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ABSTRACT

The phenomenology of rotor-casing setups experiencing con-

tact interactions is still poorly understood, particularly when

complex geometries such as centrifugal compressors are in-

volved. Although interaction phenomena have been witnessed

and recorded during industrial experiments, the physical under-

standing of what occurs during these interactions is limited. The

usual design approach is to consider possible modal interaction

points in a linear framework and move these outside of nor-

mal operating conditions by means of minor geometric changes.

Based on this linear approach, no information on the severity of

these interactions is available to the designer. Besides, a possi-

ble interaction point appearing in the linear framework may not

produce any harmful interactions, thereby increasing design re-

strictions.

Based on an in-house numerical strategy previously pre-

sented, contact interactions for a flexible centrifugal compres-

sor from a helicopter engine and rigid casing setup are investi-

gated. By imposing a small deformation on the casing geometry,

blade/casing contact is initiated and subsequent interactions fea-

ture complex phenomena that are analyzed. In comparison to

previous interaction simulations involving axial compressors, a

higher degree of complexity of the numerical simulations stems

from a strong curvature of the blade and very significant blade-

disk coupling. This coupling presents itself towards the trailing

edge where compressor mode shapes indicate a significant com-

ponent normal to the casing surface. Accordingly, these modes

may lead to large amplitude contact forces.

Time simulation results are confronted with experimental ob-

servations, and the consistency of the behavior of the numerical

model with respect to industrial observations is underlined. A

frequency domain post-processing of the results reveals specific

engine order interactions and frequency spectra are plotted in

order to interpret the phenomenon of interest. Such methodology

will enable designers to more efficiently discriminate potential

critical interaction speeds as compared to the classical linear

frequency approach.

INTRODUCTION

Rotor/stator interactions [1] involve a large variety of com-

plex phenomena. In modern turbo-machinery clearances be-

tween the rotor and casing are usually designed at normal op-

erating conditions, allowing for optimal performance without

significant interactions between the two parts. Nevertheless, in

certain cases an engine may experience operating conditions for

which clearances can be overcome and interactions can become

non-negligible. As a result, contacts, such as blade/casing con-

tacts, may occur. Subsequent interaction phenomena — which

are a specific type of rotor/stator interactions — that were also

observed for axial compressors both experimentally [2, 3] and

numerically [4] are still under investigation.

Several references may be found regarding the study of

modal dynamics of centrifugal compressor geometries [5–8].

More recently, a detailed numerical model of the geometry of in-

terest in this paper was presented in [9]. Along with other interac-

tion phenomena such as impeller-vaned diffuser interaction [10],

the understanding of interaction phenomena arising from struc-

tural contacts is a growing field of investigation. Consequences

of these phenomena may result in strong energy vibration be-

tween rotor and stator which may cause damage to the structure,

as seen in [11].

The proposed study focuses on blade/casing contacts within

the centrifugal compressor of a helicopter engine. One specificity

of centrifugal compressors lies in a complicated blade-tip geom-

etry. Due to the high curvature of almost 90◦ between inlet and

outlet as well as very high stiffness blade areas such as trailing

edge, as compared to axial compressors, the computational chal-

lenge of contact simulations is significantly increased. Based on

an explicit time integration procedure combined with Lagrange

multiplier contact treatment [12], a specific contact configuration

between the centrifugal compressor and its surrounding casing is

investigated throughout a wide rotational speed range. It is as-

sumed that the casing is rigid and subject to a time-invariant de-

formation along a two-nodal diameter shape — which means it

is ovalized, see Fig. 1. The interest lies in the vibratory level of

the impeller depending on its rotational speed.

The modeling of the system is detailed in the first section of

the paper: both the computation of the reduced order model of

the impeller and the contact algorithm are outlined. The second

section presents the modal analysis of the impeller and the typi-

cal linear criterion for the definition of critical rotational speeds is

recalled. In the third section, convergence in time and space is ad-

dressed. Results are post-processed in the frequency domain with
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a 2D-Fourier transform. The two dimensions involved — time

and space — are referred to with a specific vocabulary: nodal

diameters refer to harmonics in space while harmonics refer to

harmonics in time.

