SUPPLEMENTARY MATERIALS FUNCTIONAL ASPLUND METRICS FOR PATTERN MATCHING, ROBUST TO VARIABLE LIGHTING CONDITIONS

Guillaume Noyel ${ }^{1,2}$ and Michel Jourlin ${ }^{3,2}$
${ }^{1}$ University of Strathclyde, Department of Mathematics and Statistics, G11XQ Glasgow, Scotland, United Kingdom, ${ }^{2}$ International Prevention Research Institute, 69006 Lyon, France, ${ }^{3}$ Université Jean Monnet, Laboratoire Hubert Curien, UMR CNRS 5516, 42000 Saint-Etienne, France
e-mail: guillaume.noyel@mines-paris.org, michel.jourlin@univ-st-etienne.fr

This document corresponds to the supplementary materials of the article. It is organised as follows: i) a video abstract, ii) the proofs of some propositions, iii) the verification of the metric properties, iv) the invariances of the robust to noise metrics and v) details about the illustration section.

VIDEO ABSTRACT

A video is available as graphical abstract.

Fig. 1. Cover graphic of the video abstract.

PROOF OF PROPOSITIONS 2, 3 AND 4

Noyel and Jourlin (2017) have introduced the following proofs which correspond to the map of LIP ${ }^{1}$ multiplicative Asplund distances.

Proof of proposition 2.

Using Eq. $14, \forall x \in D, \forall h \in D_{b}, \forall \alpha \in \mathbb{R}^{+}$, there is:

$$
\begin{aligned}
& \alpha(x) \otimes b(h) \geq f(x+h) \\
& \Leftrightarrow M\left(1-(1-b(h) / M)^{\alpha(x)}\right) \geq f(x+h), \text { (Eq. 3) } \\
& \Leftrightarrow \alpha(x) \geq \frac{\ln (1-f(x+h) / M)}{\ln (1-b(h) / M)}
\end{aligned}
$$

where $\left.\left(1-\frac{b(h)}{M}\right) \in\right] 0,1\left[\right.$ and $\ln \left(1-\frac{b(h)}{M}\right)<0$.

[^0]With $\tilde{f}=\ln (1-f / M)$, Eq. 14 becomes:

$$
\begin{aligned}
\lambda_{b} f(x) & =\inf \left\{\alpha(x), \alpha(x) \geq(\tilde{f}(x+h) / \tilde{b}(h)), h \in D_{b}\right\} \\
& =\bigvee\left\{\tilde{f}(x+h) / \tilde{b}(h), h \in D_{b}\right\}
\end{aligned}
$$

The last equality is due to the complete lattice structure. In a similar way, Eq. 15 becomes:

$$
\begin{aligned}
\mu_{b} f(x) & =\sup \left\{\alpha(x), \alpha(x) \leq(\tilde{f}(x+h) / \tilde{b}(h)), h \in D_{b}\right\} \\
& =\bigwedge\left\{\tilde{f}(x+h) / \tilde{b}(h), h \in D_{b}\right\}
\end{aligned}
$$

Proof of proposition 3.

Let $b=b_{0} \in\left(\mathcal{T}^{*}\right)^{D_{b}}$ a flat structuring element $(\forall x \in$ $D_{b}, b(x)=b_{0}$). Eq. 16 of λ_{b} and Eq. 17 of μ_{b} can be simplified as follows:

$$
\begin{aligned}
\lambda_{b_{0}} f(x) & =\left(1 / \tilde{b}_{0}\right) \bigwedge\left\{\tilde{f}(x+h), h \in D_{b}\right\}, \text { because } \tilde{b}_{0}<0 \\
& =\left(1 / \tilde{b}_{0}\right) \ln \left[1-\left(\bigvee\left\{f(x-h),-h \in D_{b}\right\}\right) / M\right] \\
& =\left(1 / \tilde{b}_{0}\right) \ln \left[1-\left(\delta_{\bar{D}_{b}} f(x)\right) / M\right] .
\end{aligned}
$$

The infimum \bigwedge is changed into a supremum V because the function $\tilde{f}: x \rightarrow \ln (1-x / M)$ is a continuous decreasing mapping. Similarly,

$$
\begin{aligned}
\mu_{b_{0}} f(x) & =\left(1 / \tilde{b}_{0}\right) \bigvee\left\{\tilde{f}(x+h), h \in D_{b}\right\}, \text { because } \tilde{b}_{0}<0 \\
& =\left(1 / \tilde{b}_{0}\right) \ln \left[1-\left(\bigwedge\left\{f(x+h), h \in D_{b}\right\}\right) / M\right] \\
& =\left(1 / \tilde{b}_{0}\right) \ln \left[1-\left(\varepsilon_{D_{b}} f(x)\right) / M\right] .
\end{aligned}
$$

Eq. 21 of the map of Asplund distances of f, Asp $p_{b_{0}}^{\triangle} f$, is obtained from Eq. 18 and the previous expressions of $\lambda_{b_{0}} f$ and $\mu_{b_{0}} f$.

