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Abstract

In this paper, we propose a complete framework to process images captured
under uncontrolled lighting and especially under low lighting. By taking advan-
tage of the Logarithmic Image Processing (LIP) context, we study two novel
functional metrics: i) the LIP-multiplicative Asplund’s metric which is robust
to object absorption variations and ii) the LIP-additive Asplund’s metric which
is robust to variations of source intensity and exposure-time. We introduce ro-
bust to noise versions of these metrics. We demonstrate that the maps of their
corresponding distances between an image and a reference template are linked
to Mathematical Morphology. This facilitates their implementation. We assess
them in various situations with different lightings and movements. Results show
that those maps of distances are robust to lighting variations. Importantly, they
are efficient to detect patterns in low-contrast images with a template acquired
under a different lighting. 1

Keywords: Logarithmic Image Processing, Mathematical Morphology,
Grayscale pattern matching, Double-sided probing, Asplund’s metric, Map of
Asplund’s distances, Robustness to lighting variations

1. Introduction

Metrics or their values, namely the distances, play a central role in im-
age analysis as comparison tools. They possess strong mathematical properties
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(symmetry, separation, triangular inequality) but they are generally not founded
on optical properties. They are therefore not adapted to the comparison of im-
ages captured under variable lighting conditions. This issue affects the most
classical metrics like: the Euclidean-like distances [1, 2], the integral metric, the
uniform metric, the Stepanov distance (or Minkowski distance) [3], the Haus-
dorff metric [4, 5] and many others [3]. The aim of this paper is to propose
metric tools robust to lighting variations.

Let us present the issue we address. Many type of applications are affected
by variable illumination, such as traffic control [6, 7], safety and surveillance [8],
underwater vision [9, 10], driving assistance [11], face recognition [12, 13, 14, 15],
large public health databases of images [16], etc. Let us summarise the difficul-
ties inherent to this issue in the literature. E.g. Chen et al. [12] observe that
the performance of classical techniques like gamma correction [17], logarithm
transform [18], adaptive histogram equalisation [19], region-based histogram
equalisation [17], and block-based histogram equalisation [20] present limita-
tions. They propose a Discrete Cosine Transform in the logarithm domain [12].
Faraji and Qi [13] suggest other solutions based on logarithmic fractal dimension.
Hussain Shah et al. [14] claim that: “Firstly, textural values are changed during
illumination normalisation due to increase in the contrast that changes the orig-
inal pixels of [images]. Secondly, it minimises the distance between inter-classes
which increases the false acceptance rates”. In [21], for unsharp masking algo-
rithm or in [22] for retinex type of algorithms, the enhancement of noise is not
taken into account. However, noise filtering is suggested in [21]. Consequently,
the usual approach which consists of a pre-processing to normalise the illumina-
tion, significantly increases the difficulty to perform the second step dedicated
to the recognition of a pattern. Moreover, the pre-processing is rarely based on a
rigorous modelling of the cause of the lighting variations. We address this issue
by proposing metric tools which are efficient in presence of lighting variations,
without any pre-processing. Those metrics are especially robust to variations
between low-contrast and high-contrast images. We start from a little-known
metric defined for binary shapes [23, 24], namely the Asplund’s metric. It con-
sists of a double-sided probing of one of the shapes by the other. This binary
metric has the outstanding property of being insensitive to object magnification
[25]. Our motivation has been to extend this property to Asplund-like met-
rics dedicated to grey level images. Such extensions of the binary Asplund’s
metric to the functional case require the use of homothetic images or functions
which are insensitive to lighting variations. Such a concept is mathematically
well defined and physically justified in the Logarithmic Image Processing (LIP)
framework [26, 27]. Two extensions will be studied: i) the LIP-multiplicative
Asplund’s metric based on the LIP-multiplication operation of an image by a
real number and ii) the LIP-additive metric based on the LIP-addition opera-
tion of an image by a constant. A famous optical law, the Transmittance Law,
is at the basis of both LIP-operations [27, chap. 1]. They give to the func-
tional Asplund’s metrics a strong physical property: a very low sensitivity to
lighting variations, especially for under-lighted images. The LIP-multiplicative
Asplund’s metric is thereby theoretically insensitive to variations of the object
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absorption (or opacity). The LIP-additive metric is defined to be insensitive to
variations of source intensity (or exposure-time). For pattern matching purpose,
a map of distances is computed between a template and an image. The closest
image patterns to the template correspond to the minimal values of the map.
The patterns are then detected by finding the map minima. In this paper, we
will demonstrate that the maps of distances are related to the well established
framework of Mathematical Morphology (MM) [28, 29, 30, 31]. This will fa-
cilitate their programming as numerous image analysis software contain these
operations. Importantly, for the Asplund’s metrics, there is no empirical pre-
processing normalising the image intensity. Moreover, the consistency of the
LIP model with Human Vision [32] allows the Asplund’s metrics to perform
pattern matching as a human eye would do. The link between these metrics
and the LIP model opens the way to numerous applications with low-lighting
[27].

In this paper, our aim is to present a complete framework of pattern matching
robust to lighting variations between low-contrast and high-contrast images.
In detail, our contribution is two-fold. (1) Firstly, we extend the preliminary
works defining the functional metrics and their corresponding maps of distances
between a template and an image [33, 25, 27, 34, 35, 36]2. Beyond the prior work,
we add theoretical work at two stages. a) We better define the robust to noise
version of the metrics. b) We demonstrate the link between the maps of distances
and the MM operations of dilation and erosion [29]. An expression will be given
between each map of distances and those MM operations. (2) The second part
of our contribution is to perform an extensive experimental validation of the
metrics on simulated and on real images. We show that Asplund’s metrics
are efficient for pattern recognition in images captured with different lightings.
This is especially the case for the imaging of moving objects, where the motion
blur is avoided by shortening the camera exposure-time with the side effect of
darkening the images (Fig. 11).

The paper is organised as follows. After presenting the related methods of
double-sided probing, the novelty of our approach will be pointed out (Sec. 2).
The background notions will be then introduced (Sec. 3). The properties of
Asplund’s metrics will be studied in the LIP-multiplicative case (Sec. 4) and in
the LIP-additive case (Sec. 5). Experiments will illustrate the specific interest
of each functional Asplund’s metrics (Sec. 6). Demonstrations will be given in
the appendix and in the supplementary materials.

2. Related works and novelty

2.1. Related Works
Pattern matching methods efficient under variable lighting conditions are

seldom studied in the literature. This explains the few references closely related

2[35] is a personal communication which is unpublished.
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to our work. Nevertheless, we can cite two papers of Barat et al. [37, 38].
The first one proposes the concept of probing in order to replace one of the
following methods. (i) The morphological approach proposed by Banon and
Faria [39]. (ii) The extension of the “hit-or-miss” transform [29] to grey-level
images introduced by Khosravi and Schafer [40]. (iii) The approach inspired by
the computation of Hausdorff distance of Odone et al. [41]. (iv) The multi-scale
tree matching using boundary segments presented by Cantoni et al. [42]. In the
second paper, Barat et al. introduced the double-sided probing of a grey level
function f , where a pair of probes locally surrounds the representative surface
of f . Such a technique detects the possible locations of the searched pattern.
However, the probes are arbitrarily chosen and simply translated along the grey
scale to remain in contact with the function f . These translations, which darken
(or brighten) the probes, seem to take into account the lighting variations of
the image. However, as they are not physically founded, they do not correctly
model any of such variations.

2.2. Novelty of functional Asplund’s metrics
The novelty of the functional Asplund’s metrics is to be theoretically insen-

sitive to lighting variations, with a physical origin. Unlike the related works,
the functional Asplund’s metrics use the LIP-multiplicative and LIP-additive
laws to compare a given template to a studied grey level function f . Due to the
LIP-laws, the template generates itself the pair of probes suited to the values
of the function f . The arbitrary choice of the probes made by Barat et al. [38]
is therefore avoided in our approach.

3. Background: From a metric for binary shapes to a metric for grey
level images

Asplund’s metric originally defined for binary shapes [23, 24], has been ex-
tended to grey-level images in the LIP-framework by Jourlin et al. [33, 25]. In
this section, we give background notions about the binary Asplund’s metric, the
LIP model, the Functional Asplund’s metrics and MM.