MODELING

Note 1: symbols and notations used in the following are all

referenced in the nomenclature at the end of the paper.

Note 2: for the sake of confidentiality, all values in the space,

time and frequency domains presented have been normalized.

In this section, the methodology used to treat unilateral con-

tact between the flexible rotor and rigid casing are outlined. Con-

tact between the two structures is initiated by a static ovalization

of the casing, restricting the tip clearance equally along the entire

blade tip for certain angular positions. The reference clearance

is about 3% at the LE to 2.2% at the TE normalized to the TE

blade height. The ovalization of the casing is implemented by

using a Gaussian bell distortion on top of the reference geometry.

The restriction amplitude is computed uniformly along the chord

at 4.25% the TE blade height. The penetration depth will hence

vary from 1.25% at the LE to 2.1% at the TE.

min

max

FIGURE 1: TWO-LOBE RADIAL CASING RESTRICTION

The abradable coating that is frequently deposited on the cas-

ing is not accounted for in our study. The focus is on direct struc-

tural contacts in order to get a better understanding of possible

interaction phenomena.

Bladed Disk Model

The high-pressure radial compressor stage of a modern high-

performance helicopter engine is investigated. It consists of ten

sectors containing each a main and a splitter blades. Contact is

only managed on the main blade of each sector. Contact is man-

aged on ten nodes evenly spaced along the chord of each main

blade as pictured in Fig. 2. Consequently, a total of a hundred

contact nodes are accounted for on the impeller.

The challenge in facing the impeller geometry in compari-

son with axial compressors lies in the varying blade tip contact

normal along the chord. That, in combimation with impeller de-

sign specificities such as a low height to chord ratio and signifi-

cant influence of the disk for very low frequency free-vibration

modes, leads to more complex numerical simulations.

Ω

FIGURE 2: IMPELLER CONTACT MODEL: CONTACT

NODES , NODE TRAJECTORIES WITHOUT CONTACT

( )

Model Reduction

The finite element model of an elementary sector of the im-

peller depicted in Fig. 2 contains about 120,000 degrees of free-

dom (DOF) and the full impeller contains more than a million

DOF. Consequently, time integration on such large models would

lead to cumbersome computation times. Accordingly, compo-

nent mode synthesis (CMS) is used in order to reduce the dimen-

sion of the models. It is critical to avoid costly mappings be-

tween the finite element and the reduced spaces for contact man-

agement. For that reason, the CMS method used in this study —

which is based on the Craig-Bampton method [13] — features a

mixed reduced space with both physical and modal coordinates.

The combination of a modified Craig-Bampton proce-

dure [14] with cyclic symmetry [15] allows for a fast computa-

tion of a reduced order model that accounts for centrifugal stiffen-

ing. The key steps of this computation are detailed in the follow-

ing. The procedure requires three stiffness matrices computed at

distinct rotational frequencies: K(0), K(Ω1
2
) and K(Ω1) as well

as the mass matrix M of an elementary sector of the finite ele-

ment model.

1. matrices reorganisation: lines and columns of matrices

Y = K(Ω) or M are sorted depending on which part of the

elementary sector they belong to:

Y =





Yii Yib Yic

Ybi Ybb Ybc

Yci Ycb Ycc



 and u =





ui

ub

uc



 (1)

2. computation of nodal diameter matrices: each nodal di-

ameter stiffness and mass matrix is computed from the finite

element matrices, see [15].

