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We define k-genericity and k-largeness for a subset of a group, and determine the value of k for which a k-large subset of G n is already the whole of G n , for various equationally defined subsets. We link this with the inner measure of the set of solutions of an equation in a group, leading to new results and/or proofs in equational probabilistic group theory.

Introduction

In probabilistic group theory we are interested in what proportion of (tuples of) elements of a group have a particular property; if this property is given by an equation, we talk about equational probability.

In [START_REF] Jaber | Largeur et nilpotence[END_REF] a notion of largeness was introduced for a subset of a group, and it was shown that certain equational properties of a group hold everywhere as soon as they hold largely. In this paper, we shall introduce a quantitative version of largeness, and deduce some results in equational probabilistic group theory.

Throughout this paper, G will be a group and µ a left-invariant probability measure on some algebra of subsets of G.

Example 1.1.

(1) G finite, µ the counting measure. (2) G 1 a group, µ 1 a left-invariant measure on G 1 , and G = G n 1 with the product measure µ = µ n 1 .

(3) More generally, G 1 a group, G ≤ G n 1 and µ a left-invariant measure on G. (4) G arbitrary and the measure algebra reduced to {∅, G}. While this set-up trivialises the probability statements, the largeness results remain meaningful.

If X is a measurable subset of G we can interpret µ(X) as the probability that a random element of G lies in X. If H is another group, f : G → H is a function and c ∈ H some constant, we put µ(f (x) = c) = µ({g ∈ G : f (g) = c}). We shall now list some known results, starting with Frobenius in 1895.

Fact 1.3. Let G be a finite group.

• Frobenius 1895 [START_REF] Frobenius | Verallgemeinerung des Sylowschen Satzes[END_REF] If n divides |G| then the number of solutions of x n = 1 is a multiple of n. In particular, µ(x n = 1) ≥ n |G| . • Miller 1907 [14] If G is non-abelian, then µ(x 2 = 1) ≤ 3 4 . • Laffey 1976 [START_REF] Laffey | The number of solutions of x 3 = 1 in a 3-group[END_REF] If G is a 3-group not of exponent 3 then µ(x 3 = 1) ≤ 7 9 . • Laffey 1976 [START_REF] Laffey | The number of solutions of x p = 1 in a finite group[END_REF] If p is prime and divides |G|, but G is not a p-group, then µ(x p = 1) ≤ p p+1 . • Laffey 1979 [START_REF] Laffey | The number of solutions of x 4 = 1 in finite groups[END_REF] If G is not a 2-group, then µ(x 4 = 1) ≤ 8 9 . • Iiyori, Yamaki 1991 [START_REF] Iiyori | On a conjecture of Frobenius[END_REF] If n divides |G| and X = {g ∈ G :

g n = 1} has cardinality n, then X forms a subgroup of G. • Erdős, Turan, 1968 [START_REF] Erdős | On some problem of statistical group theory[END_REF] If k(G) is the number of conjugacy classes in G, then µ([x, y] = 1) = k(G) |G| . • Joseph 1977 [10], Gustafson 1973 [6] If G is non-abelian, then µ([x, y] = 1) ≤ 5 8 . • Neumann, 1989 [START_REF] Neumann | Two combinatorial problems in group theory[END_REF] For any real r > 0 there are n 1 (r) and

n 2 (r) such that if µ([x, y] = 1) ≥ r then G contains normal subgroups H ≤ K such that K/H is abelian, |G : K| ≤ n 1 (r) and |H| ≤ n 2 (r). • Barry, MacHale, Ní Shé, 2006 [1] If µ([x, y] = 1) > 1 3 then G is supersoluble. • Heffernan, MacHale, Ní Shé, 2014 [7] If µ([x, y] = 1) > 7 24 then G is metabelian. If µ([x, y] = 1) > 83 675 then G is abelian- by-nilpotent.
In Section 2 we shall introduce largeness and prove the main connection between largeness and measure, Lemma 2.5, which will be used throughout the rest of the paper. Section 3 deals with central elements, or more generally FC and BFC groups. We shall treat equations of the form x n = c for arbitrary c in Section 4, recovering Miller's result for n = 2, and a weaker bound than Laffey for n = 3 (namely 6 7 ). In Section 5 we shall consider commutator equations; while our methods allow us to deal with more complicated commutators, they are too general to obtain the bounds from Fact 1.3. Section 6 deals with nilpotent groups via linearisation, and the short Section 7 places Sherman's autocommutativity degree in our context.

Notation. We shall write x y = y -1 xy, x -y = (x -1 ) y = y -1 x -1 y and [x, y] = x -1 y -1 xy = y -x y = x -1 x y .

Largeness and Probability

The following notion of largeness was introduced in [START_REF] Jaber | Largeur et nilpotence[END_REF].

