N

N

Studying co-running avionic real-time applications on
multi-core COTS architectures
Jingyi Bin, Sylvain Girbal, Daniel Gracia Pérez, Arnaud Grasset, Alain
Meérigot

» To cite this version:

Jingyi Bin, Sylvain Girbal, Daniel Gracia Pérez, Arnaud Grasset, Alain Mérigot. Studying co-running
avionic real-time applications on multi-core COTS architectures. Embedded Real Time Software and
Systems (ERTS2014), Feb 2014, Toulouse, France. hal-02271379

HAL Id: hal-02271379
https://hal.science/hal-02271379
Submitted on 26 Aug 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02271379
https://hal.archives-ouvertes.fr

Studying co-running avionic real-time applications
on multi-core COTS architectures

Jingyi Bin*T, Sylvain Girbal®, Daniel Gracia Pérez, Arnaud Grasset’ and Alain Merigot*
*Fundamental Electronic Institute, France
TThales Research & Technology, France

Abstract—For the last decades, industries from the safety-
critical domain have been using Commercial Off-The-Shelf
(COTS) architectures despite their inherent runtime variability.
To guarantee hard real-time constraints in such systems, design-
ers massively relied on resource over-provisioning and disabling
the features responsible for runtime variability.

The recent shift to multi-core architectures in the embedded
COTS market worsened the runtime variability problem as
contention on shared hardware resources brought new variability
sources. Additionally, hiding this variability in additional safety
margins as performed in the past will offset most if not all the
multi-core performance gains.

To enable the use of multi-cores in this domain, it has become
essential to finely characterize at system level the application
workload, as well as the possible contention on shared hardware
resources.

In this paper, we introduce measurement techniques based on
a set of dedicated stressing benchmarks and architecture hard-
ware monitors to characterize (1) the architecture, by identifying
the shared hardware resources and their associated contention
mechanisms. (2) the application, by identifying which shared
hardware resources it is sensitive to. Such information would
guide us toward identifying which applications can run smoothly
together without endangering individual worst-case execution
times.

I. INTRODUCTION

Industries from the safety-critical domain such as the
avionic, automotive, space, healthcare or robotic industry, have
been using Commercial Off-The-Shelf (COTS) architectures
rather than in-house solutions to reduce both the non-recurring
engineering costs (NRE) and the time-to-market (TTM) [3],
while fitting their exponential needs in performance and func-
tionalities [2], [6], [5], as illustrated by Figure 1.

In the avionic industry, the real-time software embedded
in aircrafts is characterized by a few hundreds of small and
independent applications running together with a few larger
and very communicating applications. Embedded COTS multi-
core platforms are an expected trend for next generation
aircrafts, providing a low-cost opportunity to run concurrently
these small independent applications.

However, as COTS providers are mainly targeting the
consumer electronic market, mostly driven by best-effort per-
formances, the safety-critical industry has to face more and
more runtime variability issues [17], [22].

Concurrently, the safety-critical software is characterized
by stringent hard real-time constraints and missing a single
deadline may have some catastrophic consequence on the user

109 N Mars Explorer
Pathfinder
10° 1 :
- Galileo 350
[l
£
= 107
[
N
w
Q 3
€ 10° 1
o
5 —&— space
10 —e— avionic
3008 —&— automotive
4
1970 1975 1980 1985 1990 1995 2000 2005 2010
Fig. 1. Evolution of code size in space, avionic and automotive embedded

systems

or the environment. Therefore, time predictability is a major
concern, and the safety-critical industry is heavily relying on
resource over-provisioning to mitigate such an unacceptable
deadline-miss risk.

A common practice to guarantee the deadlines of a safety-
critical application with single-core architecture is to determine
the application Worst-Case Execution Time (WCET). This
WCET computation usually relies on analysis tools based
on static program analysis tools [25], [18], detailed hardware
model, as well as measurement techniques through execution
or simulation [11]. However, these analysis techniques and
tools are not currently able to provide an exact computation
of the WCET, only delivering an estimated upper bound,
introducing some safety margins as depicted in Figure 2.

estimated WCET

exact WCET

measured WCET over margin

distribution

safety margin

JA

execution time

Fig. 2. Estimation of the Worst-Case Execution Time, and the over-estimation
problem

A direct extension to the measurement-based analysis to
multi-core COTS processors would involve several co-running
applications. However this shift worsened the runtime vari-
ability problem as contention on shared hardware resources
bring new variability sources even in the case of independent

5
!
5
!

4
1

perf. slowdown over standalone median runtime
2 3
1 1

perf. slowdown over standalone median runtime
3
1

2

1
1

_a_cféi—sa&

perf. slowdown over standalone median runtime
3
1

===

2 né}ﬁéﬁ

— -

T T
ADPCM
CRC32

T
ADPCM

T T T
an pedestrian
CRC32 radar

Sus:
blowfish patricia

(a)

blowfish

T T T T T
ADPCM FF
CRC32 blowfish

(©

T T T
an pedestrian
radar

T T T
an pedestrian SUuS:
radar patricia

 sus:
patricia

Fig. 3. Runtime variability over 600 iterations of reference applications running (a) standalone, (b) concurrently with 2 benchmarks stressing the shared memory

path, and (c) concurrently with 7 benchmarks stressing this resource.

co-running applications.

Despite all the improvements in the WCET estimation
domain [14], [7] over the last decades, the over-estimation re-
mained mostly constant as the predictability of the architecture
decreased [25], thus making the use of WCET analysis tools
difficult for real industrial programs running on multi-core
COTS architectures [13], [15]. Possible interference on shared
hardware resources among co-running tasks significantly in-
creases the complexity of timing analysis, forcing it to have
a full knowledge of co-running tasks at software level, and
detailed resource contention models at hardware level.