Ŷ(i) =

[

Y0 +(Y1 +YT
1)cos(iα) (Y1 −YT

1)sin(iα)
(YT

1 −Y1)sin(iα) Y0 +(Y1 +YT
1 )cos(iα)

]

with Y0 =

[

Yii Yib

Ybi Ybb

]

, Y1 =

[

Yic 0ni,ni−nc+nb

Ybc 0nb,ni−nc+nb

]

(2)

3. centrifugal stiffening: the three stiffness matrices account-
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ing for centrifugal stiffening are:

K̂
(i)
0 = K̂(i)(0)

K̂
(i)
1 =

1

3Ω2
1

(

16K̂(i)
(Ω1

2

)

− K̂(i)(Ω1)− 15K̂(i)(0)
)

K̂
(i)
2 =

4

3Ω4
1

(

K̂(i)(Ω1)− 4K̂(i)
(Ω1

2

)

+ 3K̂(i)(0)
)

(3)

4. modal reduction: for each of the three rotational speeds

(Ω = 0, Ω = Ω1/2 and Ω = Ω1), the modal reduction basis

Φ̂
(i)
(Ω) is:

Φ̂
(i)
(Ω) =

[

I 0

Ψ̂
(i)
s (Ω) Ψ̂

(i)
co (Ω)

]

(4)

For each harmonic, the global reduction basis ϒ̂
(i)

may then

be computed as:

ϒ̂
(i)

=

[

I 0

Ψ̂
(i)
s (0) Ψ(i),∗

]

(5)

where Ψ(i),∗ contains an orthonormal basis generated from

the static and constraint modes given in Eq. (4). It yields

the computation of the reduced harmonic mass and stiffness

matrices:

K
(i)
0,r = ϒ̂

(i),T
K̂

(i)
0 ϒ̂

(i)

K
(i)
1,r = ϒ̂

(i),T
K̂

(i)
1 ϒ̂

(i)

K
(i)
2,r = ϒ̂

(i),T
K̂

(i)
2 ϒ̂

(i)

M
(i)
r = ϒ̂

(i),T
M̂(i)ϒ̂

(i)
(6)

5. recomposition of the reduced model at a given Ω: the final

reduced mass and stiffness matrices are:

Kr(Ω) =
N

∑
i

(

K
(i)
0,r +Ω2K

(i)
1,r +Ω4K

(i)
2,r

)

Mr =
N

∑
i

(

M
(i)
r

)

(7)

For a given impeller, matrices K
(i)
0,r, K

(i)
1,r, K

(i)
2,r and M

(i)
r are

computed only once. Those matrices are relatively small

— around a hundred times smaller than the finite element

matrices of a sector of the impeller (K and M) depending on

the level of modal reduction — thus making the computation

of the reduced order model given in Eq. (7) particularly fast

and easy. The stiffness matrix Kr(Ω) of the reduced model

is simply denoted Kr in the following.

Contact Treatment

Time simulations are carried out based on the strategy pre-

sented in [12] which is briefly recalled here for the sake of clarity.

Though compatible with the following contact treatment proce-

dure, friction is not accounted for in this study. The considered

time-marching procedure involves the explicit central differences

scheme combined with a Lagrange multiplier based contact algo-

rithm [16], assumed on 10 contacting nodes, spread equidistantly

along the chord line. At each time step q, the procedure is divided

into four steps:

1. prediction at time step q+ 1 of the displacements ur:

uq+1,p
r =

[

Mr

h2
+

Dr

2h

]

−1((
2Mr

h2
−Kr

)

uq
r+

(

Dr

2h
−

Mr

h2

)

uq−1
r

)

(8)

2. determination of the gap function and detection of the con-

tacting nodes of the blade.

3. correction of the predicted displacements leading to a van-

ishing of the gap function:

gq+1 = CN
Tuq+1,c

r + gp = 0 (9)

Lagrange multipliers (or contact forces) and updated dis-

placements are obtained as follows:























λ =

(

CN
T

[

Mr

h2
+

Dr

2h

]

−1

CN

)

−1

gp

uq+1
r = uq+1,p

r +

[

Mr

h2
+

Dr

2h

]

−1

CNλ

(10)

4. time increment.

MODAL ANALYSIS

The modal analysis of the impeller is carried out consider-

ing that the shaft is perfectly rigid and hence the DOF of the

impeller that lie on the impeller-shaft interface are clamped, see

Fig. 3. The Campbell diagram of the impeller — depicted in

Fig. 4 in the relative frame — underlines the evolution of the

eigenfrequencies with respect to the rotational speed.