Definition 2.1. If X ⊆ G, we say that X is k-large in G if the inter- section of any k left translates of X is non-empty, and X is k-generic in G if k left translates of X cover G. A subset X is large if it is k-large for all k; it is generic if it is k-generic for some k.
Of course, analogous notions exist for right and two-sided genericity/largeness. Both genericity and largeness are notions of prominence, increasing with k for largeness and decreasing with k for genericity. Clearly, if X ⊆ G and X is (k-)large/generic, so is any left or right translate or superset of X. Largeness and genericity are cocomplementary:

Lemma 2.2. Let X ⊆ G. Then X is 1-large if and only if X = ∅, and X is 1-generic if and only if X = G. More generally, X is k-large if and only if G \ X is not k-generic. Finally, X is k-generic/large if and only if X ∩ Y = ∅ for all k-large/generic Y ⊆ G.
Proof. We only show the last assertion. If X is not k-generic/large, then Y := G \ X is k-large/generic, and

X ∩ Y = ∅. Conversely, if X is k-generic, say G = i<k g i X, and Y is k-large, then ∅ = i<k g i Y = G ∩ i<k g i Y = i<k g i X ∩ i<k g i Y = i<k (g i X ∩ i<k g i Y ) ⊆ i<k (g i X ∩ g i Y ) = i<k g i (X ∩ Y ). Thus X ∩ Y = ∅. Remark 2.3. If φ : G → H is an epimorphism and X ⊆ G is (k-)large/generic, so is φ(X) ⊆ H. Conversely, if Y ⊆ H is (k- )large/generic in H, so is φ -1 [X] in G.
In particular, if X ⊆ G×H is (k-)large/generic, so are the projections to each coordinate. Conversely, if

X ⊆ G and Y ⊆ H are (k-)large, so is X × Y ⊆ G × H; if X is k-generic and Y is ℓ-generic, X × Y is kℓ-generic. Lemma 2.4. Suppose X is kℓ-large in G and H ≤ G is a subgroup of index k. Then X ∩ H is ℓ-large in H.
Proof. Let (g i : i < k) be coset representatives of H in G, and consider (h j : j < ℓ) in H. By kℓ-largeness of X in G there is x ∈ i<k, j<ℓ g i h j X. As i<k g i H = G, there is i 0 < k with x ∈ g i 0 H. But then

g -1 i 0 x ∈ H ∩ i<k, j<ℓ g -1 i 0 g i h j X ⊆ H ∩ j<ℓ h j X = j<ℓ h j (X ∩ H), so X ∩ H is ℓ-large.
The link between largeness and probability is given by the following lemma, which will be used throughout the paper. Recall that the inner measure of an arbitrary subset X of a measurable group G is

µ * (X) = sup{µ(Y ) : Y ⊆ X measurable},
and the outer measure is given by

µ * (X) = inf{µ(Y ) : Y ⊇ X measurable}.
Clearly the inner measure is superadditive, the outer measure is subadditive, and µ * (X) + µ * (G \ X) = 1.

Lemma 2.5. If X is k-generic in G, then µ * (X) ≥ 1 k . If µ * (X) > 1-1 k then X is k-large in G.
Proof. If X is k-generic there are g 1 , . . . , g k in G with G = i≤k g i X.

Hence

1 = µ * (G) = µ * ( i≤k g i X) ≤ i≤k µ * (g i X) = k µ * (X) by left invariance, whence µ * (X) ≥ 1 k . Now if X is not k-large, its complement is k-generic, so µ * (G \ X) ≥ 1 k . But then µ * (X) ≤ 1 -1
k . These bounds are strict, as we can take X a subgroup of index k (resp. its complement).

Remark 2.6. For any group

G the set (G × {1}) ∪ ({1} × G) is 2-large in G 2 ; if G is infinite it is of measure 0.
We shall now prove some results about finite groups, which owing to their non-linearity do not generalise easily to the measurable context. Remark 2.7. Let G be a finite group of order n, and X ⊆ G a nonempty proper subset of size m. Then X is (nm + 1)-generic and at most m-large, since we can form the union of X with nm translates of X to cover all the nm points of G \ X, and we can intersect X with m translates of X to remove all m points of X.

Theorem 2.8. Let G be a finite group of order n, and X ⊆ G a non-

empty proper subset of size m. If m > n -1 2 -n -3 4 , then X is 2-generic. Hence if m < 1 2 + n -3 4 then X is not 2-large. Proof. If m > n -1 2 -n -3 4 , then n -3 4 > (n -m -1 2 ) 2 = (n -m)(n -m -1) + 1 4 . Put Z = {xy -1 : x, y ∈ G \ X}. Then |Z| ≤ (n -m)(n -m -1) + 1 < n, so there is g ∈ G \ Z. But if h ∈ G \ (X ∪ gX), then h, g -1 h ∈ G \ X, and g = h(g -1 h) -1 ∈ Z, a contradiction. Thus G = X ∪ gX and X is 2-generic.
The second assertion follows by taking complements.