In Figures 3(a, b, ¢), we show that hiding the worst-case
variability with additional safety margins as it was performed
in the past is not an option for multi-core COTS. Figure
3(a) illustrates, with distribution violin plots [12], the runtime
variation for some applications running standalone on 8-core
barebone platform. To mimic a single-core configuration, the
other cores are idle. In such a configuration the runtime-
variation remains very low (below 1%).

However, when introducing co-running benchmarks, the
runtime variation of each application around the previously
computed standalone median is increasing rapidly as depicted
in Figure 3(b) showing runtime variation in presence of 2 co-
running benchmarks stressing the shared memory path. The
impact on the average runtime is not significant, however, for
the worst-case, we observe an average variation of 71% and a
maximum variation of 361%.

Increasing the number of co-runners as depicted in Figure
3(c) furthermore degrades the runtime variation, up to an
average variation of 87% on the worst case and a maximal
variation of 396%. Additionally, the average and minimal
execution times start to be impacted as well, with a variation
of 54% on the average runtime.

Another study [16] from EADS also exhibits that using
actual WCET analysis techniques for multi-cores would force
the industry to multiply the WCET by a value close to the
number of cores being used, providing no performance benefits
over single-cores.

As considering the impact on such a large runtime variation
would lead to unsustainable WCET margins far above the
performance benefits of multi-core systems, it is critical to

control this variation by providing a detailed characterization
on how each co-running application is behaving relatively to
the shared hardware resources.

In this paper, we present measurement techniques allowing
us to (1) characterize the underlying architecture, identifying
the shared hardware resources responsible of most of the
runtime variation, (2) identify which shared hardware resource
each application is sensitive to, and (3) predict which ap-
plications could run smoothly together without endangering
individual worst-case execution times.

II. MEASUREMENT TECHNIQUES

In this section we present two different measurement
metrics and tools: Hardware Monitors and Stressing Bench-
marks. These metrics allowed us to study and characterize the
behavior of co-running independent applications, as well as
the behavior of the contention mechanisms of the multi-core
architecture.

A. Hardware monitors

Most recent architectures include some special on-chip
hardware, the hardware Performance Monitoring Counters
(PMC), that provides to the system accurate information of
hardware events. Once collected from special purpose reg-
isters counting the occurrence of architectural events, this
information provides performance information [21] on the
applications, the operating system, and the underlying hard-
ware behavior. Therefore, it is usually used to guide the
programmer into better tuning the applications to maximize
their performance through various optimizations [20], [1].

This monitoring information is not only useful for per-
formance tuning, but also to characterize workloads, allowing
us to quantify hardware resource utilization at application
level and providing some clues to better understand runtime
variability [4]. In a multi-core context, hardware monitors are
an opportunity to observe contention phenomenons at the level
of the shared hardware resources.

The real source of the variation could however remain
hidden. For example, in current processors we can monitor
the number of cache misses that an application has, but we

cannot distinguish between cache misses inherent to applica-
tion behavior and cache misses caused by the interaction with
other applications accessing the same shared cache [26].

The special purpose registers available from the micro-
architecture instruction-set are confined to count on-die related
events. In some architectures, it would imply not being able to
gather some events related to the last cache level, as well as the
interconnect, and the DDR controller. As contention on these
resources can actually be the bottleneck of the architecture, we
cannot afford not collecting this information.

However for recent embedded architectures, the integrators
are proposing some monitoring facilities at platform level.
These monitoring features are most of the time dedicated to
debugging through proprietary hardware probes but allow to
count events at all the platform levels, including the number
of DRAM refresh, page switch, and so on. This ability is a
proof of the existence of some additional (most of the time
undocumented) platform-level hardware counters that could be
exploited through some reverse-engineering.

B. Stressing benchmarks

To better characterize concurrent accesses to shared hard-
ware resources, we defined a large set of stressing benchmarks,
each dedicated at stressing a particular potentially shared
hardware resource.

On one hand, solely running a set of stressing benchmarks
on the target system allows us to characterize the underlying
architecture, by identifying which resources are effectively
shared, as well as providing some information related to undis-
closed features, such as resource-level contention mechanisms.

On the other hand, by selecting some of these stressing
benchmark as co-runners for an application and studying
the performance impact on the application, we are able to
characterize how a black-box application behaves relatively
to a particular hardware resource.

As an extension of the work proposed in [19], each
resource stressing benchmark is dedicated at introducing a
high-load onto one of the processor hardware resources. As
a consequence, the resource-stressing benchmark is providing
a good upper-bound estimate of the potential slowdown that
a set of simultaneously-running applications may cause to the
target application with respect to the studied resource.

Stressing benchmarks are directly written in assembly code
to minimize the impact on the other resources the stressing
benchmark do not aim at stressing. Even though stressing a
single resource is not necessarily possible (like stressing the
L3 cache without impacting the L1 and L2 caches), we tried to
reduce the effect by minimizing the number of lines impacted
in the L2 cache while stressing the L3.

We separated stressing benchmarks into different categories
corresponding to the part of the architecture these benchmarks
target: pipeline-level benchmarks (stressing the FPU unit, the
load/store unit, the branch unit, ...), the i/o level (stressing pci-
e, ethernet, or serial interfaces), the memory level (stressing
on-die caches, platform caches, or the ddr-controller)

C. Representing runtime variability

In this paper, we are considering safety critical applications
that requires to control their runtime variability to ensure
that their worst execution time is below the hard real-time
deadlines.

Runtime variability however, is not only characterized by a
minimum and a maximum runtime: The statistical distribution
of the runtimes also provides some useful information such as
the rarity of the worst case, the distribution relatively to the
median runtime, ...

To represent this distribution of runtimes, we relied to
violin plots [12] such as the one presented in Figure 4.

A

maximum
runtime

median
runtime

observed runtime
variability

minimum

(o runtime

Y

T T
Application A Application B

Fig. 4. Example of violin plot to represent runtime distribution of two
different applications

Figure 4 is composed of two violin plots providing some
information about the runtime distribution of two applications
A and B. For each application the variability is characterized
by the bottom-most point and the top-most point that corre-
spond to the minimum and maximum observed running times.
The black dot in the violin represents the median running time.
Finally the width of the plot for a particular runtime (r in the
figure) is proportional to the density of the runtime population
with such a runtime.