Proof of proposition 4.

There is $\forall f, g \in \overline{\mathcal{J}}, \forall x \in D$,

$$
\begin{aligned}
& \lambda_{b}(f \vee g)(x)=\bigvee\left\{(\widetilde{f \vee g}(x+h)) / \tilde{b}(h), h \in D_{b}\right\} \\
& =\bigvee\left\{(\tilde{f}(x+h) \wedge \tilde{g}(x+h)) / \tilde{b}(h), h \in D_{b}\right\}, \\
& =\bigvee\left\{(\tilde{f}(x+h) / \tilde{b}(h)) \vee(\tilde{g}(x+h) / \tilde{b}(h)), h \in D_{b}\right\}, \\
& =\left[\bigvee_{h \in D_{b}}\{\tilde{f}(x+h) / \tilde{b}(h)\}\right] \vee\left[\bigvee_{h \in D_{b}}\{\tilde{g}(x+h) / \tilde{b}(h)\}\right] \\
& =\lambda_{b}(f)(x) \vee \lambda_{b}(g)(x) .
\end{aligned}
$$

The second equality is obtained because \tilde{f} is decreasing. The third equality is caused by $\tilde{b}(h)<0$. According to definition $4.2, \lambda_{b}$ is a dilation. In addition,

$$
\begin{aligned}
\lambda_{b}(O)(x) & =\lambda_{b}\left(f_{0}\right)(x) \\
& =\bigwedge_{h \in D_{b}}\{\alpha(x), \alpha(x) \geq(\tilde{0}(x+h) / \tilde{b}(h))\} \\
& =0(x)=O(x) .
\end{aligned}
$$

Similarly, $\forall f, g \in \overline{\mathcal{J}}, \forall x \in D$

$$
\begin{aligned}
& \mu_{b}(f \wedge g)(x)=\bigwedge\left\{(\widetilde{f \wedge g}(x+h) / \tilde{b}(h)), h \in D_{b}\right\} \\
& =\bigwedge\left\{(\tilde{f}(x+h) \vee \tilde{g}(x+h) / \tilde{b}(h)), h \in D_{b}\right\} \\
& =\left[\bigwedge_{h \in D_{b}}\{\tilde{f}(x+h) / \tilde{b}(h)\}\right] \wedge\left[\bigwedge_{h \in D_{b}}\{\tilde{g}(x+h) / \tilde{b}(h)\}\right], \\
& =\mu_{b}(f)(x) \wedge \mu_{b}(g)(x) .
\end{aligned}
$$

According to definition 4.1, μ_{b} is an erosion. In addition,

$$
\begin{aligned}
\mu_{b}(I)(x) & =\mu_{b}\left(f_{M}\right)(x) \\
& =\bigvee_{h \in D_{b}}\{\beta(x), \beta(x) \leq(\tilde{M}(x+h) / \tilde{b}(h))\} \\
& =+\infty(x)=I(x) .
\end{aligned}
$$

VERIFICATION OF THE METRIC PROPERTIES

Noyel and Jourlin (2017) have shown that the LIPmultiplicative Asplund distance $d_{a s p}^{\triangle}$ is a metric in the space of equivalence classes \mathcal{J}^{\triangle}. In this section, we will demonstrate that the LIP-additive Asplund distance $d_{a s p}^{\oplus}$ is a metric in the space of equivalence classes \mathcal{F}_{M}^{A}, which represents the set of functions $h \in$ \mathcal{F}_{M} such that $h=f \oplus k$ for a constant k lying in $]-\infty, M[$.

Proof that the LIP-additive Asplund distance $d_{\text {asp }}^{\oplus}$ is a metric in the space of equivalence classes \mathcal{F}_{M}^{A}.