Theorem 2.9. Let G be a finite group of order n. If the exponent of G does not divide ℓ then µ(

x ℓ = 1) ≤ 1 -1 √ 2n
, where µ is the counting measure.

Proof. Put X = {g ∈ G : g ℓ = 1}, of size m < n, and take any g ∈ G \ X. Note that X ∩ gX ∩ C G (g) is empty, as otherwise there would be y ∈ C G (g) with y ℓ = 1 = (gy) ℓ , whence g ℓ = 1 and g ∈ X.

Thus

|C G (g)| ≤ 2 |G \ X|. Moreover g G ∩ X = ∅, and 
|G|/|C G (g)| = |g G | ≤ |G \ X|. Thus n = |G| ≤ 2 |G \ X| 2 and n 2 ≤ n -m, whence µ(x ℓ = 1) = m n ≤ n -n 2 n = 1 - 1 √ 2n . Definition 2.10. Let f : G → H be a function, and c ∈ H. The equation f (x) = c is k-largely satisfied in G if {g ∈ G : f (g) = c} is k-large in G. By abuse of notation, if G = G n 1 and x = (x 1 , . . . , x n ), we shall also say that f (x 1 , . . . , x n ) = c is k-largely satisfied in G 1 .

FC-Groups

In this section we shall work in the set-up of Example 1.2: G 1 will be a group, G ≤ G n 1 , w(x, ȳ) a word in xȳ and their inverses with n = |x| and m = |ȳ|, ḡ ∈ G m 1 and c ∈ G 1 constants, and f (x) = w(x, ḡ). Recall that a group is F C if the centraliser of any element has finite index; it is BF C if the index is bounded independently of the element.

We shall first need a preparatory lemma. For two tuples ḡ = (g i : i < k) and ḡ′ = (g

′ i : i < k) in G k 1 we shall put ḡ-1 = (g -1 i : i < k) and ḡ • ḡ′ = (g i g ′ i : i < k). Lemma 3.1. Suppose ḡ, ḡ′ ∈ G m
1 and h, h′ ∈ G n 1 are such that all elements from ḡh commute with all elements from ḡ′ h′ . Then

w( h • h′ , ḡ • ḡ′ ) = w( h, ḡ) w( h′ , ḡ′ ). Proof. Obvious. Theorem 3.2. Let G 1 be an F C-group. If the equation w(x, ḡ) = c is largely satisfied in G then it is identically satisfied in G. Proof. Consider h ∈ G, and C = C G 1 (ḡ, h), a subgroup of finite index in G 1 . Put H = C n ∩ G, a subgroup of finite index in G, and X = { h′ ∈ G : w( h′ , ḡ) = c}. Then X ∩ h-1 X ∩ H is large in H, whence non-empty. So there is x ∈ H with w( 1, ḡ) w(x, 1) = w(x, ḡ) = c = w( h • x, ḡ) = w( h, ḡ) w(x, 1).
Hence w( h, ḡ) = w( 1, ḡ) for all h ∈ G, and w( 1, ḡ) = w(x, ḡ) = c.

For a BF C-group, we can bound the degree of largeness needed:

Theorem 3.3. Suppose every centraliser of a single element has index at most k in G 1 . If the equation w(x, ḡ) = c is 2k n 2 +mn -largely satisfied in G then it is identically satisfied in G.
Proof. In the notation of the previous proof,

C = C G 1 (ḡ, h) has index at most k n+m in G 1 , so |G : H| = |G : G ∩ C n | ≤ |G n 1 : C n | = |G 1 : C| n ≤ (k n+m ) n = k n 2 +mn . Now 2k n 2 +mn -largeness of X in G implies k n 2 +mn -largeness of X ∩ h-1 X in G, whence 1-largeness of X ∩ h-1 X ∩ H in H.
So we can find the x required to finish the proof. If the group is central-by-finite, the largeness needed does not depend on the number of parameters.

k in G 1 . If w(x, ḡ) = c is not an identity on G, then µ * (w(x, ḡ) = c) ≤ 1 - 1 2k n 2 +mn . Proof. If µ * (w(x, ḡ) = c) > 1 - 1 2k n 2 +mn , then {x ∈ G : w(x, ḡ) = c} is 2k n 2 +mn -large in G by Lemma 2.
Corollary 3.6. Suppose Z(G 1 ) has index k in G 1 . If the equation w(x, ḡ) = c is 2k n -largely satisfied in G then it is identically satisfied in G. Proof. H = G ∩ Z(G 1 ) n has index at most k n in G.
We finish as in Theorem 3.3.