III. METHODOLOGY

As previously described, safety-critical systems typically
consist on a multitude of independent applications. To maintain
/ reduce NRE costs while improving usage / performance em-
bedded COTS multi-cores are the targeted hardware solutions.

Especially, the avionic domain is relying a lot on sub-
contracting and is facing an important challenge during the
integration phase, dealing with the integration of both gray-
and black-box components, while part of the hardware being
undisclosed as using COTS architecture.

Our objective is therefore to characterize how each appli-
cation is individually accessing each potential shared hardware
resource, to anticipate at integration time, how these applica-
tions will impact each other when running concurrently on the
multi-core.

During our study depicted by Figure 5, we started with
characterizing the architecture to identify the shared hardware
resources of the system. We then focused on characterizing the
applications to identify which resources each application was
accessing.

(" hardware monitors)
« identify the shared
hardware resources
\ W W W ‘W)

learn undisclosed
{ architecture features

("stressing benchmarks)

pipeline : i/o 1 memory
devices ‘ hlearchy

@

(monitors and stressing)

select adhoc hardware
monitors and stressing
benchmarks subsets

(]
-
=
fre)
Q
(]
5=
=
8]
-
[v]

characterization

benchmarks subsets S + identify the ha_rd\évage
= resources required by
[sB][SB] g = application D
s .0 ,
N J 8 E-) ¢ quantify the ressource
» = - usage
'é application & § * compute the necessary
E@@ D f e & jE resource quota prior
e SEEEIE O to time degradation
T
2 G)|H

Fig. 5. Overview of the analysis process

A. Architecture characterization

The objective of architecture characterization is twofold:
first to identify the effectively shared hardware resources of
the target architecture, and second to discover undisclosed
architecture features (such as the exact structure of the NOC)
that can have a significant impact on runtime and contention.

To perform the architecture characterization analysis, we
first run a particular resource stressing benchmark on the target
multi-core processor in isolation to collect all the hardware
monitor information. We then replicate this stressing bench-
mark up to the number of available cores to collect hardware
monitor information again. Comparing these results allows us
to quantify the contention mechanism of this stressed particular
resource, while reproducing this study for every potentially
shared resource enables us to identify each effectively shared
resource as well as the maximum throughput available on each
of these resources.

Also, varying the deployment pattern of stressing bench-
marks on the architecture enables us to learn undisclosed
architecture features, such as the structure of the interconnect,
the cost of the coherency traffic, the number of shared ports
on a shared cache and so on...

Finally, running all the different stressing benchmarks to-
gether may allow us to identify correlated resources and moni-
tors, as well as constant monitored values. Such information is
useful to discover useless monitors and stressing benchmarks.
For example intituively in a multi-core architecture with dis-
tributed L1 and L2 caches, the monitors counting L1 hits and
misses are useless when studying the impact of an application
running on a core on another application running on a different
core, and so are the stressing benchmarks stressing the L1
cache, as co-running application will never cause a contention
on this resource; on the other side monitors counting the
number of requests send by a core to the interconnect might
cause contention between applications. At the end of this
phase, a subset of hardware monitors and stressing benchmarks
appropriate to the target architecture are identified.

If the target architecture supports different configuration

modes (such as with some caches enabled or disabled, with
optional contention, with some cache partitioning, etc...), then
the whole architecture characterization phase could be repli-
cated for every configuration to identify the most suitable
configuration for a particular application domain.

B. Application characterization

The purpose of the application characterization analysis is
to understand why a particular application performance, and
thus its execution time, varies when the application is running
with other applications in the same multi-core. As most these
variation are due to conflict on shared hardware resources
access, it is critical to identify which of such resources each
application requires, as well as to quantify the usage of the
resource by the application.

To perform the application characterization analysis, we
run each application with every stressing benchmark from
the subset identified by the architecture analysis, gathering
hardware counters information related with shared hardware
resources. Application slowdowns allow us to identify to which
resources this application is sensitive as well as a quantifica-
tion of the sensitiveness thanks to the observed performance
variability.

Also, it enables us to evaluate the minimal share of the
resource the application needs to be provided with, prior to
facing significant performance degradation.

Finally, repeating the process on every application would
allow us to identify applications likely to run concurrently on
the system without significantly degrading individual worst-
case execution times.

IV. EXPERIMENTAL SETUP

This section first presents both the hardware and the soft-
ware configurations we considered for our study; and second
quantifies the associated design space size. The associated
results will be presented in Sections V and VI

A. Hardware configuration

The experiments presented in this paper are performed
with the 8-core Freescale P4080 Development System [9].
This system, depicted in Figure 6 and Table I, is composed
of eight e600mc PowerPC cores coupled with private L1
data+instruction caches and a private L2 unified cache. The
eight cores communicate with two shared off-chip L3 platform
caches through the proprietary CoreNet interconnect. Each L3
cache is itself connected to a dedicated DDR controller.

Core 8 Power Architecture e500mc at 1.5GHz
Pipeline 7-stage pipeline, superscalar, out-of-order
Distributed L1 caches 32kb, 8-way associative, 64-byte line, PLRU
Distributed L2 cache 128kb, 8-way associative, 64-byte line, PLRU
Performance monitors | 162 performance monitor counters

4 special registers per core

1MB, 32-way associative, 64-byte line, PLRU
Two DDR memory controllers

CoreNet Coherency Fabric

FREESCALE P4080 SPECIFICATIONS

Shared L3 cache (x2)
Memory controller
Interconnect

TABLE 1.