Let $\mathcal{T}=]-\infty, M[$ be the space of real values less than M. In order to be a metric on $\left(\mathcal{F}_{M}^{A} \times \mathcal{F}_{M}^{A}\right) \rightarrow \mathbb{R}^{+}$, $d_{\text {asp }}^{\oplus}$ must satisfy the four following properties:

- (Positivity): $\forall f^{\oplus} \neq g^{\oplus} \in \mathcal{F}_{M}^{\oplus}, \forall x \in D$, as c_{1} and c_{2}, can be expressed as $c_{1}=\bigvee_{x \in D}\{f(x) \triangle g(x)\}$ and $c_{2}=\bigwedge_{x \in D}\{f(x) \triangle g(x)\}$ (proof of Prop. 1), there is always $c_{1}>c_{2}$.
$\Rightarrow d_{\text {asp }}^{\oplus}(f, g)=c_{1} \triangle c_{2}=\left(c_{1}-c_{2}\right) /\left(1-c_{2} / M\right)>0$.
We have also demonstrated that the operator \triangle is strictly increasing.
- (Axiom of separation): Given the two equivalence classes $f^{\perp}, g^{\perp} \in \mathcal{F}_{M}^{A}$, we have the following implication:
$d_{\text {asp }}^{\perp}\left(f^{\perp}, g^{\perp}\right)=0 \Rightarrow c_{1}=c_{2}=c$. In addition, according to definition 2, we have $c \triangleq g \geq f \geq c \triangleq g$. This implies that $c \oplus g=f$ and

$$
\begin{equation*}
f^{\Perp}=g^{\Perp} . \tag{B.1}
\end{equation*}
$$

Reciprocally, there is $\forall f^{\oplus}, g^{\oplus} \in \mathcal{F}_{M}^{A}$, $\left(f^{\perp}=g^{\perp}\right) \Rightarrow(\exists k \in \mathcal{T}, k \oplus g=f)$. In addition, according to definition 2 , there is $c_{1}=\inf \{c, f \leq c \oplus g\}$ and $c_{2}=\sup \{c, c \oplus g \leq f\}$. This implies that $c_{1}=c_{2}=k$ and

$$
\begin{equation*}
d_{a s p}^{\mathbb{A}}(f, g)=0 . \tag{B.2}
\end{equation*}
$$

Eq. B. 1 and B. 2 show that:
$\forall f^{\perp}, g^{\perp} \in \mathcal{F}_{M}^{\perp}, d_{\text {asp }}^{\oplus}\left(f^{\perp}, g^{\perp}\right)=0 \Leftrightarrow f^{\perp}=g^{\perp}$.

- (Triangle inequality): Let us define:
$d_{\text {asp }}^{\perp}\left(f^{\perp}, g^{\perp}\right)=c_{1}^{a} \triangle c_{2}^{a}, \quad d_{\text {asp }}^{\oplus}\left(g^{\perp}, h^{\wedge}\right)=c_{1}^{b} \triangle c_{2}^{b}$ and $d_{\text {asp }}^{\perp}\left(f^{\oplus}, h^{\perp}\right)=c_{1}^{c} \triangle c_{2}^{c}$. Definition 2 gives the following system of equations:

$$
\left.\begin{array}{rl}
c_{1}^{a} & =\inf \left\{c^{a}, f^{\oplus} \leq c^{a} \oplus g^{\oplus}\right\} \\
c_{1}^{b} & =\inf \left\{c^{b}, g^{\oplus} \leq c^{b} \oplus h^{\oplus}\right\} \\
c_{1}^{c} & =\inf \left\{c^{c}, f^{\oplus} \leq c^{c} \oplus h^{\oplus}\right\}
\end{array}\right\} .
$$

This system implies that:

$$
\begin{align*}
& f^{\oplus} \leq c_{1}^{a} \oplus g^{\oplus} \leq c_{1}^{a} \oplus\left(c_{1}^{b} \oplus h^{\oplus}\right)=\left(c_{1}^{a} \oplus c_{1}^{b}\right) \oplus h^{\perp} \\
& \Rightarrow c_{1}^{c} \leq c_{1}^{a} \oplus c_{1}^{b} \tag{B.3}
\end{align*}
$$

where the last inequality is obtained because c_{1}^{c} is the lowest value such that $f^{\perp} \leq c^{c} \oplus h^{\perp}$. Similarly, we have:

$$
\begin{equation*}
c_{2}^{a} \oplus c_{2}^{b} \leq c_{2}^{c} . \tag{B.4}
\end{equation*}
$$

From Eq. B. 3 and B.4, and knowing that $a \oplus b=a+b-a b / M \leq a+b$, we deduce that:

$$
\begin{aligned}
& d_{\text {asp }}^{\oplus}(f, h)=c_{1}^{c} \triangle c_{2}^{c} \\
& \leq\left(c_{1}^{a} \oplus c_{1}^{b}\right) \triangle\left(c_{2}^{a} \oplus c_{2}^{b}\right)=\left(c_{1}^{a} \triangle c_{2}^{a}\right) \oplus\left(c_{1}^{b} \triangle c_{2}^{b}\right) \\
& \leq\left(c_{1}^{a} \triangle c_{2}^{a}\right) \oplus\left(c_{1}^{b} \triangle c_{2}^{b}\right) \\
& \leq\left(c_{1}^{a} \triangle c_{2}^{a}\right)+\left(c_{1}^{b} \triangle c_{2}^{b}\right)=d_{\text {asp }}^{\oplus}(f, g)+d_{\text {asp }}^{\oplus}(g, h)
\end{aligned}
$$