Ω

FIGURE 3: CLAMPED INNER SURFACES

Only these first two families of free vibration modes are rep-

resented in this paper. Since the first mode families generally

have the highest vibration energy participation it is assumed that

the first two modal families are dominant in the impeller response

even when contact occurs.

In order to identify potential critical velocities, including har-

monics, it is convenient to plot the Campbell diagram in the ab-

solute frame, as pictured in Fig. 5, where each eigenfrequency

evolution with respect to the rotational speed is given by (11),
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FIGURE 4: RELATIVE FRAME CAMPBELL DIAGRAM: i =
0 ( ), i = 1 ( ), i= 2 ( ), i = 3 ( ), i= 4 ( ) AND

i = 5 ( ) FOR FIRST (SOLID) AND SECOND (DASHED)

MODAL FAMILIES

where f
(i)
a and f (i) are the absolute and relative frame rotor modal

frequencies of the i-th nodal diameter at a rotational speed of Ω

respectively:

f
(i)
a (Ω) =

∣

∣

∣
− f (i)(Ω)+ i ·n ·Ω

∣

∣

∣
(11)

Since the casing is perfectly rigid in this study, interactions are

considered at the intersection between f
(i)
a (Ω) and the zero fre-

quency line in the Campbell diagram. Linear considerations pre-

dict five interaction points over the operating rotational speed

range of interest. Those interaction points are highlighted —

marked as Ωi, j, where i is the nodal diameter, and j the modal

family respectively — in Fig. 5. For modal coincidence to oc-

0 1 2 3 4 5
0

10

20

Ω3,1Ω4,1Ω5,1 Ω4,2Ω5,2

Rotational Speed Ω

F
re

q
u
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cy
f a

FIGURE 5: ABSOLUTE FRAME CAMPBELL DIAGRAM:

n = 1, i = 0 ( ), i = 1 ( ), i = 2 ( ), i = 3 ( ), i = 4

( ) AND i = 5 ( ) FOR FIRST (SOLID) AND SECOND

(DASHED) MODE FAMILIES

cur, the rotational speed — in the absolute frame — of the modal

shape of the impeller must be null since the casing is perfectly

rigid. Under these conditions, in a linear framework, a modal

coincidence can be achieved for a rigid and ovalized casing.

Interaction points associated with other modal families are

not considered here for two reasons:

1. because the other modal families involve higher frequency

modes, the interaction points occur outside of the rotational

speed range of interest,

2. as mentioned above, even when contacts occur, recent stud-

ies suggest that the first free vibration modes or families of

free vibration modes are predominant in the dynamics of the

structure.

NUMERICAL SIMULATIONS

The rotational speed range of interest covers the typical rota-

tional speed range of the impeller with Ω ∈ [1.969;5.951]. As

mentioned above, numerical simulations on the full finite ele-

ment model are not conceivable because of its very large dimen-

sion. As a consequence, a reference finite element solution can-

not be obtained. Asymptotic space and time convergence are re-

spectively assessed versus the dimension of the modal reduction

basis and the time step.

Convergence

Computation times grow nonlinearly with the dimension of

the reduced order model and it is thus critical to find the smallest

reduction basis allowing to obtain space convergence of the sim-

ulations. Figure 6 pictures the radial displacement on the leading

edge of the first sector of the impeller over the first five millisec-

onds of the simulation for different reduced order models.
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FIGURE 6: CONVERGENCE OF THE RADIAL DISPLACE-

MENT: 330 DOF ( ), 540 DOF ( ), 900 DOF ( ), 1140

DOF ( ) AND 1560 DOF ( ).

It appears quite clearly that too small reduction bases (330

and 540 DOF) lead to inaccurate results early in the interaction.

Larger models (900, 1140 and 1560 DOF) lead to almost per-

fectly superimposed displacements. Identical observations are

made for the tangential displacement of the contact nodes on the

trailing edge in Fig. 7.