Hardware monitors. Each e600mc PowerPC core provides
162 different performance monitors, and has the ability to

%y 64-bit
—> DDR2IDDR3
& o QorlQ P4080 Memory Controller
h -
64-bit
—> DDR2DDR3

DCache I- (}ume Memory Controller
. }
- s
Security Coherency Fabric
<
Monitor PAMU PAMU Unit
Intemal
BootROM] ¢ ¢
I Fams s
Reowe - - -
Parse, Classify, | Parse, Classiy, Watchpoint
s Distribute Distibute Cross
Trigger
LTS Buter Bufer
-“ Perf | CoreNet
1GE | 1GE 1GE | 16E Monitor | Trace
-
-4; 1GE 1GE 1GE 1GE Aurora
oo~ Y VY v vy v

18-Lane 5-GHz SERDES

Fig. 6. Freescale P4080 block diagram

collect 4 of them at a given time thanks to 4 performance
monitor registers.

Besides core-related performance monitors, the P4080 plat-
form provides us with a set of poorly documented memory-
mapped registers allowing us to monitor interconnect activity,
L3 cache and DDR accesses.

Architecture tuning. Most multi-core COTS provide some
amount of configurability to adapt users’ requirements. For
example, caches help to reduce data transfer time between
cores and memory to improve overall system performance, but
they also bring performance variability when they are shared
among co-running applications. To improve predictability,
most embedded architectures allow to simply disable caches,
some provide some degree of hardware partitioning, and few
allow the caches to be configured as SRAM memories.

Our P4080 platform provides us with two shared L3
caches each connected to a dedicated DDR controller. Beyond
allowing us to enable one or both of the L3 cache / DDR
controller pairs, the P4080 L3 cache offers some hardware
partitioning support, allowing us to shift from a cache fully
shared by the cores to a cache where each core has a dedicated
pre-allocated memory space. While the fully shared cache will
in principle provide better overall performance by better fitting
asymmetric load balancing scenarii, the pre-allocated cache
will provide better predictability by preventing evictions due
to other cores.

In the context of safety-critical systems, the optimal con-
figuration is characterized by low performance variability and
sufficient average performance. However, it is not obvious
to intuitively infer the most suitable configuration. For in-
stance, partitioning may degrades performance below accept-
able throughput, and activating the second L3 cache / DDR
controller only makes sense if it does not compromise the
predictability of the interconnect.

We have selected four configuration candidates described
in Table II to be challenged for performance and predictability.
The experiments realized to determine the optimal configura-
tion for our safety-critical context is described in Section V-B.

configuration level 3 cache #ddr
size associativity | controllers

single controller 1MB, shared by 8 cores 32-way 1
non-partitioned
single controller 128KB, per core 4-way 1
partitioned
dual controller | 2x(1MB, shared by 4 cores) 32-way 2
non-partitioned
dual controller 256KB per core 8-way 2
partitioned

TABLE II. FOUR CONFIGURATIONS OF P4080

B. Software configuration

As a proxy for various independent applications co-running
on a safety critical system, we used a subset of the MiBench
benchmark suite [10], a set of embedded benchmarks from
various domains of the embedded market: automotive, con-
sumer, office, networking, security and telecommunication.
We selected a subset of 7 mibench benchmarks: ADPCM,
CRC32, FFT, blowfish, SHA, patricia, and susan to be ported
for barebone testing on the P4080 hardware platform, elimi-
nating operating system requirements such as system calls and
dynamic memory management.

We completed this suite of small benchmarks with two
larger industrial-level applications developed internally at
Thales including additional hard real-time constraints: 1) an
airborne radar application based on the Space-Time Adaptive
Processing (STAP) algorithm [24] to detect targets in the
presence of both clutter and jamming. 2) a pedestrian detection
application based on the Viola & Jones shape recognition
algorithm [23] to detect pedestrian on security camera footage.

All the applications presented in this paper were run
barebone on the platform, without any operating system to
minimize variability. We eliminated preemption which has to
be strictly controlled for safety-critical systems, by having each
core running a unique benchmark.

Applications were loaded using a hardware debug probe
managed through the CodeWarriork [8] software provided by
Freescale.

C. Design space

Considering the available number of hardware monitors
(~ 200), the total number of stressing benchmarks (~ 1000),
and the total number of possible mappings on an 8-core
architecture the the experimental space of the methodology
presented in Section III can be quite large.

Let A be the number of applications to characterize, .S the
number of stressing benchmarks, M the number of available
hardware monitors, C' the number of cores, I the number of
iterations of repeating each experimental scenario, and N the
number of monitor each core is able to measure at once. The
total number of possible experiments is:

%(AMC(S +1)© D 4 SMO(S +1) €7

Considering that average execution time of a single ex-
periment to be 100ms, and the order of magnitude for the
values presented in Table III, it would requires us 10'° years
to exhaust such a design space.

Applications A 9
Stressing benchmarks S 1000
Hardware monitors M 200
Cores (¢} 8
Iterations | 100
Performance monitor registers N 4

TABLE III. ORDER OF MAGNITUDE OF THE DESIGN SPACE

To deal with such a design space we setup an automatic
framework. As depicted in Figure 5 we perform an overall ar-
chitecture characterization prior to performing the application
characterization.

Beyond the characterization aspect presented in Section V,
the architecture characterization phase also allows us to filter
out unnecessary hardware monitors and stressing benchmarks
by identifying those that are not related to performance vari-
ability. For instance, hardware monitors and stressing bench-
marks related to the L1 data cache were filtered out by our
framework, as the L1 data cache is not a shared hardware
resource and therefore not responsible for performance vari-
ability in a co-running context.

Beyond this first step towards the reduction of the design
space size, the Section V and the Section VI will show how
more detailed characterization of both the architectures and the
applications helps to furthermore reduce this space.

V. ARCHITECTURE CHARACTERIZATION RESULTS

This section regroups all the architecture characterization
related results. We present first how our methodology allowed
us to identify undocumented architecture features, and second
the experiments that enabled us to select the most suitable
hardware configuration for safety-critical real-time applica-
tions. Finally, we detail the experiments that allowed us to
quantify each hardware resource availability.