Finally, we have: $\forall f^{\perp}, g^{\perp}, h^{\perp} \in \mathcal{F}_{M}^{\perp}$,
$d_{\text {asp }}^{\perp}\left(f^{\perp}, h^{\perp}\right) \leq d_{\text {asp }}^{\perp}\left(f^{\oplus}, g^{\perp}\right)+d_{\text {asp }}^{\perp}\left(g^{\perp}, h^{\perp}\right)$.

- (Axiom of symmetry): c_{1} and c_{2} can be expressed as:
$c_{1}=\bigvee_{x \in D}\{f(x) \triangle g(x)\}$ and $c_{2}=\bigwedge_{x \in D}\{f(x) \triangle g(x)\}$. The Asplund metric becomes

$$
\begin{aligned}
& d_{\text {asp }}^{\oplus}(f, g)=c_{1} \Delta c_{2} \\
& =\bigvee_{x \in D}\{f(x) \Delta g(x)\} \triangle \bigwedge_{x \in D}\{f(x) \Delta g(x)\} \\
& =\bigvee_{x \in D}\{f(x) \triangle g(x)\} \triangle \bigwedge_{x \in D}\{\triangle(g(x) \Delta f(x))\} \\
& =\bigvee_{x \in D}\{f(x) \Delta g(x)\} \oplus \bigvee_{x \in D}\{g(x) \Delta f(x)\} \\
& =\bigvee_{x \in D}\{g(x) \triangle f(x)\} \oplus \bigvee_{x \in D}\{f(x) \Delta g(x)\} \\
& =d_{\text {asp }}^{A}(g, f)
\end{aligned}
$$

Therefore $\quad \forall f^{\perp}, g^{\perp} \in \mathcal{F}_{M}^{\perp}, \quad d_{\text {asp }}^{\oplus}\left(f^{\perp}, g^{\perp}\right)=$ $d_{\text {asp }}^{\perp}\left(g^{\perp}, f^{\perp}\right)$.

INVARIANCES OF THE ROBUST TO NOISE METRICS

In this section, firstly, we will prove the invariance under LIP-multiplication by a scalar of the LIPmultiplicative Asplund metric with tolerance $d_{\text {asp,p }}^{\otimes}$. Secondly, we will prove the invariance under LIPaddition of a constant of the LIP-additive Asplund metric with tolerance $d_{a s p, p}^{\perp}$.

Proof of the invariance under LIP-multiplication by a scalar of the LIP-multiplicative Asplund metric with tolerance $d_{\text {asp,p}}^{\oplus}$, property 6 .

Given a real $\beta>0$, according to definition 6 , the metric: $d_{\text {asp,p }}^{\otimes}(f, \beta \otimes g)$ is equal to $\ln \left(\lambda_{\beta}^{\prime} / \mu_{\beta}^{\prime}\right)$. The factors λ_{β}^{\prime} and μ_{β}^{\prime} depend of the contrast function
$\gamma_{(f, \beta \otimes g)}^{\otimes}$. Using Eq. 12 and 3, the contrast function $\gamma_{(f, \beta \otimes g)}^{\otimes}$ can be expressed as:

$$
\begin{aligned}
\gamma_{(f, \beta \otimes g)}^{\otimes} & =\frac{\ln (1-f / M)}{\ln (1-\beta \otimes g / M)}=\frac{\ln (1-f / M)}{\ln (1-g / M)^{\beta}} \\
& =\frac{\ln (1-f / M)}{\beta \ln (1-g / M)}=(1 / \beta) \gamma_{(f, g)}^{\triangle} .
\end{aligned}
$$

The factor λ_{β}^{\prime} is therefore equal to:

$$
\begin{aligned}
\lambda_{\beta}^{\prime} & =\inf \left\{\alpha, \forall x, \gamma_{\left(f_{\mid D \backslash D^{\prime}}^{\triangle}, \beta \triangle g_{\left.\mid D \backslash D^{\prime}\right)}\right.}(x) \leq \alpha\right\} \\
& =\inf \left\{\alpha, \forall x,(1 / \beta) \gamma_{\left(f_{\mid D \backslash D^{\prime}}^{\triangle}, g_{\mid D \backslash D^{\prime}}\right)}(x) \leq \alpha\right\} \\
& =(1 / \beta) \inf \left\{\alpha, \forall x, \gamma_{\left(f_{\mid D \backslash D^{\prime}}, g_{\mid D \backslash D^{\prime}}\right)}(x) \leq \alpha\right\} \\
& =(1 / \beta) \lambda^{\prime} \\
& =\lambda^{\prime} / \beta
\end{aligned}
$$

