CERTIFER Jean--Louis Boulanger
email: jean--louis.boulanger@certifer.eu

The new CENELEC EN 50128 and the used of formal method

Keywords: Embedded, CENELEC 50128:2011, Formal Method, Model checking, Proof, Safety, Software, SSIL, Tool, Qualification, V&V

The standard CENELEC 50128 [CEN 01, 11] identifies a complete process for software development of railway application. The new version 2011 introduced many new needs and a complete new structure. In this paper we present the new version of the CENELEC EN 50128 and describes how we can instantiate it. This new version introduce some new activities such the tools qualification, the software deployment, etc. and develop some activities such the data preparation and the software maintenance.

In railway, we used from many year some formal methods for the specification, the conception and the verification by proof or model checking. This paper present the new CENELEC 50128 ([CEN 11]) and describe how the formal method can be used and what is impact on the recommended activities.

CENELEC 50128

Introduction

The CENELEC EN 50128 [CEN 01a] standard is specifically dedicated to the development aspects of software for the rail sector. Regarding software, the SSIL (Software SIL) makes it possible to define different levels of criticality: from 0 (no danger) to 4 (critical). The CENELEC EN 50128 [CEN 01,CEN 11] standard specifies the procedures and the technical prescriptions applicable for the development of programmable electronic systems used in applications for rail command and protection. The CENELEC EN 50128 standard is thus not normally applicable to all software applications of the rail sector.

Figure 1 introduced the structure of the new standard CENELEC 50128:2011. This standard is based on a new notion the software assurance. The software assurance is composed with the quality management, the verification and the validation, the assessment and the tools qualification. For the clause 7 that described the development of generic software, is possible to use the formal method at different level: specification, architecture and design but also for verification. The clause 8 concern the application data and introduce a process for manage the data preparation process.

Application

The specification of a software application is thus at the very least, a set of requirements. A first analysis of the specifications provided by the client must make it possible to identify functional needs. The difficulty resides then in the definition of the concept of a requirement. There are several studies that attempt to identify what a requirement is and how to account for it. [HUL 05] presents one of the most complete syntheses. In parallel with the identification of the functional needs, it is possible to begin analyses linked to dependability, the objective of which is to define the nonfunctional requirements: safety requirements but also availability, reliability, or other requirements. It is, however, necessary to know a bit more about the needs of the software application. Within the application, it is thus necessary to introduce:

-interfaces with the environment;

-the notion of state in establishing a partition between safe functioning, decline, and dangerous states;

-the notion of correct behavior and of dangerous behavior;

-the notion of requirement linked to safety; this type of requirement must allow for characterization of dangerous behavior;

-the integrity level of the software (written SSIL/DAL).

The environment of the software application is composed of interfaces with the hardware resources (memory, specific address, input/output, watchdog, etc.), with other software applications (base software, related application, etc.) and/or with the operating system.

Figure 2 reveals a software application environment which is composed of three entries (Ei), two exits (Sj) and three interfaces (Ik) with the hardware resources (example access to a specific memory address).

Standards recommend that the specification of a software application be composed from a textual description of the need (the requirements) and all the notations necessary for facilitating understanding of the need. So, for the EN 50128 [CEN 01, CEN 11] standard, there is table A.2.

Classically, designers of a software application go directly from the textual requirements to the code without having been able to verify coherence of the requirements and without always mastering the unity of requirements. -a formalization of requirements phase (see figure X.10). This formalization phase can rely on structured methods, a model or formal methods (controller, Petri net, Grafcet, B-method, SCADE, etc.); -an architecture phase.

which can be translated into set-theoretic logic of the first order in ∀ t1,t2 ∈ T , hence Dt ∩Dt =φ , if t1 ≠ t2 , with Dt which is the domain of train speed i and [T] which is the whole set of trains. In the railway domain, structured method (SADT and SART for example), semi--formal method and formal method (B method, SCADE, etc.) are used to formalize the need (set of requirement). More generally, we used some model.

Model provide the capability :

-to manage the need; -to formalize the need and for verify the coherency and the completeness; -to help for tests case selection; -4 Formal method

Definition

Section B.30 of the CEI/IEC 61508 standard indicates that a formal method (HOL, CSP, LOTOS, CCS, linear temporal logic (LTL), VDM 1 [JON 90], and Z 2 [SPI 89]) enables an unambiguous and coherent description of a system at a stage of development (specification, architecture, and/or design) to be produced. The description takes a mathematical form and can be subjected to a mathematical analysis. This mathematical analysis may be performed automatically.