A. Identifying undocumented architecture features

Embedded COTS architectures come with detailed ISA
and block diagram, but many aspects of the micro-architecture
remain undisclosed such as the exact SoC network topology,
contention, arbitration and prefetcher mechanisms. If such
information is not necessary to guarantee correct functional
behavior, it could have a significant impact on the timing
behavior, that is as much important for safety-critical real-time
systems.

The architecture characterization phase is an opportunity
to learn about these undisclosed features and mechanisms.
More particularly, our experimental P4080 platform features
a complex CoreNet interconnect to connect all the cores to
two L3 platform caches, each connected to a DDR controller.
The topology of this interconnect has a significant impact on
how the memory traffic of one core will interfere with the
traffic of other cores.

The architecture characterization allows us to quantify the
competition on the CoreNet interconnect resource, as well as
the impact of both the interconnect and the mapping on the
application runtime variability.

To characterize the interconnect, we used the default plat-
form configuration appearing as first row of Table II. By

running and monitoring various stressing benchmarks within
this configuration, we managed to figure out that the eight
cores are organized as two clusters of four cores.

The experiment illustrating this cluster effect is depicted
in Figure 7. It shows the runtime variability of running three
instances of a particular stressing benchmark of the 8-core
architectures, mapping and monitoring the first instance on
core #1, while varying the mapping of the other two instances
on the other available cores.

1.30

1.05

perf. slowdown over standalone median runtime
= - = -
= = N N
o o o (52
1 1 1 1

1.00

(1,4|1,5) (1,%,6) (1,€|5,7) (1,:|*),4) (1,;,0) (1,%,3) (1,6,2)
mapping

Fig. 7. Runtime variability while mapping three instances of a stressing
benchmark on different cores.

Three different distributions can be identified in the figure:
The first one, corresponding to the first three violin plots,
corresponds to mapping the monitored instance alone while
running the two other instances on the other cluster. It ex-
hibits only a small performance degradation with a maximum
of +7.6% and relatively small variance between the three
mappings. The second distribution, illustrated by the next two
violin plots, corresponds to mapping the monitored benchmark
on the same cluster as one of the two other instances and
shows a bigger performance degradation with a maximum
of +15.6% and low variability. Finally, the third distribution,
illustrated by the last two violin plots corresponds to running
all three instances on the same cluster and exhibits the largest
performance degradation and an important variability (from
+16.3% to +23.0%).

As a conclusion, due to the cluster effect, performance vari-
ability of applications is placement dependent for the P4080
platform. However within each 4-core cluster the performance
does not depend on the placement, enabling us to reduce the
number of mapping to be tested, and therefore allowing us to
reduce the overall design space.

B. Identifying the optimal hardware configuration

In Section IV-A we identified several hardware configu-
rations presented in Table II. Selecting the most appropriate
configuration for safety-critical applications is not straightfor-
ward as two criteria have to be maximized: 1) predictability,
ensuring low performance variability, and 2) sufficient minimal
performances assuring the worst case execution time will be
below the application deadlines of the hard real-time system.

To evaluate these different hardware configurations, we
designed a set of stressing benchmarks dedicated at stressing

the different shared hardware resources along the memory path
including the CoreNet interconnect, the L3 caches and the
DDR controllers.

While monitoring the stressing benchmark running on core
#1, we varied the number of stressing benchmarks running on
the remaining cores. Figure 8 shows the distribution of the
observed runtime of core #1 while varying the number of co-
runners, during 200 iterations of these experiments.

8
L

I 2000

g
L

I 1500

!
runtime (ms)

!
runtime (ms)

I 1000

L avaddd]

12 3 4 5 6§ 1 8
number of co-running stressing benchmarks

5
L
L

@
L
8

pert. slowdown over standalone median runtime

perf. slowdown over standalone median runtime
&

_estdi

1 2 3 5 6 7 8
number of co-running stressing benchmarks

(a) one controller, shared (b) one controller, partitioned

I 2000

1500 _

I 1000

runtime (ms)
runtime (ms)

I 500

perf. slowdown over standalone median runtime

perf, slowdown over standalone median runtime
5

oo
K=
po-

-2

)

12 3 a4 s 7 s 12 3 4 5 & 7 8
number of co-running stressing benchmarks number of co-running stressing benchmarks

(c) dual controllers, shared (d) dual controllers, partitioned

Fig. 8. Runtime variability of one of the stressing benchmarks while varying
the number of co-running instances.

The y-axis on the left shows the observed speed down
compared to when running the stressing benchmark standalone
for each particular configuration. The y-axis on the right
correspond to the overall runtime.

Performance variability of the different configurations can
be obtained by comparing the height of the various distribution
violin plots relatively to the left y-axis, tallest plots being
the one with the largest variability. Worst performance of the
various configurations can be observed with the top-most point
of each violin plot. The associated runtime appears on the right
y-axis.

The configurations exhibiting the lowest variability are the
configurations with a partitioned L3 cache appearing in Figures
8(b) and (d). On the other hand, enabling a second L3 cache
and associated DDR controller in configurations in Figures 8(c)
and (d) also allow the system to reduce performance variability
by providing some load balancing, while increasing the overall
performances.

To put it simply, on one hand, activating the second L3
cache and associated controller brings both more predictability
and more performance. On the other hand, shared L3 caches
are providing more performance while partitioned L3 caches
are offering more predictability.

To compare these two last configurations, we collected
worst execution times of Figures 8(c) and (d) into Table IV.
Even by offering a larger variability, the shared configuration
provide better overall performance leading to lower worst

1 2 3 4 5 6 7 8
dual-controller | 34 | 34 | 35 | 61 84 196 | 378 | 355

shared
dual-controller 86 | 86 | 87 | 102 | 126 | 259 | 481 482
partitioned

TABLE IV. WORST EXECUTION TIMES (IN MS) FOR THE MONITORED

CORE WHILE VARING THE NUMBER OF RUNNING BENCHMARKS.

case runtimes than the partitioned configuration. Therefore the
worst case upper bound has the opportunity to be lower for
the shared configuration, making the dual-controller shared
configuration the most efficient setup for our safety critical
system.