Corollary 3.7. If |G 1 : Z(G 1 )| ≤ k and w(x, ḡ) = c is not an identity in G, then µ * (w(x, ḡ) = 1) ≤ 1 -1 2k n .
Of course, for an abelian group G 1 we have k = 1 in the above results. [START_REF] Neumann | Groups covered by permutable subsets[END_REF], and G n satisfies a finite disjunction c ′ ∈G ′ w(x, ḡ) = cc ′ .

Remark 3.8. If w(x, ḡ) = c is 2-largely satisfied in G n , then it is identically satisfied in the abelian quotient G/G ′ . If moreover G is a BF C-group, then G ′ is finite by B.H. Neumann's Lemma
We can also deduce results for central elements just from 2-largeness (although for infinite index

|G 1 : Z(G 1 )| there is no reason that if X is large in G the intersection X ∩ Z(G 1 ) n is still large in G ∩ Z(G 1 ) n ). Theorem 3.9. If w(x, ḡ) = c is 2-largely satisfied in G, then w(x, 1) = 1 identically on G ∩ Z(G 1 ) n . Proof. Consider h ∈ G ∩ Z(G 1 ) n . Put X = { h′ ∈ G : w( h′ , ḡ) = 1}. Then X ∩ h-1 X is non-empty, so there is x ∈ G with w(x, ḡ) = c = w( h • x, ḡ) = w( h, 1) w(x, ḡ). Hence w( h, 1) = 1. Corollary 3.10. If x k 1 1 • • • x kn n = c is 2-largely satisfied in G n and k = gcd(k 1 , . . . , k n ), then x k = 1 identically on Z(G). Proof. We have x k 1 1 • • • x kn n = 1 on Z(G). Putting x i = g ∈ Z(G) and x j = 1 for j = i we have g k i = 1 for all 1 ≤ i ≤ n. The result follows. Corollary 3.11. If the exponent of Z(G) does not divide gcd(k 1 , . . . , k n ), then µ * (x k 1 1 • • • x kn n = c) ≤ 1 2 .

Burnside and Engel Equations

In Remark 3.5 we have already seen that if every centraliser of a single element has index at most k in G, then µ * (x m = c) ≤ 1 -1 2k unless the exponent of G divides m. In this case necessarily c = x m = 1.

We shall first prove Miller's Theorem mentioned in the introduction. Proof. Fix g, h ∈ G. Then there is

x with c = x 2 = (gx) 2 = (hx) 2 = (ghx) 2 . But this implies x -1 gx = g -1 , x -1 hx = h -1 and x -1 ghx = (gh) -1 .
On the other hand,

x -1 ghx = x -1 gx x -1 hx = g -1 h -1 = (hg) -1 .
Hence gh = hg and G is abelian. But now c = x 2 = (gx

) 2 = g 2 x 2 = g 2 c, whence g 2 = 1.
If G satisfies 4-largely xax = b for some a, b ∈ G, then it satisfies 4-largely (ax) 2 = ab, whence x 2 = ab. Hence G is abelian of exponent 2, and a = b. Thus the 2-Engel condition [x, y, y] = 1 is equivalent to [y -x , y] = 1, that is all conjugacy classes being commutative.

Theorem 4.3. If G satisfies 7-largely x 3 = 1 then G is 2-Engel. Proof. Put X = {g ∈ G : g 3 = 1}. For g, h ∈ G consider x ∈ X ∩ g -1 X ∩ h -1 X ∩ gX ∩ (gh) -1 X ∩ gh -1 X ∩ gh -1 g -1 X.
Then (yx) 3 = 1 for y ∈ {1, g, h, g -1 , gh, hg -1 , ghg -1 }, which means that xyx = y -1 x -1 y -1 . We calculate the product xhx 2 gx in two ways:

xhx 2 gx = (xhx)(xgx) = h -1 (x -1 h -1 g -1 x -1 )g -1 = h -1 ghxghg -1 and xhx 2 gx = xh(g -1 x) -1 x = xh(g -1 x) 2 x = (xhg -1 x)g -1 x 2 = gh -1 (x -1 gh -1 g -1 x -1 ) = gh -1 ghg -1 xghg -1 .
Thus h -1 gh = gh -1 ghg -1 and g h g = gg h . As h ∈ G was arbitrary, the conjugacy class of g is commutative; as g was arbitrary, all conjugacy classes are commutative. Proof. For any g ∈ G there is x ∈ G with x 3 = (gx) 3 = 1. As x G is commutative,

g x g -1 g x -1 = x -1 gxg -1 xgx -1 = gx -g xx g x -1 = gx -g x g xx -1 = g.
Since g G is commutative, we have

g 3 = g 2 g x g -1 g x -1 = g 2 g -1 g x -1 g x = (gx) 3 = 1. Corollary 4.5. If G satisfies 7-largely x 3 = 1, then G has exponent 3. If G is not of exponent 3 then µ * (x 3 = 1) ≤ 6 7 . If moreover G is 2-Engel, then µ * (x 3 = 1) ≤ 1
2 . Note that the bound 6 7 is not as good as Laffey's bound 7 9 cited in the introduction. Proof. {x ∈ G : x 3 = c} ∩ Z(G) is 1-large, whence non-empty, and contains an element z. But now there is x ∈ G with x 3 = 1 = (zx) 3 = z 3 x 3 = cx 3 , whence c = 1. We finish by Corollary 4.5.