3.1. Asplund’s metric for binary shapes
In the initial definition of Asplund’s metric for a pair (A,B) of binary shapes,

one shape, e.g. B, is chosen to perform the double-sided probing of A by means
of two homothetic shapes of B. Two real numbers are computed: the smallest
number λ0 such that λ0B contains A and the greatest number µ0 such that
A contains µ0B. The Asplund’s distance dAs(A,B) between A and B is then
defined according to:

dAs(A,B) = ln (λ0/µ0). (1)

Remark 1. This implies that dAs remains unchanged when one shape is mag-
nified or reduced by any ratio k.
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Figure 1: Asplund’s metric for binary shapes. The shape A is probed on both sides by the
reference shape B using its two homothetic shapes λ0B and µ0B.

Figure 1 illustrates the binary Asplund’s metric where a shape A is probed
on its both sides by a reference shape B.

The property of insensitivity to object magnification of the binary Asplund’s
metric can be extended to the functional case, where the functional Asplund’s
metric are insensitive to lighting variations. For this purpose, the LIP model is
necessary.

3.2. Logarithmic Image Processing
The Logarithmic Image Processing (LIP) model has been introduced by

Jourlin and Pinoli [43, 26]. A grey-level image f is defined on a domain D ⊂ Rn
and takes its values in the grey scale T = [0,M [⊂ R. f is an element of the set
I = T D. Contrary to common usage, the grey scale extremity 0 corresponds
to the maximal possible intensity observed by the sensor (white), i.e. when
no obstacle is located between the source and the sensor. The other extremity
of the scale, M , corresponds to the limit case where no element of the source
is transmitted (black). Such a limit value is excluded of the scale. For 8-bit
digitised images, M is equal to 256. Now the two LIP operations on images can
be defined: the addition of two images f4+ g and the scalar multiplication λ4× f
of an image by a real number λ. Both operations derive from the well-known
Transmittance Law [27, chap. 1]: Tf4+ g = Tf × Tg. The transmittance Tf (x)
of a grey level image f at a point x of D is the ratio of the out-coming flux at
x by the incoming one. The incoming flux corresponds to the source intensity.
From a mathematical point of view, the transmittance Tf (x) represents the
probability, for a particle of the source arriving in x to be seen by the sensor.
The Transmittance Law Tf4+ g means therefore that the probability of a particle
to pass through the addition of two obstacles is nothing but the product of the
probabilities to pass through each of them. The link, Tf (x) = 1 − f(x)/M ,
has been established in [26] between the grey level f(x) and the transmittance
Tf (x). By replacing the transmittances Tf and Tg by their expressions in the
expression of Tf4+ g, the LIP-addition of two images f 4+ g is obtained

f 4+ g = f + g − fg/M. (2)
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Considering that the addition f4+ g may be written as 24× f , the multiplication
of an image f by a real number λ is then deduced from equation 2:

λ4× f = M −M (1− f/M)
λ
. (3)

Remark 2. The opposite function 4− f of f is easily obtained thanks to the
equality f4+ (4− f) = 0, as well as the difference between two grey level functions
f and g:

4− f = (−f)/(1− f/M) (4)
f 4− g = (f − g)/(1− g/M). (5)

Let us note that 4− f is not an image (as it takes negative values) and f 4− g is
an image if and only if f ≥ g.

The LIP framework possesses the fundamental properties that are listed
next.

Property 1 (The LIP framework is not limited to images in transmission).
As the LIP model is consistent with Human Vision [32], the LIP operators are
also valid for images acquired in reflected light and especially when a human
interpretation of images is simulated.

Property 2 (Strong physical properties). For images acquired in transmission,
the LIP-addition (or subtraction) of a constant c to (or from) an image f con-
sists of adding (or subtracting) a uniform half-transparent object of grey level c,
which results in a darkening (or lightening) of f . Such operations are useful to
correct illuminations variations. The images acquired in transmitted or reflected
light have the two following properties.
• The addition (or subtraction) of a constant c to (or from) f simulates the

decrease (or increase) of the acquisition exposure-time [44, 45]. If the values of
f 4− c become strictly negative, they perform as light intensifiers [27, chap. 4].
• The scalar multiplication λ4× f of f by a positive real number λ signifies

that the thickness (or the absorption) of the half-transparent object which gen-
erates f is LIP-multiplied by λ. The image is darkened if λ ≥ 1 or lightened if
λ ∈ [0, 1[.

Property 3 (Strong mathematical properties). Let FM =] − ∞,M [D be the
space of functions defined on D with values in ] − ∞,M [. (FM ,4+ ,4× ) is a
real vector space and the space of images (I,4+ ,4× ) represents its positive cone
[26, 27].

In figure 2, several half-transparent sheets are stacked upon each others
between a light source and a camera [46, 27]. The camera acquires an image of
the light source through the sheets. The perceived intensity f(x) by the camera,
at a point x, is plotted as a function of the number of sheets. The inverted grey
scale is used for the intensity axis. When there is no obstacle, the intensity
is 0 (white). With the number of stacked sheets, it increases in a logarithmic
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Figure 2: A light source passes trough several half-transparent sheets which are stacked. The
perceived intensity f(x) by the camera is plotted as a function of the sheet numbers using the
inverted grey scale.

way and reaches a maximum M (black), when no light is perceived trough the
sheets. The non-linearity of the perceived intensity is taken into account by the
LIP model. Such a model will be useful to define functional Asplund’s metrics
with strong properties.

Remark 3. There exists a symmetric version of the LIP, namely the Symmetric
LIP [47]. However, this model is not physically justified albeit it is interesting
from a mathematical point of view for his symmetry. It allows e.g. to propose
a LIP version of the Laplacian operator or to create Logarithmic Wavelets [48].

3.3. Definition of Functional Asplund’s metrics
In this section, we will remind the LIP-multiplicative Asplund’s metric. We

will then clarify the definition and properties of the LIP-additive metric.

3.3.1. LIP-multiplicative Asplund’s metric
Here, we will give the definition of the metric, one of its properties and a

rigorous definition. Those were introduced by Jourlin et al. [33, 25], Noyel and
Jourlin [34]. Let T ∗ =]0,M [ be the grey-level axis without the zero value and
I∗ = T ∗D the space of images with strictly positive values.

Definition 1 (LIP-multiplicative Asplund’s metric). Let f and g ∈ I∗ be two
grey level images. As for binary shapes, we select a probing function, e.g. g, and
we define the two numbers: λ = inf {α, f ≤ α4× g} and µ = sup {α, α4× g ≤ f}.
The LIP-multiplicative Asplund’s metric d4×As is defined by:

d4
×

As(f, g) = ln (λ/µ) . (6)
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Figure 3: Double-sided probing of a function f by a probe g performed by the LIP-
multiplicative Asplund’s metric. µ4× g is the lower probe and λ4× g is the upper probe.

Figure 3 illustrates the double-sided probing of image f by a probe g. The
lower probe µ4× g is in contact with the lower side of the function f whereas
the upper probe λ4× g is in contact with the upper side of f . By comparison
with the probe shape, the shapes of the lower and upper probes are deformed
by the LIP-multiplication 4× . Such a deformation which depends on the grey
value of g, is characteristic of the following metric property.

Property 4 (Invariance to LIP-multiplication). The strongest advantage of the
LIP-multiplicative Asplund’s metric is to remain unchanged when one image
(e.g. f) is replaced by any homothetic α4× f , ∀α ∈ R∗+: d4×As(f, g) = d4×As(α4×
f, g).

This latest equation demonstrates the insensitivity of the metric d4×As to illu-
mination variations modelled by the LIP-multiplicative law 4× , i.e. those which
correspond to an absorption change of the object.

Remark 4 (Mathematical appendix [27, chap. 3]). Considering the pre-
vious property, it would be more rigorous to explain the LIP-multiplicative
Asplund’s metric as follows.

a) An equivalence relation R is defined on the space of grey level images.
Two images f and g ∈ I are said “in relation” if they satisfy: (fRg) ⇔ ∃α >
0, f = α4× g. The previous relation R obviously satisfies the properties of an
equivalence relation (reflexivity, symmetry and transitivity).

b) To each image f ∈ I∗, its equivalence class f4× is associated: f4× =
{g, gRf}.

c) A rigorous definition of the LIP-multiplicative Asplund’s metric is then
given into the space of equivalence classes I4× by: ∀(f4× , g4× ) ∈ (I4× )2,
d4×As(f

4× , g4× ) = d4×As(f1, g1). d4×As(f1, g1) is the Asplund’s distance between any
elements f1 and g1 of the equivalence classes f4× and g4× .
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3.3.2. LIP-additive Asplund’s metric
As for the LIP-multiplicative metric, we will give a definition of the LIP-

additive Asplund’s metric, some properties and a rigorous definition.