Even though we shown that the configuration with two
controllers and shared L3 caches could be the most efficient
for safety critical systems as allowing a lower upper bound
for worst execution time, avionic applications usually favor
partitioning as it allow to minimize interferences, here elimi-
nating eviction due to other co-running tasks. For this reason
we focused on the configuration with two controllers but with
partitioned L3 caches for the remaining of the paper.

Using this configuration is also in cope with the cluster
organization identified in Section V-A, and will benefit from
the same design space reduction options as applications sharing
the same cluster / L3 cache / memory controller will compete
on the same shared hardware resources, whereas application
placed in different clusters will not.

C. Selecting the adequate mapping

Selecting an optimal mapping with the considered dual-
controller partitioned hardware setup is important as the
amount of resource competition between tasks will be tied to
their core placement, large competition for tasks running on
the same cluster, and low to no competition for tasks running
on different clusters.

This optimal mapping largely depends on the application
to be considered. In a system only running critical blackbox
tasks with the same level of criticality, a fair load balancing
of the tasks between the cluster should be privileged.

In a mixed critical system running a few very high-critical
applications together with some lower-critical ones, designers
may want to keep one cluster for the high-critical tasks, and the
other cluster for the low critical tasks. This way, the possible
impact of low-critical tasks on high-critical ones is minimized
by reducing the sources of resouce competition between them.

L
R
L

I 2000 I 2000

3
L

3
L

I 1500 _ [1800

L
&
L

I 1000 I 1000

runtime (ms)
runtime (ms)

5
L

5
L

I s00 I s00

per. slowdown over standalone median runtime

per. slowdown over standalone median runtime

e
1K
po-

**;ﬁziﬁié

12 3 4 5 6 1 8
number of co-running stressing benchmarks

12 3 4 s 6 1 8
number of co-running stressing benchmarks

(a) fair load balancing between tasks
with the same criticality level

(b) load balancing minimizing tasks
running with the high-critical one

Fig. 9. Comparing the runtime variability of different balancing techniques.

Figure 9 presents these both setups. We placed the bench-
mark with highest criticality level in the first cluster, and
then augmented the number of co-running benchmarks. In
Figure 9(a) new benchmarks were placed to ensure fair load
balancing, in Figure Figure 9(b) new benchmarks, considered
of lower criticality were placed first on the other cluster.

While 9(a) corresponding to the fair load balancing exhibit
similar and more regular variabilities, for 9(b) the performance
variability starts to be impaired only when the number of
co-runners do not fit anymore into the second cluster. As a
consequence, mixed-critical system should better not try to
use all the avialable ressources to ensure that the low-critical
traffic does not impact the high-critical one.

D. Quantify resource availability

With a hardware setup selected, the last step of the hard-
ware characterization is to identify the available amount of
each hardware resource, quantifying maximum throughput,
available number of concurrent accesses and so on.

The most important resource to be characterized (and the
least documented) is the CoreNet interconnect connecting the
core clusters to their dedicated L3 cache and DDR controller,
as well as to the other off-chip resources.

Evaluation of the CoreNet interconnect. Very few details
on the topology of the CoreNet interconnect are available, and
the only information available in the P4080 reference manual
is the 0.8 Tbps coherent read bandwidth.

To better characterize this interconnect, we need to figure
out its maximum throughput corresponding to the amount of
traffic needed to saturate the interconnect. Remaining strictly
below this saturation value would allow us to minimize the
variability due to the interconnect, while getting closer to
the saturation value would mean a significant increase of the
runtime.

We also need to figure out how this available bandwidth is
distributed among the clusters. Is the total bandwidth shared
by all the cores, or is this bandwidth partitioned per-cluster?

To collect this information, we set up a dedicated stressing
benchmark performing misses in the L1 and L2 caches to
maximize possible CoreNet usage, and tuned this stressing
benchmark to be able to select the CoreNet stressing level
(the number of CoreNet accesses per CPU cycle). The results
of the related experiments are presented in Figure 10.

Figure 10(a) depicts the correlation between the perfor-
mance variability and the CoreNet load while running four
instances of our stressing benchmark on the first cluster. The
figure clearly shows a brutal degradation of performance when
reaching 0.219 CoreNet transactions per CPU cycle. This
inflection point corresponds to when the interconnect becomes
saturated just before reaching the maximum bandwidth.

Figure 10(b) describes the same correlation when running
eight instances of the stressing benchmark. The performance
degradation now occurs when the number of CoreNet trans-
actions reach 0.406 transaction per CPU cycles. This nearly
doubled value means that the full available CoreNet bandwidth

©
©
L

N N
N >
-
°
L

perf. slowdown over standalone median runtime
N

perf. slowdown over standalone median runtime
N

N
!

H
o
N
o

T T T T T T T T T
0.14 0.16 018 0.20 0.22 0.25 0.30 0.35 0.40

CoreNet transaction per cycle CoreNet transaction per cycle

(a) total CoreNet load while running
4 co-runners in Ist cluster

(b) total CoreNet load while running
8 co-runners in both clusters

,ﬂ
©
L

o
L

pert. slowdown over standalone median runtime
- -
S IS
h

o
L

T T T T T
0.14 0.16 018 0.20 0.22

CoreNet transaction per cycle of clusterl

(c) clusterl CoreNet load while run-
ning 8 co-runners in both clusters

Fig. 10. Performance slowdown variability versus CoreNet load to identify
CoreNet maximum bandwidth

is evenly distributed to both CPU clusters, and that the max-
imum available bandwidth for a single application is 0.221
transaction per CPU cycle.

Finally, in Figure 10(c) we ran again the experiments of
Figure 10(b), while only monitoring the CoreNet accesses of
the first cluster. These results have to be compared to the results
of Figure 10(a), also monitoring a single cluster activity.