If |G : Z(G)| is prime, then G is abelian, and 2-largeness is sufficient by Corollary 3.10.

Commutator Equations

Consider the equation [x, g] = c for some c, g ∈ G. Since {x ∈ G : [x, g] = c} is a coset of C G (g) or empty, and a coset of a proper subgroup cannot be 2-large, it follows that if G satisfies 2-largely [x, g] = c then g ∈ Z(G) and c = 1. The following argument generalises this result.

Theorem 5.1. Suppose f : G → H satisfies f (xx ′ ) = f (x) h f (x ′ ) for some h ∈ H which depends on x, x ′ ∈ G. If G 0 and G 1 are groups, f 0 : G 0 → H and f 1 : G 1 → H are functions such that G 0 × G × G 1 satisfies k-largely f 0 (x 0 ) f (x) f 1 (x 1 ) = c for some k ≥ 2, then f (G) = 1 and G 0 × G 1 satisfies k-largely f 0 (x 0 ) f 1 (x 1 ) = c. Proof. Fix g ∈ G. By 2-largeness there is (x 0 , x, x 1 ) ∈ G 0 × G × G 1 such that f 0 (x 0 ) f (x) f (x 1 ) = c = f 0 (x 0 ) f (gx) f (x 1 ). Thus f (x) = f (gx) = f (g) h f (x) and f (g) = 1. It follows that f 0 (x 0 ) f (x) f 1 (x 1 ) = f 0 (x 0 ) f 1 (x 1 ) on G 0 × G × G 1 . The result fol- lows. Corollary 5.2. If G satisfies 2-largely i<n [x i , g i ] = c for some g i ∈ G, then g i ∈ Z(G) for all i < n and c = 1. If not all g i are central or c = 1 then µ * ( i<n [x i , g i ] = c) ≤ 1 2 . Proof. We have [xx ′ , y] = [x, y] x ′ [x ′ , y]. Now use Theorem 5.1. Remark 5.3. Theorem 5.1 also holds if f (xx ′ ) = f (x ′ )f (x) h ,
with almost the same proof. Hence Corollary 5.2 also holds if some factors are of the form [g i , x i ].

Gustafson [START_REF] Gustafson | What is the probability that two group elements commute?[END_REF] 

has shown that µ 2 ([x, y] = 1) ≤ 1 2 (1 + µ(Z(G)) ≤ 5 8
for a non-abelian compact topological group G, where µ is the Haar measure on G and µ 2 the product measure on G 2 . Pournaki and Sobhani [START_REF] Pournaki | Probability that the commutator of two group elements is equal to a given element[END_REF] have generalised this to calculate that µ([x, y] = g) < 1 2 for any g = 1 in a finite group, using Rusin's classification [START_REF] Rusin | What is the probability that two elements of a finite group commute?[END_REF] of all finite groups with µ([x, y] = 1) > 11 32 (see also [START_REF] Farrokhi | On the probability that a group satisfies a law: A survey[END_REF]). We have only been able to establish results using 4-largeness, giving the bound of 3 4 in Corollary 5.7, so the following two problems remain open: Problem 5.4.

( Proof. For any h ∈ G the set

) If G satisfies 2-largely [x, y] = 1, is G ′ = C 2 and G/Z(G) of exponent 2, or G ′ = C 3 and G/Z(G) = S 3 ? (2) If G satisfies 2- 1 
{(x, x, y) : w(x, ḡ)[x, y] = c = w(x, ḡ)[x, hy]} is 2-large in G n+1 . Hence {(x, y) ∈ G 2 : [x, y] = [x, hy]} is 2-large in G 2 . Now [x, hy] = [x, y][x, h] y , so [x, h] = 1 is satisfied 2-largely in G, whence h ∈ Z(G).
It follows that G is abelian. But then w(x, ḡ) = c is satisfied 4-largely in G n , and must be an identity in G by commutativity and Corollary 3.6. 