Definition 2 (LIP-additive Asplund’s metric). Let f and g ∈ FM be two func-
tions, we select a probing function, e.g. g, and we define the two numbers:
c1 = inf {c, f ≤ c4+ g} and c2 = sup {c, c4+ g ≤ f}, where c lies in the interval
]−∞,M [. The LIP-additive Asplund’s metric d4+As is defined according to:

d4
+

As(f, g) = c1 4− c2. (7)

Remark 5. By definition, the values of c1 and c2 lie in the interval ]−∞,M [,
which implies that the probing functions g4− c1 and g4− c2 are not always images.
However, c1 is always greater than c2. Nevertheless, the Asplund’s metric as
the following property.

Proposition 1. d4+As(f, g) lies in [0,M [ (Proof p. 29).

Property 5 (Invariance to LIP-addition). The LIP-additive Asplund’s metric
remains unchanged when f ∈ FM (or g) is replaced by any “translated” func-
tion f 4+ k, with k ∈] −∞,M [. Indeed, the constants c1 and c2 become c1 4+ k
and c2 4+ k respectively. This implies that d4+As(f 4+ k, g) = d4+As(f, g) and that
∀f, ∀k, d4+As(f, f4+ k) = 0. Knowing that the addition of a constant to a function
is equivalent to a variation of exposure-time [44, 45], we have the fundamental
result: the LIP-additive Asplund’s metric is insensitive to exposure-time chang-
ing.

Remark 6 (Mathematical appendix). As for the LIP-multiplicative Asplund’s
metric a rigorous mathematical definition is obtained by replacing each image
f by its equivalence class f4+ , which represents the set of functions h such that
h = f 4+ k, for a constant k lying in ] − ∞,M [. Nevertheless, if we keep the
notations f and g, there is no ambiguity. Indeed, for a couple (f4+ , g4+ ) of equiv-
alence classes, we have d4+As(f

4+ , g4+ ) = d4+As(f1, g1), where f1 and g1 are elements
of the classes f4+ and g4+ respectively.

3.4. Fundamental operations in Mathematical Morphology
As the definition of functional Asplund’s metrics is based on extrema between

functions, there exists a natural link with MM as shown by Noyel and Jourlin
[34]. MM [28, 29, 49, 50, 51, 31, 52] is defined in complete lattices [29, 53]. Let
us recall some important definitions.

Definition 3 (Complete lattice). Given a set L and a partial order ≤ on L ,
L is a complete lattice if every subset X of L has an infimum (a greatest lower
bound) and a supremum (a least upper bound).
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The infimum and the supremum of X will be denoted by ∧X and ∨X ,
respectively. Two elements of the complete lattice L are important: the least
element O and the greatest element I. E.g. the set of images from D to [0,M ],
I = [0,M ]D, is a complete lattice with the partial order relation ≤. The least
and greatest elements are the constant functions f0 and fM whose values are
equal to 0 and M , respectively, for all the elements of D. The supremum and
infimum are defined by taking the pointwise infimum and supremum, respec-
tively. For X ⊂ I, we have (∧IX )(x) = ∧[0,M ]{f(x) : f ∈ X , x ∈ D} and
(∨IX )(x) = ∨[0,M ]{f(x) : f ∈X , x ∈ D}. Given R = R∪ {−∞,+∞}, the set

of functions RD is also a complete lattice with the usual order ≤.

Definition 4 (Erosion, dilation [53]). Given L1 and L2 two complete lattices,
a mapping ψ ∈ L L1

2 is

• an erosion ε: iff ∀X ⊂ L1, ψ(∧X ) = ∧ψ(X );

• a dilation δ: iff ∀X ⊂ L1, ψ(∨X ) = ∨ψ(X ).

As the definitions of these mappings apply even to the empty subset of L1, we
have: ε(I) = I and δ(O) = O.

A structuring function b is a function defined on the domain Db ⊂ D with
its values in T = R, or in T = [0,M ]. In the case of a dilation or an erosion
of a function f by an additive structuring function b, which is invariant under
translation in the domain D, the previously defined dilation δ or erosion ε can
be expressed in the same lattice (RD,≤), or (I,≤) [54, 49] by:

(δb(f))(x) = ∨h∈Db
{f(x− h) + b(h)} = (f ⊕ b)(x) (8)

(εb(f))(x) = ∧h∈Db
{f(x+ h)− b(h)} = (f 	 b)(x) (9)

The symbols ⊕ and 	 represent the extension to functions [29] of Minkowski
operations between sets [29]. The term “additive structuring function” refers to
a vertical translation in the image space T [49].

4. Pattern analysis with LIP-multiplicative Asplund’s metric

The LIP-multiplicative Asplund’s metric is of utmost importance for pattern
matching of objects whose absorption (or opacity) is varying. For this purpose,
Jourlin et al. [33] introduced a map of LIP-multiplicative Asplund’s distances.
Noyel and Jourlin [55] studied it and Noyel and Jourlin [34, 35] established
its link with MM through different conference papers. In this section, we will
remind its definition, we will improve the definition of its robust to noise version
and we will clearly present the link with MM.

4.1. Map of Asplund’s distances
Let T = [0,M [, T ∗ =]0,M [ be grey-level axes and I∗ = T ∗D, D ∈ Rn the

space of strictly positive images.
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Definition 5 (Map of LIP-multiplicative Asplund’s distances [33]). Let f ∈ I∗
be a grey-level image and b ∈ (T ∗)Db a probe. The map of Asplund’s distances
As4×b : I∗ → (R+)

D is defined by:

As4
×

b f(x) = d4
×

As(f|Db(x) , b). (10)

For each point x ∈ D, the distance d4×As(f|Db(x) , b) is computed in the neigh-
bourhood Db(x) centred in x and the template b is acting like a structuring
element. f|Db(x) is the restriction of f to Db(x). As4×b f : D → R+ is the map of
Asplund’s distances between the image f and the probe b.

Figure 4 illustrates the map of Asplund’s distances with an image of a but-
terfly [56]. The image is coming from the Yahoo Flickr Creative Commons 100
Million Dataset [57]. The processing is performed on its luminance image f
which is in grey levels even if the images are displayed in colours. In the lumi-
nance image f of the butterfly (Fig. 4a), a white spot is selected to serve as a
probe b (Fig. 4b). The map of Asplund’s distances As4+b f between the image f
and the probe b (Fig. 4c) presents a minimum which corresponds to the probe
we are looking for (Fig. 4d). A map of Asplund’s distances allows therefore
to find a reference pattern or probe within an image. However, as images may
present acquisition noise, a robust to noise version of the metric is useful for
pattern matching.

4.2. A robust to noise version
Asplund’s metric is computed using extrema, which makes it sensitive to

noise. To overcome this limitation, Jourlin et al. [25] have proposed an extension
which removes from D the most penalising points. This idea is related to the
topology of the measure convergence [58, chap. 4] in the context of grey-level
images. As the image is digitised, the number of pixels lying in D is finite.
The “measure” of a subset of D is linked to the cardinal of this subset, e.g. the
percentage P of its elements related to the domain D (or a region of interest
R ⊂ D).

We are looking for a subsetD′ ofD, such that i) f|D′ and g|D′ are neighbours
(for Asplund’s metric) and ii) the complementary set D \ D′ of D′ related to
D is small-sized as compared to D. This last condition is written: P (D \D′) =
#(D\D′)

#D ≤ p, where p represents an acceptable percentage and #D the number
of elements inD. A neighbourhood of the image f ∈ I can be defined thanks to a
small positive real number ε as: NP,d4×As,ε,p

(f) = {g\∃D′ ⊂ D, d4×As(f|D′ , g|D′) < ε

and P (D \D′) ≤ p}.
The set D′ corresponds to the noise pixels to be discarded. As these pixels

are the “closest” to the probe, they are selected by a function γ4×(f,g) : D → R
characterising the (LIP-multiplicative) contrast between the functions f and g
and which is defined by:

∀x ∈ D, γ4×(f,g)(x)4× g(x) = f(x)⇔ γ4
×

(f,g) =
ln (1− f/M)

ln (1− g/M)
. (11)
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(a) (b)

(c) (d)

Figure 4: (a) Colour version of the butterfly image. In its luminance image f , a white spot -
surrounded by the green curve - is selected as a probe function b. (b) Zoom in on the colour
version of the luminance probe b. (c) Map of LIP-multiplicative Asplund’s distances As4+b f
between the image f and the probe b. Its minimum is indicated by the white arrow. (d) Zoom
in on the map of Asplund’s distances of the image. The white arrow points its minimum out.