A formal method generally offers a notation, a technique for processing a description in this notation, and a verification process for controlling correction of the requirements. 1 In the IEC 61508 standard, the references to VDM include VDM++ [DUR 92], which is a real--time and object--oriented extension of VDM. To find out more, visit: www.vdmportal.org 2 In the IEC 61508 standard, the B--method [ABR 96] is seen as a method associated with Z.

…" Req_11:"…" Req_12:"…" Req_13:"…" …"

The CEI/IEC 61508 standard indicates that it is possible to make transformations right down to "a logic circuit design" 3 . Petri nets and state machines (mentioned in the outline of semi--formal methods) can be considered as formal methods, according to the degree of conformity to a rigorous mathematical basis of their uses.

Application

Two types of approaches were presented in different chapters:

• the first consists of starting from a specification to create a formal model (see Figure 5) and to carry out verifications on the model; • the second consists of carrying out formal analyses on a code carried out traditionally (in C, ADA, or C++ for example) starting from a specification (see Figure 6). …" Req_11:"…" Req_12:"…" Req_13:"…" …" int"xx;" main"()" {" …" }"

Analyse"

Impact

Since the first version of the standard CENELEC EN 50128 in 2001, formal methods were introduced and highly recommended. In the new version (2011) of the standard, the V--cycle is recommended and testing is the basic verification technique. But from specification to design it is possible to use formal methods.

The standard introduced the possibility to use the formal techniques (proof, model--checking, etc.) in place of tests for the verification (see the table A.5 of the CENELEC EN 50128).

For verification, you can choose a combination of techniques, the standard proposes some best choices (1 and 4, 3 and 4 and the last 4,6,7), and if you introduce a new combination you need to explain why it's a good choice and why this set of techniques have the same efficacy.

Each time, formal methods and/or formal techniques are used; you need to explain why the efficacy (for some error class) is similar.

In railway, formal methods are used more and more and at different levels: specification, architecture, design, in replacement of unit tests and of software/software integration test, in data preparation, etc. Other works, such as [MON 00, HAD 06], provide a panorama of the formal methods in a more scientific approach.

Return of experience

In the first book "Static Analysis of Software -the abstract interpretation" [BOU 12a], we present some formal tools based on the static analysis and abstract interpretation of code.

In the second book [BOU 12b], we presented some approach based on the modelization (SCADE, B Method, Mathlab/Simulink, and ControlBuild). In third book, several environments and formal methods were presented: Spark Ada, Matelo, AltaRica, Polyspace, Escher Verification Studio Perfect Developer, SCADE,B method.

Actually, in all railway projects we used some modelisations based on SCADE, CONTROL--BUILD, B--Method at different levels (system, software and complete software or for some specific function). For some project, the proof of properties is applied with a reduction of some tests activities.

One of the big used of proof in replacement of the test activities, is related to the data validation. The railway software manages many data call configuration data and the main efficient technics to validate these data are the proof ([BOU 07]). One of the topics discussed is related to the acceptance by authority (what is the evidence, how formalize some proofs, etc.) and the impact on the certification.

Conclusion and Future Work

Figure 1 :

 1 Figure 1 : CENELEC EN 50128.

Figure 2 :

 2 Figure 2 : Software application environment.

Figure 3 .

 3 Figure 3. From the requirements to the code

Figure 4 .

 4 Figure 4. Formalization of requirements

Figure 5 :

 5 Figure 5 : Requirement and model.

Figure 6 :

 6 Figure 6 : Formal analysis of a code.

 This paper presented the new standard CENELEC 50128:2011 and introduced some discussions on the impact of the used of formal method in development and in the verification of the generic software and on the data preparation. Some examples of real used are presented and explain what are the difficulties (what is a metric, what is the code coverage for graphic view, what is the set of document to produce and why, etc.).

It should be noted that initially SCADE was a development environment based on the language LUSTRE and that since Version 6, SCADE became a language of its own (the code generator for Version 6 works well inputting a SCADE