Similarly, we have $\mu_{\beta}^{\prime}=\mu^{\prime} / \beta$.
The metric with tolerance $d_{\text {asp,p }}^{\otimes}(f, \beta \otimes g)$ becomes:
$d_{\text {asp,p}}^{\otimes}(f, \beta \triangle g)=\ln \left(\lambda_{\beta}^{\prime} / \mu_{\beta}^{\prime}\right)=\ln \left[\left(\lambda^{\prime} / \beta\right) /\left(\mu^{\prime} / \beta\right)\right]$ $=\ln \left(\lambda^{\prime} / \mu^{\prime}\right)=d_{\text {asp,p }}^{\triangle}(f, g)$.
Similarly, we have $d_{\text {asp }, p}^{\triangle}(\beta \otimes f, g)=d_{\text {asp,p}}^{\triangle}(f, g)$.
Proof of the invariance under LIP-addition of a constant of the LIP-additive Asplund metric with tolerance $d_{\text {asp }, p}^{+}$, property 7.

Given $k \in]-\infty, M[$ and according to definition 10, the metric: $d_{\text {asp,p}}^{\perp}(f, k \oplus g)$ is equal to $c_{1, k}^{\prime} \triangle c_{2, k}^{\prime}$. The constants $c_{1, k}^{\prime}$ and $c_{2, k}^{\prime}$ depend of the contrast function $\gamma_{(f, k \oplus g)}^{ \pm}$. Using Eq. 30 and 2, the contrast function $\gamma_{(f, k \nexists g)}^{A}$ can be expressed as:

$$
\gamma_{(f, k \triangleq g)}^{A}=f \triangle(k \triangleleft g)=(f \triangle g) \triangle k=\gamma_{(f, g)}^{A} \triangle k
$$

The factor $c_{1, k}^{\prime}$ is therefore equal to:

$$
\begin{aligned}
c_{1, k}^{\prime} & =\inf \left\{c, \forall x, \gamma_{\left(f_{\mid D \backslash D^{\prime}}^{A},\left(g_{\mid D \backslash D^{\prime}}\right) \oplus k\right)}(x) \leq c\right\} \\
& =\inf \left\{c, \forall x,\left(\gamma_{\left(f_{\mid D \backslash D^{\prime}}^{A}, g_{\mid D \backslash D^{\prime}}\right)}(x) \triangle k\right) \leq c\right\} \\
& =\inf \left\{c, \forall x, \gamma_{\left(f_{\mid D \backslash D^{\prime}}^{A}, g_{\mid D \backslash D^{\prime}}\right) \oplus k}(x) \leq c\right\} \triangle k \\
& =c_{1}^{\prime} \triangle k
\end{aligned}
$$

Similarly, we have $c_{2, k}^{\prime}=c_{2}^{\prime} \triangle k$.
The metric with tolerance $d_{\text {asp }, p}^{\oplus}(f, k \oplus g)$ becomes: $d_{\text {asp }, p}^{\perp}(f, k \oplus g)=c_{1, k}^{\prime} \triangle c_{2, k}^{\prime}=\left(c_{1}^{\prime} \triangle k\right) \triangle\left(c_{2}^{\prime} \triangle k\right)=$ $c_{1}^{\prime} \triangle c_{2}^{\prime}=d_{\text {asp }, p}^{\oplus}(f, g)$.
Similarly, we have $d_{\text {asp,p }}^{\oplus}(k \oplus f, g)=d_{\text {asp }, p}^{\oplus}(f, g)$.

DETAILS OF THE ILLUSTRATION SECTION

Remark 1 (Segmentation details of Fig. 10). The hminima have a height greater than the $1.6^{\text {th }}$ percentile of the map. Only the minima with an area less than the probe area and with a circular shape are kept.

REFERENCES

Noyel G, Jourlin M (2017). Double-sided probing by map of Asplund's distances using Logarithmic Image Processing in the framework of Mathematical Morphology. In: Lect Notes Comput Sc, vol. 10225. Cham: Springer Int Publishing.

[^0]: ${ }^{1}$ Abbreviation: LIP (Logarithmic Image Processing).