γ4×(f,g)(x) is the real value by which each image value f(x) is LIP-multiplied to be
equal to the probe value g(x). The expressions of the probes λ4× g and µ4× g (Def.
1) can be written with the contrast function γ4×(f,g): λ = inf {α,∀x, γ4×(f,g)(x) ≤ α}
and µ = sup {α,∀x, α ≤ γ4×(f,g)(x)}. This explains that the closest image values
to the upper probe λ4× g, or the lower probe µ4× g, correspond to the greatest,
or smallest, values of γ4×(f,g), respectively. Using this property, new probes λ′4× g
, or µ′ 4× g, can be defined on the domain D \ D′ obtained by discarding a
percentage (1− p)/2 of the pixels with the greatest, or smallest, contrast values
γ4×(f,g)(x), respectively. The restricted domain D \ D′ has thereby a cardinal
equal to a percentage p of the cardinal of D.

Definition 6 (LIP-multiplicative Asplund’s metric with tolerance). Let (1−p)
be a percentage of points of D to be discarded and D′ the set of these discarded
points. The (LIP-multiplicative) Asplund’s metric with tolerance between two
grey-level images f and g ∈ I is defined by:

d4
×

As,p(f, g) = ln(λ′/µ′). (12)

The factors λ′ and µ′ are equal to λ′ = inf{α,∀x ∈ D, γ4×(f|D\D′ ,g|D\D′ )
(x) ≤ α}

and µ′ = sup{α,∀x ∈ D,α ≤ γ4×(f|D\D′ ,g|D\D′ )
(x)}. A percentage (1− p)/2 of the

12
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Figure 5: LIP-multiplicative Asplund’s metric where g is used to probe f . λ4× g (respectively
λ′4× g) is the upper probe and µ4× g (resp. µ′4× g) is the lower probe of the Asplund’s metric
d4×As(f, g) (resp. of the Asplund’s metric with a tolerance p, d4×As,p(f, g)). (a) Without tolerance,
the Asplund’s metric is equal to d4×As(f, g) = 0.42 whereas with a tolerance p = 80% it decreases
to d4×As,p(f, g) = 0.24. (b) The image f is obtained by adding to the probe g a Gaussian white
noise of mean 0, variance 5 and spatial density ρ = 8%.

points x ∈ D with the greatest, respectively lowest, contrast values γ4×(f,g)(x) =
ln (1−f(x)/M)
ln(1−g(x)/M) are discarded.

Using equations 11 and 3, the contrast function γ4×(f,g) is proportional to the
contrast function γ4×(f,α4× g) between the image f and the LIP-multiplied probe
α 4× g: γ4×(f,α4× g)(x) = (1/α)γ4×(f,g)(x), with α > 0. This leads to the following
property which is demonstrated in the supplementary materials.

Property 6. The metric d4×As,p is invariant to the LIP-multiplication.

Remark 7. A map of Asplund’s distances with tolerance can be defined as in
definition 5: As4×b,pf(x) = d4×As,p(f|Db(x), b).

Figure 5a illustrates the ability of the Asplund’s metric with tolerance to
discard the extremal values f(xλ) and f(xµ) associated to noise. In figure 5b,
the probe g is chosen as a plane and the image f is obtained by adding a
noise to the probe with a spatial density of ρ = 8%. The plane of the probe
g is distorted by the LIP-multiplication used for the upper probe λ 4× g and
for the lower probe µ4× g. The Asplund’s distance which is initially equal to
d4×As(f, g) = 3.75 decreases to d4×As,p(f, g) = 0.79, with a tolerance of p = 97%.
Experiments have shown that with p = 90% (≤ (1−ρ)), the Asplund’s distance
is equal to zero.

4.3. Link with Mathematical Morphology
We first present the maps of distances with neighbourhood operations. We

then establish the link with MM in the specific case of a flat structuring element
and in the general case of a structuring function.
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4.3.1. General expression of the map of Asplund’s distances with neighbourhood
operations

From equation 6, for each x ∈ D, there is d4×As(f|Db(x) , b) = ln (λbf(x)/µbf(x))

with λbf(x) = inf
{
α, f|Db(x) ≤ α4× b

}
and µbf(x) = sup {α, α4× b ≤ f|Db(x)

}
.

These expressions show that the map of Asplund’s distances consists of a double-
sided probing, at each point x, by the least upper bound λ(x)4× b and by the
greatest lower bound µ(x)4× b. As λbf(x) and µbf(x) exist for all x ∈ D, the
following maps can be defined [34].

Definition 7 (LIP-multiplicative maps of the least upper and of the greatest
lower bounds [34]). Given R+

= [0,+∞], let f ∈ I be an image and b ∈ (T ∗)Db

a probe. Their map of the least upper bounds (mlub) λb : I → (R+
)D and their

map of the greatest lower bounds (mglb) µb : I → (R+
)D are defined by:

λbf(x) = inf
h∈Db

{α, f(x+ h) ≤ α4× b(h)}, (13)

µbf(x) = sup
h∈Db

{α, α4× b(h) ≤ f(x+ h)}. (14)

Let us define f̃ = ln (1− f/M), f ∈ I and introduce the general expression
of the mlub and of the mglb. The propositions 2 to 4 are demonstrated in [34]
and in the supplementary materials. The proposition 5 is demonstrated in the
Appendix A.1.

Proposition 2. The mlub λb and mglb µb are equal to:

λbf(x) = ∨{f̃(x+ h)/b̃(h), h ∈ Db}, (15)

µbf(x) = ∧{f̃(x+ h)/b̃(h), h ∈ Db}. (16)

Corollary 1. Given f ∈ I, f > 0, the map of LIP-multiplicative Asplund’s
distances becomes:

As4
×

b f = ln

(
λbf

µbf

)
. (17)

4.3.2. Particular case of a flat structuring element
In the case of a flat structuring element, the expressions of the different maps

can be simplified as follows.

Proposition 3. Let b = b0 ∈ (T ∗)Db be a flat structuring element (∀x ∈ Db,
b(x) = b0). The mlub λb0 , the mglb µb0 and the map of Asplund’s distances
As4×b0 are equal to:

λb0f = (1/b̃0) ln
(
1− (δDb

f)/M
)

(18)

µb0f = (1/b̃0) ln (1− (εDb
f)/M) (19)

As4
×

b0f = ln

[
ln
(
1− (δDb

f)/M
)

ln (1− (εDb
f)/M)

]
, where f > 0. (20)
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Db = {−h, h ∈ Db} is the reflected (or transposed) domain of the structuring
element.

This result shows that the map of Asplund’s distances is a combination of
logarithms, an erosion εb and a dilation δb of the image f by the flat structuring
element b. As numerous image processing libraries include erosion and dilation
operations, the program implementation becomes easier.

4.3.3. General case: a structuring function
Proposition 4. The mlub λb and the mglb µb are a dilation and an erosion,
respectively, between the two complete lattices L1 = (I,≤) and L2 = ((R+

)D,≤
).

Let us determine the expressions of this dilation and this erosion using MM
with multiplicative structuring functions introduced by Heijmans and Ronse
[49], Heijmans [30].

Definition 8 (Erosion and dilation with a multiplicative structuring function
[49, 30]). Given a function f ∈ (R+

)D, and b ∈ (R+
)Db a multiplicative struc-

turing function:

∨h∈Db
{f(x− h).b(h)} = (f⊕̇b)(x) is a dilation, (21)

∧h∈Db
{f(x+ h)/b(h)} = (f	̇b)(x) is an erosion, (22)

with the convention that f(x− h).b(h) = 0 when f(x− h) = 0 or b(h) = 0 and
that f(x+h)/b(h) = +∞ when f(x+h) = +∞ or b(h) = 0. The symbols ⊕̇ and
	̇ represent the extension to multiplicative structuring functions of Minkowski
operations between sets [29].

There exists a relation between the multiplicative erosion or dilation and the
additive operations of section 3.4 [49, 30]:

f⊕̇b = exp (ln f ⊕ ln b), (23)
f	̇b = exp (ln f 	 ln b). (24)

The next proposition gives the morphological expressions of the different
maps.