Corollary 5.6. If G is a group with µ * (w(x, ḡ)[x, y] = c) > 3 4 , then G is abelian satisfying w(x, ḡ) = c.
′ = yc ′ , this is equivalent to [x ′ , y ′ ] = c -1 c ′ . is 2(s+1) k+1 -large in G k+2 . If A 0 = {a i : i < s} consider the projection Y of X ∩ i<s (1, . . . , 1, a -1
i )X to the first k + 1 coordinates, and note that it is 2(s + 1) k -large. Then for all (x 0 , . . . , x k ) ∈ Y there is y ∈ G such that [x 0 , . . . , x k , y] = c = [x 0 , . . . , x k , a i y] = [x 0 , . . . , x k , y] [x 0 , . . . , x k , a i ] y for all i < s, whence [x 0 , . . . , x k ] ∈ Z(G). By inductive assumption G/Z(G) is nilpotent of class at most k, and we are done.

Corollary 5.14. Let s be as above.

If G is not nilpotent of class at most k or c = 1, then µ * ([x 0 , x 1 , . . . , x k ] = c) ≤ 1 -1 2 (s + 1) -k . Remark 5.15. Recall that an Mc-group is a group G such that for every subset A there is a finite subset A 0 ⊆ A such that C G (A) = C G (A 0 )
. Equivalently, G satisfies the ascending (or the descending) chain condition on centralisers. Roger Bryant [START_REF] Bryant | Groups with the Minimal Condition on Centralizers[END_REF] has shown that in an Mc-group, for every iterated centre Z i (G) there is a finite set

A i such that Z(G/Z i (G)) = C G/Z i (G) (A i ).
So in an Mc-group we can find some s as needed for Theorem 5.13 and Corollary 5.14.

Problem 5.16.

To what extent do we need the Mc-condition (or similar) in Theorem 5.13 and Corollary 5.13? It is not needed for nilpotency class 1 (Corollary 5.7). In general, assuming just 2 k+1 -largeness of [x 0 , . . . , x k ] = c, we obtain that {x ∈ G k : [x 0 , . . . , x k-1 ] ∈ C G (g)} is 2 k -large in G k for any g ∈ G. Does this imply γ k (G) ≤ C G (g), or even γ k (G) ≤ Z(G)?

Nilpotent groups

We shall first introduce the notion of a supercommutator from [START_REF] Jaber | Largeur et nilpotence[END_REF]. Definition 6.1. Any variable and any constant from G is a supercommutator; if v and w are supercommutators, then v -1 and [v, w] are supercommutators.

Alternatively, we could have said that x, x -1 and g are supercommutators for any variable x and any g ∈ G, and that if v and w are supercommutators, so is [v, w]. Clearly var([v, v ′ ]) ≥ max{var(v), var(v ′ )}, and similarly for var x and var ′

x. Lemma 6.3. Let H G and v(x, z) a supercommutator.

(1) v defines a function from H |xz| to γ var(v) (H).

(2) If var x(v) > 0 and x, ȳ and z are pairwise disjoint, then

v(ȳ • x, z) = v(x, z) v(ȳ, z) Φ(x, ȳ, z),
where Φ is a product of supercommutators whose factors w satisfy ( †) Var z(w) = Var z(v), and if x i ∈ Var x(v) then x i ∈ Var(w) or y i ∈ Var(w), and both possibilities occur for at least one i.

(3) If v(x, z) is a product of supercommutators whose factors w satisfy var x(w) > 0 and var

′ x(w) ≥ n, then v(ȳ • x, z) = v(x, z) v(ȳ, z) Φ(x, ȳ, z),
where Φ is a product of supercommutators whose factors w satisfy var x(w) > 0 and var ′

x(w) > n. Proof. (1) is proved as in [START_REF] Jaber | Largeur et nilpotence[END_REF]Lemme 6(1)] by induction, using that γ n (H) is characteristic in H, whence normal in G, and [γ n (H), γ m (H)] ≤ γ n+m (H). We shall show (2) by induction on the construction of v.

If v = x ∈ x we have v(yx) = yx = xy[y, x] = v(x)v(y)[y, x]; if v = x -1 we have v(yx) = x -1 y -1 = v(x)v(y). This leaves the case v = [v 1 , v 2 ]
for two supercommutators v 1 and v 2 . We shall assume var x(v 1 ) > 0 and var x(v 2 ) > 0 (the case var x(v 1 )var x(v 2 ) = 0 is analogous, but simpler).

By inductive hypothesis, there are Φ i for i = 1, 2, products of supercommutators satisfying ( †) relative to v i , such that

v i (ȳ • x, z) = v i (x, z) v i (ȳ, z) Φ i . Then v(ȳ • x, z) = [v 1 (ȳ • x, z), v 2 (ȳ • x, z)] = [v 1 (x, z) v 1 (ȳ, z) Φ 1 , v 2 (x, z) v 2 (ȳ, z) Φ 2 ] = [v 1 (x, z), v 2 (x, z)] [v 1 (ȳ, z), v 2 (ȳ, z)] Φ = v(x, z) v(ȳ, z) Φ, where Φ is a product of supercommutators [w, w ′ ] (i) where w ∈ Φ 1 ∪{v 1 (x, z), v 1 (ȳ, z)} and w ′ ∈ Φ 2 ∪{v 2 (x, z), v 2 (ȳ, z)}, except for [v 1 (x, z), v 2 (x, z)] and [v 1 (ȳ, z), v 2 (ȳ, z)]
; it is clear that these must satisfy ( †). (ii) where one of w, w ′ is from (i), so [w, w ′ ] satisfies ( †).