The final shape of the curve in Figure 10(c) confirms that
the total bandwidth of the CoreNet network (0.436 transactions
per cycle) is not sufficient to support the maximum bandwidth
of both clusters (2 x 0.221 transactions per cycle).

In a real-time context, to enforce that the activity of a
cluster does not impact the activity of the other one, we
therefore need to make sure that this maximum bandwidth is
not reached.

Evaluation of the DDR. Another important shared hard-
ware resource to consider are the DDR controllers and the
associated DDR memory.

To similarly evaluate the maximum throughput and satu-
ration value of each DDR controller, we shifted back to the
hardware setup with one unique L3 cache and associated DDR
controller. This allowed us define a new stressing benchmark
aiming at stressing the DDR controller with the load of 8
different running cores performing misses in the L3 cache.

Figure 11 shows the correlation between the performance
variability of the benchmark monitored in core #1 and the
number of accesses to the DDR controller. The figure exhibit

N ~ w w
o @ o @«
! L L L

perf. slowdown over standalone median runtime
[
@
L

o
L

T T T T
0.036 0.038 0.040 0.042

DDR access per cycle

Fig. 11. Runtime variability versus DDR controller accesses to identify each
DDR controller maximum bandwidth

again an inflection point when saturating the DDR controller
when reaching 0.042 accesses to the controller per CPU cycle.

VI. APPLICATION CHARACTERIZATION RESULTS

In the previous section we quantified the different available
shared hardware resources. In this section, we will focus
on identifying the resource requirements of the applications.
The application runtime variability while stressing a particular
resource will allow to determine the share of the hardware
resource that each application requires.

We will start by figuring out the optimal number of
iterations required to fully capture the runtime variability of
each application, and then quantify the resource usage of
each application. Such an information about resource usage
could later be used to determine which applications could run
smoothly together.

A. Optimal number of iterations to capture variability

To capture runtime variability of a particular application,
each experiment involving this application has to be run several
times in successive iterations. A large enough number of
iterations will be able to capture the whole runtime variability
of the application, while a not sufficiently large number will
miss the runtime with the rarest distribution. As missing the
worst execution time is not an option, we need to figure out
what is this optimal number of iterations allowing to fully
capture the runtime variability.

To empirically determine this optimal execution iteration
number of a particular application, we setup an experiment
performing successive executions of this concurrently with
a resource-stressing environment. Every 100 iterations, we
collected the runtime distribution since the beginning of the
execution.

Figure 12 shows such runtime distribution results for the
Adpcm benchmark. The shape of a violin plot corresponds to
the captured behavior of the application. Therefore, comparing
the violin plot shapes enables us to figure out if the optimal it-
eration value has been reached. For these experiments, stopped
the iteration counter when we obtained three consecutive
identical violin plots. For Figure 12 the optimal number of
iteration is therefore 1000.

Identifying the optimal number of iterations to capture the
runtime variability of each application allows us to reduce the

1.30

1.25

i
S
L

o
L

ttee

T T T T T T T T 71
100 200 300 400 500 600 700 800 900 1K
number of iterations

per. slowdown over standalone median runtime

1.10

Fig. 12. Runtime variability collected with different number of iterations for
application Adpcm.

overall design space. We applied the same methodology to
identify the optimal number of iterations for every experiment.
We found that the largest number of required iterations was
1000, and the average number was 200.

B. Capturing resource utilization

Section V allowed us to quantify the maximum number
of resource available in the architecture. We now want to
capture the resource requirements of each application from the
software setup described in Section IV-B.

To perform this measurement, we ran each application
standalone, collecting the same hardware monitors as the ones
which allowed us to quantify the CoreNet and the DDR
controller maximum load in Section V-D.

Table V provides the resource usage information for each
application, this usage being computed as a ratio to the
previously quantified saturation value: 0.219 requests per CPU
cycle for the CoreNet interconnect, and 0.042 requests per
CPU cycle for the DDR controller.

average peak average peak
Application CoreNet CoreNet DDR DDR
ADPCM 0.86% 9.04% 4.52% 47.13%
CRC32 0.93% 1.30% 4.77% 6.90%
FFT 0.19% 13.38% 0.38% 31.43%
blowfish 0.14% 0.72% 0.74% 3.74%
SHA 0.25% 2.15% 1.33% 11.19%
patricia 0.07% 0.19% 0.35% 0.97%
susan 0.40% 2.96% 2.01% 15.44%
airborne radar 2.23% 3.06% 11.68% 16.19%
pedestrian detection 0.10% 4.29% 0.48% 22.86%

TABLE V. CORENET AND DDR LOADS OF STANDALONE APPLICATION

Table V lists both the average and peak number of resource
usage for the considered applications. The maximum average
usage remains quite low: 2.23% of the available CoreNet
resources, and 11.68% of the DDR resources. The peak usage
however is significant with Adpcm using as much as 47% of
the available DDR bandwidth.

C. Predicting co-running behavior

With the resource usage of each benchmark and the total
amount of available resources quantified, we can use this
information to predict the behavior of co-running applications.

Looking at the peak usage of the DDR resource for the
ADPCM application if Table V, up to two instances of AD-
PCM should run fine on the same cluster with low performance
impact compared to the standalone version; 3 and 4 instances
should start to exhibit significant speeddown.

110 4

pert. slowdown over standalone median runtime
L

&

I

2 3
number of co-running Adpem

Fig. 13.
ADPCM.

Performance slowdown with difference number of co-running

Figure 13 depicts the performance variability while running
an increasing number of ADPCM instances on a single cluster.
All speeddown are normalized to the standalone execution
time of ADPCM. Running two concurrent instances of the
ADPCM benchmark produces a slight maximum performance
degradation of +2%. This is in cope with the fact that the
DDR controller is just below saturation. When running three
concurrent iterations the maximum increases to +5%, and to
+8% when co-running four different instances.