Proposition 5. Let b ∈ T Db and f ∈ I, the expressions of the mlub λb, which
is a dilation, and of the mglb µb, which is an erosion, are:

λbf = (−f̃)⊕̇(−1/b̃) = exp (f̂ ⊕ (−b̂)), (25)

µbf = (−f̃)	̇(−b̃) = exp (f̂ 	 b̂). (26)

b is the reflected structuring function defined by ∀x ∈ Db, b(x) = b(−x) [50]
and f̃ is the function f̃ = ln (1− f/M), with f̃ ∈ [−∞, 0]. f̂ = ln (−f̃) =
ln (− ln (1− f/M)) is a transform of f .
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Figure 6: (a) The image f is probed on both sides by the probe b (in red colour) using the
LIP-multiplicative law 4× . The double-probing is depicted at two locations by the red dashed
curves. (b) λbf and µbf are the mlub and mglb of f , respectively. As4×b f is the map of
Asplund’s distances between f and b.

The map of Asplund’s distances is the difference between a dilation and an
erosion whose expression is:

As4
×

b f =
[
f̂ ⊕ (−b̂)

]
−
[
f̂ 	 b̂

]
= δ
−ˆ
b
f̂ − εb̂f̂ . (27)

We notice that the map of LIP-multiplicative Asplund’s distances is similar
to the (norm of the) morphological gradient %b̂ or Beucher’s gradient [54, 50].
It is the difference between a dilation and an erosion of the transformed image
f̂ by a structuring function b̂: %b̂f̂ = δb̂f̂ − εb̂f̂ . This similarity shows that the
map of Asplund’s distances acts as an operator of derivation.

Remark 8. The map of Asplund’s distances with tolerance As4×b,p can be com-
puted by replacing the dilation and erosion by rank-filters [54].

Figure 6a illustrates the double-sided probing of an image f by a probe b
using the LIP-multiplicative law 4× which modifies the amplitude of the upper
probes λbf(x) 4× b and of the lower probes µbf(x) 4× b. Both peaks have a
different amplitude caused by a lighting drift created with the LIP-multiplicative
law. In figure 6b, when the probe b is similar to a pattern in f (according to
Asplund’s distance), the map of Asplund’s distances of f , As4×b f , presents a local
minimum. Here, both peaks are located at the deepest minima of the map of
f by the probe b, As4×b f . This result shows that the map of LIP-multiplicative
Asplund’s distances is insensitive to a lighting drift corresponding to a variation
of absorption (or opacity) of the object.
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5. Pattern analysis with LIP-additive Asplund’s-like metric

The LIP-additive Asplund’s metric is useful for images acquired with a small
source intensity or a short exposure-time [27, chap. 3]. In this section, we will
introduce: a map of LIP-additive Asplund’s distances, a robust to noise version
of the metric and the link between the map of distances and MM. Due to
the important similarity with the LIP-multiplicative case (Sec. 4), we will only
point out the new equations and results. We will consider the set of functions
FM = T D (or FM = T D) with values in T =]−∞,M [ (or T = [−∞,M ]).

5.1. Map of Asplund’s distances
Definition 9 (Map of LIP-additive Asplund’s distances). Let f ∈ FM be a
function and b ∈ T Db a probe. The map of Asplund’s distances is the mapping
As4+b : FM → I defined by:

As4
+

b f(x) = d4
+

As(f|Db(x) , b). (28)

The LIP addition4+ makes the map of distances robust to contrast variations
due to exposure-time changes.

5.2. A robust to noise version
In order to overcome the noise sensitivity of Asplund’s metric, a neighbour-

hood NP,d4+As,ε,p
(f) of the function f is defined by replacing in section 4.2 the

LIP-multiplicative Asplund’s metric d4×As by the LIP-additive one d4+As. The
noise pixels which are the “closest” to the probe are selected by using a function
γ4+(f,g) : D →]−∞,M [ which characterises the (LIP-additive) contrast between
the functions f and g:

∀x ∈ D, γ4+(f,g)(x)4+ g(x) = f(x)⇔ γ4
+

(f,g) = f 4− g. (29)

γ4+(f,g)(x) ∈] −∞,M [ is the real value to be LIP-added to each function value
f(x) so that it becomes equal to the probe value g(x). The expressions of the
probes c1 4+ g and c2 4+ g (Def. 2) can be written with the contrast function:
c1 = inf {c,∀x, γ4+(f,g)(x) ≤ c} and c2 = sup {c,∀x, c ≤ γ4+(f,g)(x)}. This explains
that the closest function values f(x) to the upper probe c1 4+ g, or the lower
probe c24+ g, correspond to the greatest, or smallest, values of γ4+(f,g), respectively.
This property is used to introduce the following definition.

Definition 10 (LIP-additive Asplund’s metric with tolerance). Let (1 − p) be
a percentage of points of D to be discarded and D′ the set of these discarded
points. The LIP-additive Asplund’s metric with tolerance between two functions
f and g ∈ FM is defined by:

d4
+

As,p(f, g) = c′1 4− c′2. (30)
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Figure 7: LIP-additive Asplund’s metric for functions. g is used to probe f . c14+ g (respectively
c′14+ g) is the upper probe and c24+ g (resp. c′24+ g) is the lower probe of the Asplund’s metric
d4+As(f, g) (resp. of the Asplund’s metric with a tolerance p, d4+As,p(f, g)). The function f is
obtained by adding a Gaussian white noise to the planar probe g (mean 0, variance 5, spatial
density ρ = 8%).

The constants c′1 and c′2 are equal to: c′1 = inf{c,∀x ∈ D, γ4+(f|D\D′ ,g|D\D′ )
(x) ≤ c}

and c′2 = sup{c,∀x ∈ D, c ≤ γ4+(f|D\D′ ,g|D\D′ )
(x)}. A percentage (1− p)/2 of the

points x ∈ D with the greatest, respectively lowest contrast values γ4+(f,g)(x) =

f(x)4− g(x) are discarded.

From equations 29 and 5, the contrast function γ4+(f,g) is related to the contrast
function γ4+(f,c4+ g), between f and the probe c4+ g, where ∀x ∈ D, c(x) = c, c ∈
]−∞,M [, by the following equation: γ4+(f,c4+ g)(x) = γ4+(f,g)(x)4− c. This leads to
the following property demonstrated in the supplementary materials.

Property 7. The metric d4+As,p is invariant to the LIP-addition of a constant.

Remark 9. A map of Asplund’s distances with tolerance can be introduced as
in definition 9: As4+b,pf(x) = d4+As,p(f|Db(x), b).

Figure 7 illustrates the LIP-additive Asplund’s metric robust to noise d4+As,p(f, g).
The probe g is chosen as a plane and the function f is obtained by adding a
noise to the probe g with a spatial density of ρ = 8%. We notice that the
upper probe c1 4+ g and the lower probe c2 4+ g may take negative values. Af-
ter the LIP-addition, the planar surface of the probe g is still a plane, with
a different orientation. The Asplund’s distance which is is initially equal to
d4+As(f, g) = 116 decreases to d4+As,p(f, g) = 40, with a tolerance p = 97%. Ex-
periments have shown that with p = 90% (≤ (1− ρ)), the Asplund’s distance is
equal to zero.

5.3. Link with Mathematical Morphology
5.3.1. General expression for the map of Asplund’s distances with operations on

neighbourhoods
In order to establish the link with MM, we will express the map of Asplund’s

distances with neighbourhood operations. From equation 7, for each x ∈ D, the
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map expression becomes d4+As(f|Db(x) , b) = c1b
f(x)4− c2b

f(x), where c1b
f(x) =

inf
{
c, f|Db(x) ≤ c4+ b

}
and c2b

f(x) = sup
{
c, c4+ b ≤ f|Db(x)

}
. This leads to

the following definition.

Definition 11 (LIP-additive maps of the least upper and of the greatest lower
bounds). Let f ∈ FM be a function and b ∈ T Db a probe. Their map of the
least upper bounds (mlub) c1b

: FM → FM and their map of the greatest lower
bounds (mglb) c2b

: FM → FM are defined by:

c1b
f(x) = inf

h∈Db

{c, f(x+ h) ≤ c4+ b(h)} (31)

c2b
f(x) = sup

h∈Db

{c, c4+ b(h) ≤ f(x+ h)}. (32)

The following propositions, 6 to 9, are demonstrated in the Appendix A.2.
The general expressions of the mlub, mglb and map of distances will be given
hereinafter.

Proposition 6. The mlub c1b
and the mglb c2b

are equal to

c1b
f(x) = ∨{f(x+ h)4− b(h), h ∈ Db} , (33)

c2b
f(x) = ∧{f(x+ h)4− b(h), h ∈ Db} . (34)

Corollary 2. The map of Asplund’s distances between the function f and the
probe b is equal to

As4
+

b f = c1b
f 4− c2b

f. (35)

5.3.2. Particular case of a flat structuring element
In the case of a flat structuring element, the expressions of the maps can be

simplified as follows.