(iii) where one of w, w ′ is equal to v(x, z) and the other contains at least one y i , or one is equal to v(ȳ, z) and the other contains at least one x i ; again [w, w ′ ] satisfies ( †).

(iv) which are obtained iteratively from supercommutators from (ii) and (iii) by commutation with other supercommutators, thus satisfying ( †). Here (i) takes care of the commutators of various factors of the two products, while (ii)-(iv) takes care of the correct order. Note that the only factor without a variable y i is v(x, z) and the only factor without a variable x j is v(ȳ, z).

To show (3) note first that for a single supercommutator v the factorisation given in (2) satisfies the requirement. So for a product of supercommutators, we apply (2) to every factor, and then use commutators to get them into the right order. Note that we never have to commute a w(x, z) with a w ′ (x, z), or a w(ȳ, z) with a w ′ (ȳ, z), as they already appear in the correct order with respect to one another. It follows that all new commutators satisfy ( †), whence var ′ x > n. Theorem 6.4. If G is nilpotent of class k and v is a product of supercommutators w with var x(w) > 0 and var

′ x(w) ≥ n such that G satisfies max{2 k-n , 1}-largely v(x, ḡ) = c, then c = 1.
Proof. This is true for n ≥ k, as then var(w) = var x(w) + var ′

x(w) ≥ 1 + n, and

c = w(x, ḡ) ∈ γ var(w) G ≤ γ n+1 G = {1} for some x ∈ G.
Now suppose it is true for n + 1 ≤ k, and let v(x, z) be a product of supercommutators w with var x(w) > 0 and var ′

x ≥ n, such that H satisfies 2 k-n -largely v(x, ḡ) = c. By Lemma 6.3 there is Φ, a product of supercommutators whose factors w satisfy var x(w) > 0 and var ′ x(w) > n, such that v(ȳ • x, z) = v(x, z) v(ȳ, z) Φ(x, ȳ, z). Choose h ∈ G with v( h, ḡ) = c. If X = {x ∈ G : v(x, ḡ) = c}, then X is 2 k-n -large, and Y = X ∩ h-1 X is 2 k-n-1 -large. Moreover, for x ∈ Y we have Φ(x, h, ḡ) = v( h, ḡ) -1 v(x, ḡ) -1 v( h • x, ḡ) = c -1 c -1 c = c -1 .

By hypothesis c -1 = 1 and we are done. Proof. Bringing all the constants to the right-hand side, we may assume that v(x, z) is a product of supercommutators w with var x(w) > 0. By Lemma 6.3 there is Φ, a product of supercommutators whose factors w satisfy var x(w) > 0 and var ′ x(w) > 0, such that v(ȳ • x, z) = v(x, z) v(ȳ, z) Φ(x, ȳ, z).

Fix h ∈ G. Then Φ(x, h, ḡ) = v( h, ḡ) -1 c -1 c = v( h, ḡ) -1 2 k-1 -largely on G. By Theorem 6.4 we have v( h, ḡ) = 1. So v(x, ḡ) is constant. It gives the probability that a random element of H is fixed by a random automorphism in Σ.

Note that ac(H; Σ) = µ({(σ, g) ∈ Σ × H : σ(g) = g}), where µ is the counting measure on Σ × H. 

Example 1 . 2 .

 12 Let G 1 be a group, G ≤ G n 1 a subgroup, ḡ ∈ G m 1 constants, and w(x, ȳ) a word in xȳ and their inverses, with |x| = n and |ȳ| = m. Then w(x, ḡ) induces a function from G to G 1 .

Corollary 3 . 4 .

 34 Suppose every centraliser of a single element has index at most

  5, and w(x, ḡ) = c is identically satisfied in G by Theorem 3.3. Remark 3.5. This holds in particular for the equation x ℓ = c, with n = 1 and m = 0.

Theorem 4 . 1 .

 41 Let c ∈ G. If x 2 = c is 4-largely satisfied in G, then G is abelian of exponent 2, and c = 1.

Corollary 4 . 2 .

 42 If G is not of exponent 2 or a = b, then µ * (xax = b) ≤

3 4 .

 34 Recall that the n th Engel condition is the condition [x, n y] = 1, where [x, 1 y] = [x, y] and [x, n+1 y] = [[x, n y], y]. Note that [x, y, y] = [y -x y, y] = y -1 y x y -1 y -x yy = [y -x , y] y .