Even though the impact on runtime behavior is not that
high, the behavior is correctly captured. The reason why the
maximum performance degradation is only 8% is due to the
fact that the average DDR controller usage of ADPCM is only
9%, far away from the peak usage of 47%.

To better capture the impact level on the architecture as
future work, resource usage distribution could be used instead
of peak usage for co-running performance prediction.

VII.

In this paper, we presented a methodology and its associ-
ated automatic framework allowing us to characterize both the
hardware and the safety-critical software relying on hardware
monitors available in multi-core architectures and stressing
benchmarks.

CONCLUSION AND NEXT STEPS

From the hardware point of view, we successfully quan-
tified the shared hardware resource availability, an identified
some undisclosed hardware features. From the software point
of view, we were able to capture the median and peak resource
utilization of the applications, allowing us to perform a first
prediction on co-running application behavior.

REFERENCES

[11 R. Azimi, M. Stumm, and R. Wisniewski. Online performance analysis
by statistical sampling of microprocessor performance counters. In
Proceedings of the 19th international conference on Supercomputing,
ICS °05, pages 101-110. ACM, 2005.

[2] E. Bailey. Study report on anionics systems for the time frame 2007,
2011 and 2020. European Organisation for the Safety of Air Navigation
(EOSA), EUROCONTROL, Nov 2004.

[3] T. G. Baker. Lessons learned integrating COTS into systems. In
Proceedings of the First International Conference on COTS-Based
Software Systems, ICCBSS °02, pages 21-30, 2002.

[4] E. Duesterwald and S. Dwarkadas. Characterizing and predicting
program behavior and its variability. In International Conference on
Parallel Architectures and Compilation Techniques, page 220, 2003.

[5] D. Dvorak and M. Lyu. NASA study on flight software complexity. Jet
Propulsion, page 264, May 2009.

[6] C. Ebert and C. Jones. Embedded software: Facts, figures and future.
Computer, 42(4):42-52, April 2009.

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. Ferdinand, F. Martin, C. Cullmann, M. Schlickling, 1. Stein,
S. Thesing, and R. Heckmann. Program analysis and compilation,
theory and practice. pages 12-52. 2007.

Freescale. CodeWarrior Development Tools. http://www.freescale.com/
webapp/sps/site/homepage.jsp?code=CW_HOMEQ. [Online].

Freescale. P4080 Product Summary Page. http://www.freescale.com/
webapp/sps/site/prod_summary.jsp?code=P4080. [Online].

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. Mibench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Workload Characterization,
2001, WWC °01, pages 3-14, 2001.

R. Heckmann and C. Ferdinand. Verifying safety-critical timing and
memory-usage properties of embedded software by abstract interpreta-
tion. In Proceedings of the conference on Design, Automation and Test
in Europe, DATE’05, pages 618-619, 2005.

J. L. Hintze and R. D. Nelson. Violin Plots: A Box Plot-Density Trace
Synergism. The American Statistician, 52(2):181-184, 1998.

R. Kirner and P. Puschner. Obstacles in worst-case execution time
analysis. In Proceedings of the 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing, pages 333-339, 2008.

R. Kirner, I. Wenzel, B. Rieder, and P. Puschner. Using measurements as
a complement to static worst-case execution time analysis. In Intelligent
Systems at the Service of Mankind, volume 2. Dec. 2005.

E. Mezzetti and T. Vardanega. On the industrial fitness of wcet analysis.
In Proceedings of the 11th International Workshop on Worst Case
Execution Time Analysis (WCET2011). 2011.

J. Nowotsch and M. Paulitsch. Leveraging multi-core computing
architectures in avionics. European Dependable Computing Conference,
pages 42-52, 2012.

PREDATOR. Design for
http://www.predator-project.eu/.

predictability and efficiency.
P. Puschner and A. Burns. Guest editorial: A review of worst-case
execution-time analysis. Real-Time Systems, 18(2/3):115-128, 2000.

P. Radojkovic, S. Girbal, A. Grasset, E. Quifiones, S. Yehia, and F. J.
Cazorla. On the evaluation of the impact of shared resources in
multithreaded cots processors in time-critical environments. TACO,
8(4):34, 2012.

V. Salapura, R. Bickford, M. Blumrich, A. Bright, D. Chen, P. Coteus,
A. Gara, M. Giampapa, M. Gschwind, M. Gupta, S. Hall, R. Haring,
P. Heidelberger, D. Hoenicke, G. Kopcsay, M. Ohmacht, R. Rand,
T. Takken, and P. Vranas. Power and performance optimization at
the system level. In Proceedings of the 2nd conference on Computing
frontiers, CF °05, pages 125-132, 2005.

B. Sprunt. The basics of performance-monitoring hardware. Micro,
IEEE, 22(4):64-71, 2002.

T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quinones, M. Gerdes, M. Paolieri, J. Wolf, H. Casse, S. Uhrig,
I. Guliashvili, M. Houston, F. Kluge, S. Metzlaff, and J. Mische.
Merasa: Multicore execution of hard real-time applications supporting
analyzability. IEEE Micro, 30(5):66-75, 2010.

P. Viola and M. Jones. Robust real-time object detection. In Interna-
tional Journal of Computer Vision, 2001.

M. Wicks, M. Rangaswamy, R. Adve, and T. Hale. Space-time adaptive
processing: a knowledge-based perspective for airborne radar. Signal
Processing Magazine, IEEE, 23(1):51-65, 2006.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, T. Mitra, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, I. Puaut, R. Heckmann, F. Mueller,
P. Puschner, J. Staschulat, and P. Stenstrom. The worst case execution
time problem, overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., pages 36-53, May 2008.

L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell.
Cachescouts: Fine-grain monitoring of shared caches in cmp platforms.
In Proceedings of the 16th International Conference on Parallel Archi-
tecture and Compilation Techniques, PACT *07, page 339, 2007.