Proposition 7. Let b = b0 ∈ T Db be a flat structuring element (∀x ∈ Db,
b(x) = b0). The mlub c1b0

, mglb c2b0
and map of Asplund’s distances As4+b0 are

equal to:

c1b0
f = (δDb

f)4− b0, (36)

c2b0
f = (εDb

f)4− b0, (37)

As4
+

b0f = δDb
f 4− εDb

f. (38)

With a flat probe b, the map of Asplund’s distances is a LIP difference
between a dilation δDb

and an erosion εDb
of the function f by the domain Db

of the structuring element b. It is similar to a morphological gradient with a
LIP difference.
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5.3.3. General case of a structuring function
The different mappings have the following morphological properties.

Proposition 8. The mlub c1b
(resp. mglb c2b

) is a dilation (resp. an erosion)
in the same lattice L1 = L2 = FM ,≤).

Remark 10. In equation 35, one notice that the map of LIP-additive Asplund’s
distances is a LIP-difference between a dilation and an erosion, which corre-
sponds to the LIP version of the morphological gradient. This similarity shows
that the map of Asplund’s distances acts as an operator of derivation.

Let us establish the relation between the dilation c1b
or the erosion c2b

with the dilation δb or the erosion εb (with an additive structuring function),
respectively. For this purpose, a bijective mapping (i.e. an isomorphism) is
needed between the lattice RD of δbf , or εbf , and the lattice FM of c1b

f ,
or c2b

f . Jourlin and Pinoli [59], Navarro et al. [47] defined this isomorphism
ξ : FM → RD and its inverse ξ−1 by:

ξ(f) = −M ln (1− f/M) (39)

ξ−1(f) = M(1− exp (−f/M)). (40)

Remark 11. As ξ−1 and ξ are increasing bijections, they distribute over infima,
as well as over suprema.

Proposition 9. Given two functions f, g ∈ FM , ξ has the property to transform
the LIP-difference, 4− , into the usual difference, −, ξ(f 4− g) = ξ(f)− ξ(g).

The dilation c1b
(eq. 33) and the erosion c2b

(eq. 34) can therefore be ex-
pressed as:

c1b
f(x) = ξ−1 ◦ ξ(∨h∈Db

{
f(x− h)4− b(h)

}
= ξ−1[∨h∈Db

{ξ(f)(x− h)− ξ(b)(h)}]

= M(1− e−∨h∈Db
{−f̃(x−h)+

˜
b(h)}

) (41)

c2b
f(x) = ξ−1[∧h∈Db

{ξ(f)(x+ h)− ξ(b)(h)}]

= M(1− e−∧h∈Db
{−f̃(x+h))−[−b̃(h)]}), (42)

where ξ(f) = −Mf̃ .

Proposition 10. Let b ∈ T Db be a structuring function and f ∈ FM be a
function. The expressions of their mlub c1b

, which is a dilation, and of their
mglb c2b

, which is an erosion, are equal to:

c1b
f = ξ−1[ξ(f)⊕ (−ξ(b))] = M(1− e−[f́⊕(−´

b)]) (43)

c2b
f = ξ−1[ξ(f)	 ξ(b)] = M(1− e−[f́	b́]). (44)
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Figure 8: (a) The function f is probed on both sides (up and down) by the probe b (in red)
using the LIP-additive law 4+ . The double-probing is depicted at two locations by the red
dashed curves. (b) c1b

f and c2b
f are the mlub and the mglb of f , respectively. As4+b f is the

map of Asplund’s distances between f and b.

f́ ∈ RD is a function defined by f́ = −f̃ = − ln (1− f/M) = [ξ(f)]/M .
Their map of Asplund’s distances is related to the difference between a dila-

tion and an erosion (with an additive structuring function) by:

As4
+

b f = ξ−1[(ξ(f)⊕ (−ξ(b)))− (ξ(f)	 ξ(b))] (45)

= M(1− exp (−[(f́ ⊕ (−b́))− (f́ 	 b́)]))

= M(1− exp (−[δ
−´
b
f́ − εb́f́ ])). (46)

Remark 12. By replacing the dilation and erosion by rank-filters [54] one can
compute the map of Asplund’s distances with a tolerance As4+b,p.

Figure 8a illustrates the double-sided probing of an image f by a probe (or
structuring function) b. The amplitudes of both peaks are related by a LIP-
addition of a constant. In figure 8b, the two deepest minima of the map of
distances of f , As4+b f correspond to the location of both peaks similar to the
probe b. This illustrates the insensitivity of the map of LIP-additive Asplund’s
distances to a variation of light intensity or exposure-time.

6. Experiments and results

In this section, we will discuss the implementation of the maps of distances
and we will illustrate them with simulated and real cases of image acquisition.
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Table 1: Comparison between the durations of the morphological and direct implementations
for the LIP-multiplicative map of Asplund’s distances As4×b , As4×

b,p=95%
and the LIP-additive

maps As4+b As4+
b,p=94%

. The example of figure 9 is used.

As4×b f As4×b,p=95%f As4+b f As4+b,p=94%f

Morphological 1.4 s 4.2 s 1.4 s 4.3 s

Direct 16.1 s 24.6 s 15.4 s 25.5 s

Gain factor 10.9 5.9 11.0 5.9

6.1. Implementation
The maps of LIP-multiplicative and LIP-additive Asplund’s distances of the

image f , As4×b f and As4+b f , respectively, were both programmed in Matlab using
their direct (eq. 10, 28) and morphological (eq. 27, 46) expressions. The same
programming was done for the map of Asplund’s distances with tolerance As4×b,pf
and As4+b,pf of f . Due to the existence in numerous image analysis software (e.g.
Matlab, Python scikit-images) of fast versions of the morphological operations
⊕ and 	 and of rank filters, the morphological implementation is easier and
faster than the direct one. In table 1, the duration of the morphological and
of the direct implementations (with parallelisation) of the maps of Asplund’s
distances without and with tolerance are compared using the example of figure
9. The image size is of 1224 × 918 pixels and the probe contains 285 pixels
(Fig. 9d). The morphological implementation is always faster than the direct
one, with a gain factor lying between 5.9 and 11 (processor Intel R©CoreTM i7
CPU 4702HQ, 2.20 GHz, 4 cores, 8 threads with 16Gb RAM).

6.2. Simulated cases
We evaluate the LIP-multiplicative and LIP-additive maps to detect balls in

a bright image and in two darkened versions obtained by simulation (Fig. 9).
The bright image is acquired in colour with “normal” contrasts - automati-
cally selected by the camera (Fig. 9a) - and converted to a luminance image in
grey-level, denoted f . A first darkened version fdk,4× is obtained by the LIP-
multiplication of f by a scalar λ (Fig. 9b). A second darkened version fdk,4+
is obtained by the LIP-addition of a constant k (Fig. 9e). Due to the light
reflection at the surface of the balls and of other confounding objects, detecting
the balls is a difficult task in these images. For this purpose, we used a probe
b made of a ring surrounding a cylinder (Fig. 9d). The ring has an external
radius of 15 pixels, a width of 3 pixels, a grey-level value of 18 and the disk has
a radius of 2 pixels and a grey-level value of 190.

Remark 13. As the grey-scale is complemented in the LIP model, the LIP-
multiplicative map As4×bc,pf

c is computed using the image complement f c =

M − f ∈]0,M [D and the probe complement bc. However, the image fdk,4+ ∈
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(a) (b) (c)

(d) (e) (f)

Figure 9: (a) Colour version of the luminance image f and (b) its darkened version fdk,4× =
(λ4× fc)c obtained by the LIP-multiplication (λ = 5) of the complemented image luminance
fc. The balls are detected by a thresholding of (c) the map of LIP-multiplicative Asplund’s
distances of fc with a tolerance p = 95%, As4×bc,pf

c. (d) Probe b. (e) Darkened version
fdk,4+ = k4+ f of the luminance image f obtained by the LIP-addition of k = 4− 100 = −164.10.
The balls are segmented by a thresholding of (f) the map of LIP-additive Asplund’s distances
of f with a tolerance p = 94%, As4+b,pf .

] − ∞,M [D, darkened by the LIP-addition of a constant, presents negative
values and its complement f cdk,4+ ∈]0,+∞[D is outside of the dynamic range
allowed for the map [−∞,M ]D. For this reason, the darkened image fdk,4+ is
not complemented.

