and |a 1 | = 1. (7.2)

Theorem 7 . 3 . 1 ) 2 )

 7312 Let p be a prime number. Let Γ 2 = a, b, a, b | [a, b] = [a, b] be the fundamental group of a closed orientable surface of genus 2. Then (For every integer ≥ 1, the group Γ 2 embeds in the compact group G p, . (There is an embedding ρ : Γ 2 → G p such that ρ(a) (0) = ρ(a) (0) is a transcendental number while ρ(b) and ρ(b) are tangent to the identity up to order .

7. 3 .Corollary 7 . 4 .

 374 Back to complex coefficients. The field Q p , and thus the ring Z p , embeds (although not continuously) into C; such an embedding induces an embedding, coefficient by coefficient, ofZ p [[z]] into C[[z]]. Thus, the surface groups constructed in Theorem 7.3 provide surface groups in Diff(C, 0). This construction does not preserve the convergence of power series, but it preserves the order of tangency to Id. Since there are transcendental complex numbers with modulus < 1, we obtain: Let be a positive integer. There is an embedding ρ : Γ 2 → Diff(C, 0) such that |ρ(a) (0)| = |ρ(a) (0)| < 1 while ρ(b) and ρ(b) are tangent to the identity up to order .

Theorem 7 . 5 .

 75 There is an embedding of Γ 2 in Diff(C, 0) such that |ρ(a) (0)| = |ρ(a) (0)| < 1 while ρ(b) and ρ(b) are tangent to the identity up to order . Proof. The first step is to choose a sequence C = (a 1 , a 2 , a 3 , . . .) of complex numbers such that (a) the set {a 1 , a 2 , . . .} is algebraically free: if m ≥ 1 and P ∈ Z[x 1 , . . . , x m ],

8. 2 .

 2 Conjugacy classes. Two subgroups Γ 1 and Γ 2 of Diff(C, 0) are topologically conjugate if there is a germ of homeomorphism ϕ :

Remark 8 . 3 .

 83 According to Theorem 7.3, there is an embedding ρ of Γ 2 in Diff(Q p , 0) such that ρ(a) (0) and ρ(a) (0) have modulus 1 while ρ(b) and ρ(b) are tangent to the identity. Conjugate ρ by the homothety a → p N z for some positive integer N. If N is large enough, the coefficients a n , n ≥ 2, of all elements of ρ(Γ 2 ) have norm < 1, and the ultrametric inequality shows that ρ(Γ 2 ) preserves the open disks {z ∈ C p ; |z| < 1 -ε} for every ε > 0. Thus, it preserves arbitrary thin annuli {z ∈ C p ; 1 -ε|z| ≤ 1}. (Here C p is the completion of the algebraic closure of Q p ) 8.3.2. The derived subgroup of Diff(C, 0) is the kernel of the morphism j 1 : f → f (0): Theorem 8.4. Let k be a complete, non-discrete valued field. An element f of Diff(k, 0) is a commutator if and only if f (0) = 1. All higher terms of the lower central series coincide with the kernel of j 1 : Diff

Theorem 9 . 1 .

 91 Let (k, | • |) be a complete, non-discrete valued field. Let f and g be elements of Diff(k, 0) of infinite order. Let w be a non-trivial element of the free group F 2 . Then, there is a polynomial germ of diffeomorphism h such that w(h f h -1 , g) = Id. If w = a n b n -1 • • • a n 2 b n1 , one can choose h of the form z + εz 2 P(z) with an arbitrarily small ε and a polynomial function P ∈ k[z] such that deg(P) ≤ (2 )! and |P(x)| ≤ 1 for all x ∈ D 1 .

  Q k (z) = z + β k z 2 2k+1 ∏ j=0 (zz j ) (9.7)with a small β k ∈ k; then• Q k fixes z j for all j ≤ 2k + 1, • Q k (z 2k+2 ) = c k β k + d k for some pair (c k , d k ) ∈ k 2 with c k = 0,

  Sections 2 to 4 give a first proof of Theorem A; Section 4 is the only place where we deal with non-orientable surfaces. We refer to Theorem B in Section 4.3 for a stronger result, in which the field R is replaced by any non-discrete, complete valued field k. II.-Section 5 and 6 present our second proof, based on the construction of a group topology on Diff(C, 0). III.-Then, our p-adic proof is presented in Section 7.IV.-Section 8 draws some consequences and list a few open problems, while the appendix shows how to construct free groups in Diff(C, 0), or Diff(k, 0) for any non-discrete and complete valued field.
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  2.2. Diffeomorphisms and Koenigs linearization Theorem. Suppose now that k is endowed with an absolute value | • | : k → R + . Then k becomes a metric space with the distance induced by | • |. We shall almost always assume that

  The fundamental group N 4 .-The base point is represented by •, the 4 generators are a 1 , a 2 , b 1 , b 2 , and the curve γ is used to construct the Dehn twist τ.

  and we want to exclude the possibility z 2k+2 ∈ {z 0 , . . . , z 2k+1 }; since(P k (z 2k+1 )) ⊂ P k {z 0 , . . . , z 2k+1 },(9.6)and for that we just need to choose the parameter η k in the definition of P k in such a way that f(P k (z 2k+1 ))is not in {z 0 , . . . , z 2k } and P k (z 2k+1 ) is not a

	The next point is		
			z 2k+2 = f	n 2k+2 H	(z 2k+1 )	(9.4)
			z 2k+2 = (P -1 k • f	n 2k+2 h k	• P k )(z 2k+1 )	(9.5)
	we want to avoid the inclusion	
		f	n 2k+2 h k	
		n 2k+2	
	fixed point of f	h k n 2k+2 h k		

This conjugacy is called the "Wilson trick" in[START_REF] Glass | The ubiquity of free groups[END_REF].