Theorem 4 . 4 .

 44 Let G be 2-Engel. If G satisfies 2-largely x 3 = 1 then G has exponent 3.

Problem 4 . 6 . 5 .

 465 A group which satisfies 5-largely x 3 = 1, is it 2-Engel? This would improve our bound to 4 Corollary 4.7. If |G : Z(G)| ≤ 7 and G satisfies 7-largely x 3 = c for some c ∈ G, then c = 1 and G has exponent 3.

1 ? 5 . 5 .

 155 largely [x, y] = c for some c ∈ G, is c = Theorem If w(x, ḡ)[x, y] = c is satisfied 4-largely in G n+1 , where x ∈ x and y / ∈ x, then G is abelian and w(x, ḡ) = c.

Corollary 5 . 7 . 4 . 5 . 8 .

 57458 If G satisfies 4-largely [x, y] = c, then G is abelian and c = 1. If G is not abelian or c = 1, then µ * ([x, y] = c) ≤ 3 Remark The same holds for the equation xcy = yc ′ x with c = c ′ : putting x ′ = xc and y

Definition 6 . 2 .

 62 The set Var(v) of variables of a supercommutator v is defined by Var(x) = {x}, Var(g) = ∅, Var(v -1 ) = Var(v), and Var([v, w] = Var(v) ∪ Var(w). We put var(v) = |Var(v)|, the variable number of v. If x is a tuple of variables, we put Var x = Var(v) ∩ x, Var ′ x(v) = Var(v) \ x, var x(v) = |Var x(v)| and var ′ x(v) = |Var ′ x(v)|.

Theorem 6 . 5 .

 65 If G is nilpotent of class k and satisfies 2 k -largely an equation v(x, ḡ) = c, then it satisfies v(x, ḡ) = c.

Corollary 6 . 6 .

 66 If G is nilpotent of class k and x n = c is true 2 k -largely, then c = 1 and the exponent of G divides n.Proof. Immediate from Theorem 6.5.Corollary 6.7. If G is nilpotent of class k and µ * (x n = c) > 1 -2 -k , then c = 1 and the exponent of G divides n.7. AutocommutativityThe notion of autocommutativity has been introduced by Sherman in 1975[START_REF] Sherman | What is the probability an automorphism fixes a group element?[END_REF]. Definition 7.1. Let G be a finite group, Σ a group of automorphisms of G, and H a subgroup of G. The degree of autocommutativity relative to (H; Σ) is given by ac(H; Σ) = |{(σ, g) ∈ Σ × H : σ(g) = g}| |Σ| • |H| .

Theorem 7 . 2 .

 72 Let H ≤ G be finite groups, Σ a group of automorphisms of G, and suppose that {(σ, g)∈ Σ × H : σ(g) = g} is 4-large in Σ × H. Then H ≤ Fix(Σ).Proof. Given σ ∈ Σ and g ∈ H, by 4-largeness there are x ∈ H and τ ∈ Σ withτ (x) = x, (σ • τ )(x) = x, τ (gx) = gx and (σ • τ )(gx) = gx. Then gx = σ(τ (gx)) = σ(gx) = σ(g)σ(x) = σ(g)σ(τ (x)) = σ(g)x,whence g = σ(g).

Corollary 7 . 3 .

 73 If H ≤ G are finite groups and Σ is a group of automorphisms of G with H ≤ Fix(Σ), then ac(H; Σ) ≤ 3 4 . Proof. If ac(H; Σ) > 3 4 then {(σ, g) ∈ Σ × H : σ(g) = g} is 4-large in Σ × H by Lemma 2.5. Hence H ≤ Fix(Σ) by Theorem 7.2.
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-large (still on the left) and non-empty, whence [g, h] = 1 and we finish as above.

Corollary 5. [START_REF] Joseph | Several conjectures on commutativity in algebraic structures[END_REF].

whence [[a, g] x , h] = 1. By Theorem 5.9 we have [a, g, h] = 1.

If [g, x, h] = c is 2k-largely satisfied with c ∈ Z(G), then for a ∈ G we obtain a k-large X ⊆ G such that for x ∈ X we have

whence [[g, a] x , h] = 1, and [g, a, h] = 1 by Theorem 5.9.

Corollary 5.12.

2k for any c ∈ Z(G). We shall now generalise Corollary 5.7 to higher nilpotency classes. However, the proof requires an additional assumption. Theorem 5.13. Suppose s < ω is such that for all i < k there is a set

Proof. We use induction on k. For k = 1 note that s ≥ 1 (otherwise G is abelian and we are done), so the result follows from Corollary 5.7. Now suppose the assertion is true for k, and X = {x ∈ G k+2 : [x 0 , x 1 , . . . , x k+1 ] = c}