In the image f (Fig. 9a) and in its darkened version fdk,4× (Fig. 9b) obtained
by LIP-multiplication, all the balls are detected by a thresholding of their map of
Asplund’s distances As4×bc,pf

c (Fig. 9c). The map is the same for both images f
and fdk,4× because of its invariance to the LIP-multiplication. Similar results are
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obtained for the image f (Fig. 9a), its darkened version fdk,4+ by LIP-addition
(Fig. 9e) and their map of distances As4+b,pf (Fig. 9f) which is invariant to the
LIP-addition. The same parameters of the probe were used for all the images
f , fdk,4× and fdk,4+ . These results show that the maps of Asplund’s distances
are able to detect targets under different illumination conditions modelled by
the LIP-multiplication 4× or the LIP-addition 4+ .

6.3. Real cases
The maps of LIP-additive and LIP-multiplicative Asplund’s distances are

then illustrated on real images. For a better visual interpretation, the results
are presented with colour images even if the processing is made using their
luminance.

6.3.1. LIP-additive metric: images acquired with a variable exposure-time
In figure 10, the same scene is captured with three different camera exposure-

times (or shutter speeds). This gives three images with different brightnesses:
a bright one f (Fig. 10a), a dark intermediate one fdk1 (Fig. 10b) and a dark
one fdk2 (Fig. 10c). The scene is composed of bright balls on a multicolour
background with other smaller balls acting as confounding objects. In order to
make the ball detection more arduous, the camera is not exactly in the same
position to capture the images. Moreover, the balls are of different colours,
with different backgrounds and present several reflections. A disk of diameter
55 pixels is manually selected inside a ball of the bright image f (Fig. 10a) in
order to serve as a probe function b. A map of Asplund’s distances is computed
between the complement of each of the three images and the same probe b
using the same tolerance parameter p = 70%. In the three distance maps
of images As4+bc,pf

c (Fig. 10d), As4+bc,pf
c
dk1

(Fig. 10e) and As4+bc,pf
c
dk2

(Fig. 10f),
one can notice that the amplitudes are similar. This is caused by the low
sensitivity of the LIP-additive Asplund’s metric to lighting variations due to
different exposure-times. In order to extract the location of the large balls,
the maps of the dark intermediate image As4+bc,pf

c
dk1

and of the dark image
As4+bc,pf

c
dk2

are segmented using the same technique - a thresholding (at 37th

percentile) and a reconstruction of the regional h-minima [50] - followed by a
morphological post-processing (see remark in supplementary materials). Such a
technique allows to detect all the large balls in both dark images fdk1 (Fig. 10b)
and fdk2 (Fig. 10c), using the same probe b extracted in the bright image f
(Fig. 10a). This illustrates the robustness of the map of LIP-additive Asplund’s
distances to different exposure-times.

The map of LIP-additive Asplund’s distances is also useful to detect moving
objects. In figure 11, a white disk with patterns is mounted on a turn table of a
record player. The patterns include four small coloured disks and confounding
shapes (i.e. eagles). First of all, an image f with good contrasts is captured with
an appropriate exposure-time, 1/13 s (Fig. 11a). In this image, a circular probe b
is selected inside a coloured disk. The record player is then started up at a speed
of 45 tours/min and two images are captured. The first image fmov,bl, which
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Figure 10: (a) Bright image f acquired with an exposure-time of 1/5 s. The probe function b
is shown by the white arrow. (b) Ball detection in a dark intermediate image fdk1

(exposure-
time of 1/80 s). (c) Ball detection in a dark image fdk2

(exposure-time of 1/160 s). (d) Map
of LIP-additive Asplund’s distances As4+bc,pf

c of the image f , (e) map As4+bc,pf
c
dk1

of the image
fdk1

and (f) map As4+bc,pf
c
dk2

of the image fdk2
. The tolerance parameter p is set to 70 %.

is acquired with the same exposure-time as the one of f , is correctly exposed
but blurred (Fig. 11b). As it is blurred, it is useless to detect the coloured
disks. A second image fmov,dk is acquired at a shorter exposure-time of 1/160
s. This second image is not blurred but darker than f (Fig. 11c). The map of
LIP-additive Asplund’s distances of its complement, As4+bc,pf

c
mov,dk (Fig. 11e), is

useful for the detection of the coloured disks. Those are detected by finding the
regional minima of the map with sufficient height using the h-minima transform
[50]. The regional minima with too large or too small area are also removed.
By comparing the map of the moving disk image As4+bc,pf

c
mov,dk (Fig. 11e) to the

map of the fixed disk image As4+bc,pf
c (Fig. 11d), one can notice that they both

present similar shapes and amplitudes although the images f and fmov,dk are
captured with different conditions. In particular, the kinetics of the scene are
different because the disk is fixed or turning, and the lighting conditions differ
significantly because the exposure-times are varying by a factor 12.

Figure 10 shows the robustness of the LIP-additive Asplund’s metrics to
intensity variations caused by variable exposure-times. Figure 11 shows its effi-
ciency to detect moving objects in dark images acquired with a small exposure-
time which is necessary to capture a fixed view of the object. Such cases occurs
in many applications like medical images [16] or industry [60, 61]. E.g. in indus-
trial control the objects are often presented to the camera on a conveyor (linear,
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(d) (e)

Figure 11: (a) Image f of the fixed object acquired with an exposure-time of 1/13 s. The probe
function b is delineated in white. (d) Map of Asplund’s distances As4+bc,pf

c of the complement
of f . (b) Blurred image fmov,bl of the moving object acquired with the same exposure-time
of 1/13 s. (c) Dark image fmov,dk of the moving object acquired with a short exposure-time
of 1/160 s. The balls (delineated in white) are detected by finding the regional minima of
its (e) map of LIP-additive Asplund’s distances As4+bc,pf

c
mov,dk. For each map, the tolerance

parameter p is set to 95%.

circular, etc.) whose speed varies with the production rate.

6.3.2. LIP-multiplicative metric: images acquired with a variable absorption of
the medium

The independence of the map of LIP-multiplicative Asplund’s distances to
light variations due to different absorption (or opacity) of the object is verified
with a montage we made. It is composed of a transparent tank. On one of
its sides a paper with motives is stuck. On the opposite side, a camera is
disposed to capture an image of the paper through a medium composed of
the tank and its contents: a green colourant diluted into water. Three images
fΓ (Fig. 12a), f3Γ (Fig. 12b) and f12Γ (Fig. 12c) are acquired for increasing
concentrations of the colourant: Γ, 3Γ and 12Γ. One can notice that the image
brightness decreases with the increase of the colourant concentration. A circular
probe b is manually selected in the brightest image fΓ in order to detect similar
shapes in the two other images f3Γ and f12Γ. A map of Asplund’s distances is
computed on the complement of each image with the same probe b and the same
tolerance parameter p = 90%. One can notice that the three maps of images
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Figure 12: (a) Image fΓ acquired with a small concentration, Γ, of colourant. The probe
function b is delineated in white. (b) Ball detection in an image f3Γ acquired with an inter-
mediate concentration, 3Γ, of colourant. (c) Ball detection in an image f12Γ acquired with a
high concentration - 12Γ - of colourant. (d) Map of LIP-multiplicative Asplund’s distances
As4×bc,pf

c
Γ of the image fΓ. (e) Map As4×bc,pf

c
3Γ of the image f3Γ. (f) Map As4×bc,pf

c
12Γ of the

image f12Γ. The tolerance parameter p is set to 90 %.

As4×bc,pf
c
Γ (Fig. 12d), As4×bc,pf

c
3Γ (Fig. 12e) and As4×bc,pf

c
12Γ (Fig. 12f) present similar

amplitudes. They are segmented by the same thresholding technique - at the
33rd percentile - and two area openings in order to remove the too small and
too large regions. The selected regions are then dilated for display purpose.
One can notice that all the disks are detected in the two darkest images f3Γ

(Fig. 12b) and f12Γ (Fig. 12c) using the probe b extracted in the bright image
fΓ. These results show the low sensitivity of the maps of LIP-multiplicative
Asplund’s distances to light variations caused by different absorptions. Such a
situation occurs in images acquired by transmission (e.g. X-rays, tomography,
spectrophotometry, etc.) [27].

Remark 14. In this section, probes with a circular invariance have been used
to facilitate the presentation. However the Asplund’s metrics are also efficient
to detect non-circular objects with adapted probes. In addition, these metrics
could be compared to the SIFT detector which is robust to lighting variations.
The comparison has not been done in the sequel, because the robustness to
lighting variations of the SIFT detector is not based on a physical law contrary
to the Asplund’s metrics. However, Noyel et al. [16] have shown that enhancing
the contrast of images improves registration methods based on SIFT points [62].
We could therefore develop a SIFT in the LIP framework. These findings will
be the studied in a future paper.
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7. Conclusion

We have therefore successfully presented a new framework of pattern match-
ing robust to lighting variations between low-contrast and high-contrast images.
It is composed of two metrics. Firstly, the LIP-multiplicative Asplund’s metric
is robust to illumination changes due to variations of the object absorption or
opacity. Secondly, the LIP-additive Asplund’s metric is robust to illumination
changes caused by variations of the source intensity or of the camera exposure-
time. Both metrics are respectively based on the multiplicative and the additive
laws of the LIP model which give them strong optical properties. Both func-
tional metrics are thereby theoretically insensitive to specific lighting variations.
They extend to images the property of insensitivity to object magnification of
the Asplund’s metric between binary shapes [23, 24]. After a presentation of
the functional metrics and their properties, we have introduced robust to noise
versions. We have demonstrated that the maps of Asplund’s distances between
an image and a probe function are composed of Mathematical Morphology op-
erations. Both maps of distances are especially related to the morphological
operations of dilations and erosions for functions. Such a relation facilitates
the programming of the maps of distances because these operations exist in
numerous image processing libraries. The properties of both metrics have been
then verified with simulated and real cases. Results have shown that the maps
of LIP-multiplicative and LIP-additive Asplund’s distances are able to detect
patterns in images acquired with different illuminations, caused by a stronger
absorption of the object or by a shorter camera exposure-time, respectively.
Importantly, the probe can be extracted in a highly contrasted image and the
detection performed in a lowly contrasted image. Such properties pave the way
to numerous applications where illumination variations are not controlled: e.g.
in industry [61], medicine [63, 16], traffic control [64], safety and surveillance
[8], imaging of moving objects [60], etc. In the future, these metrics will be
extended to the analysis of colour and multivariate images starting from the
preliminary ideas developed by Noyel and Jourlin [55, 65].

Appendix A.

The appendix is organised as follows. We will present the proofs of the
propositions related to the LIP-multiplicative Asplund’s metric (Prop. 1 and 5)
and to the LIP-additive metric (Prop. 6, 7, 8 and 9).

Appendix A.1. Proofs of propositions 1 and 5 related to the LIP-multiplicative
Asplund’s metric

Proof of proposition 1, p. 9. c1 and c2 can be expressed as: c1 = ∨x∈D{γ(x)}
and c2 = ∧x∈D{γ(x)} with the function γ = f4− g, γ ∈ FM =]−∞,M [D. There
always exists a constant k = ∧x∈D{γ(x)} such that γ4− k lies in I = [0,M [D and
thus is an image. Let us define ck1 = ∨x∈D{γ(x)4− k} and ck2 = ∧x∈D{γ(x)4− k}.
ck1 and ck2 lie in [0,M [ and ck1 ≥ ck2 . There is: d4+As(f, g) = ∨x∈D{γ(x)} 4−
∧x∈D{γ(x)} =
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∨x∈D{γ(x)4− k}4− ∧x∈D{γ(x)4− k} = ck14− ck2 . Therefore, d4
+

As(f, g) lies in [0,M [
as the LIP-difference between ck1 and ck2 ∈ [0,M [, where ck1 ≥ ck2 .

Proof of proposition 5, p. 16 [35]. Let f ∈ I be na image and b ∈ T Db be a
probe. Using equations 15, 21 and 23 and knowing that f̃ ≤ 0, there is: ∀x ∈ D,
λbf(x) = ∨−h∈Db

{f̃(x − h)/b̃(−h)}. This leads to λbf = (−f̃)⊕̇(−1/b̃) =

exp (ln (−f̃)⊕ (− ln (−b̃))) = exp (f̂ ⊕ (−b̂)).
Similarly, there is µbf = (−f̃)	̇(−b̃) = exp [f̂ 	 b̂]. The previous expressions of
λbf and µbf are used into equation 17 to obtain:
As4×b f = ln (exp [f̂ ⊕ (−b̂)]/ exp [f̂ 	 b̂)]) = [f̂ ⊕ (−b̂)] − [f̂ 	 b̂] = δ

−ˆ
b
f̂ − εb̂f̂ .

Appendix A.2. Proofs of propositions 6, 7, 8 and 9 related to the LIP-additive
Asplund’s metric

Proof of proposition 6, p. 19. ∀x ∈ D, ∀h ∈ Db, ∀c ∈ FM , there is: c(x)4+ b(h) ≥
f(x+ h)⇔ c(x) ≥ f(x+ h)4− b(h).

Equation 31 becomes therefore: c1b
f(x) = inf{c(x), c(x) ≥ f(x + h) 4−

b(h), h ∈ Db} = ∨{f(x + h)4− b(h), h ∈ Db}. The last equality is due to the
complete lattice structure. In a similar way, equation 32 becomes: c2b

f(x) =
sup{c(x), c(x) ≤ f(x+ h)4− b(h), h ∈ Db} = ∧{f(x+ h)4− b(h), h ∈ Db}.

Proof of proposition 7, p. 19. Let b = b0 ∈ (T )Db be a flat structuring element
(∀x ∈ Db, b(x) = b0). Knowing that 4− b0 preserves the order ≤ (i.e. it is
an increasing operator), equations 33 of c1b

and 34 of c2b
can be simplified:

∀x ∈ D, c1b0
f(x) = ∨{f(x+ h)4− b0, h ∈ Db} = ∨{f(x− h),−h ∈ Db} 4− b0 =

δDb
f(x)4− b0. Similarly, c2b0

f(x) = ∧{f(x+ h), h ∈ Db} 4− b0 = εDb
f(x)4− b0.

Equation 38, of the map of distances, is deduced from equation 35 and the
expressions of c1b0

f and c2b0
f .

Proof of proposition 8, p. 20. As 4− b(h) preserves the order ≤ (i.e. it is an
increasing operator), there is:
∀f, g ∈ FM , ∀x ∈ D, c1b

(f ∨ g)(x) = ∨h∈Db
{((f ∨ g)(x + h)) 4− b(h)} =

∨h∈Db
{(f(x + h) 4− b(h)) ∨ (g(x + h) 4− b(h))} = [∨h∈Db

{f(x + h) 4− b(h)}] ∨
[∨h∈Db

{g(x+ h)4− b(h)}] = c1b
f(x) ∨ c1b

g(x). In addition, ∀x ∈ D,
c1b

(O)(x) = c1b
(f−∞)(x) = ∧h∈Db

{c(x), c(x) ≥ (−∞(x+ h)4− b(h))} =

∧h∈Db
{c(x), c(x) ≥ M −∞−b(h)

M−b(h) } = −∞ = O(x), because b(h) ∈] − ∞,M [.
Therefore c1b

is a dilation (Def. 4.2, p. 10).
Similarly, ∀f, g ∈ FM , c2b

(f ∧ g) = c2b
(f) ∧ c2b

(g). In addition, ∀x ∈ D,
c2b

(I)(x) = c2b
(fM )(x) = ∨h∈Db

{c(x), c(x) ≤M(x+h)4− b(h)} = ∨h∈Db
{c(x), c(x) ≤

M M−b(h)
M−b(h)} = ∨h∈Db

{c(x), c(x) ≤M} = M = I(x). Therefore, c2b
is an erosion

(Def. 4.1, p. 10).

Proof of proposition 9, p. 20. Let f, g ∈ FM be two functions. There is:
ξ(f 4+ g) = −M ln (1− (f 4+ g)/M) = −M ln ((1− f/M)(1− g/M)) =
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−M ln (1− f/M)−M ln (1− g/M) = ξ(f)+ξ(g), ξ(4− g) = −M ln (1 + g/(M − g)) =
−M ln (M/(M − g)) = M ln (1− g/M) = −ξ(g), and ξ(f4− g) = ξ(f4+ (4− g)) =
ξ(f) + ξ(4− g) = ξ(f)− ξ(g)

Appendix B. Supplementary materials

The supplementary materials to this article include: i) a video abstract,
ii) the proofs of propositions 2, 3 and 4, iii) the verification of the properties of
the LIP-additive Asplund’s metric, iv) the proofs of the robust to noise metric
invariances and v) details about the illustration section.
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