Similar results are obtained over a longer time interval. A re-

duced order model containing 900 DOF is well suited and allows

for space converged results throughout the rotational speed range
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FIGURE 7: CONVERGENCE OF THE TANGENTIAL DIS-

PLACEMENT: 330 DOF ( ), 540 DOF ( ), 900 DOF

( ), 1140 DOF ( ) AND 1560 DOF ( ).

of interest. With 900 DOF, the gap between the ten first eigenfre-

quencies for each nodal diameter of the reduced order model and

those of the full finite element model is less than 1%.

Simultaneously, time convergence is assessed by refining the

time step size and h = 10−4 allows for convergence.

Case Study

First, a contact simulation for Ω= 5.4 is considered. Results

feature displacements, speeds, contact forces and observed con-

tact areas for which both time and frequency domain analyses

may be carried out. In addition, displacement and stress fields

within a sector at any time step can easily be retrieved. Figure 8

pictures the radial displacement of the trailing edge contact node

during the simulation. Over the simulation, the impeller makes
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FIGURE 8: RADIAL DISPLACEMENT OF THE LEADING

EDGE OF SECTOR 1 AT Ω = 5.4

50 rotations and it is visible that a steady state – a response with

stable amplitude – is reached for t > 20. This is also visible in

the frequency map Fig. 10, as peaks of the FFT signal lie on EO

lines.

Once a steady state is reached, a fast Fourier transform (FFT)

of the signal is performed, see Fig. 9. It should first be noticed
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FIGURE 9: FFT OF THE SIGNAL IN FIG. 8 AT Ω = 5.4

that only the significant peaks are detected for f < 50. Among

these peaks, highest amplitudes are observed for f ≃ 10.9, 16.3,

21.8 and 32.7. However, because of the cyclic symmetry of the

structure, the first modal families exhibit a clustering in eigenfre-

quency, particularly around f ≃ 10.9 where the gap in frequen-

cies for the first mode family is negligible, see Fig. 4. Conse-

quently, the precision of the FFT may not be sufficient for a clear

identification of the dominant free vibration mode at a given fre-

quency.

It is thus of interest to analyse the results in terms of nodal

diameter content. The displacement vector u(t) may be projected

in the cyclic symmetry space using the Fourier matrix F:

û(t) = FTu(t) (12)

The displacement vector in the cyclic symmetry space û(t) con-

tains terms associated with each nodal diameter i, i = 0,1 . . .5:

ûT(t) =
[

û(0)(t), û(1)(t), û(2)(t), û(3)(t), û(4)(t), û(5)(t)
]T

(13)

The frequency content of nodal diameter i may then be anal-

ysed with a FFT of the component û(i)(t). Results provided in

the following feature both FFT of finite element displacements

u(t) and nodal diameter displacements û(i)(t). The combination

of the analysis of both types of displacements allows for an in-

depth investigation of the interaction phenomenon.

Interaction Map

Figure 10 shows the radial displacement response of the trail-

ing edge node in the frequency domain. This interaction map is

drawn putting side by side the spectrum obtained for each rota-

tional speed once a steady state is reached. Highest peaks of

amplitude are depicted in red and engine order lines are pictured

as black dashed lines defined by f = kΩ, k = 1,2 . . .18.

Consistently with the casing ovalization — that implies an

excitation frequency of the impeller double the rotational speed

Ω — the peaks highest in magnitude are detected around the even

engine order lines k = 2,4 . . .18. The impeller response varies

significantly with Ω and some critical velocities are identified in

Tab. 1. For these rotational speeds, significantly higher displace-

ments are found.
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FIGURE 10: SPECTRUM OF THE TRAILING EDGE RADIAL FINITE ELEMENT DISPLACEMENT

TABLE 1: CRITICAL ROTATIONAL SPEEDS NUMERI-

CALLY PREDICTED.

Ω 2.15 3.25 3.96 5.58-5.92

(A) and (B) (C) (D) (E)

Some of the critical rotational speeds identified with a modal

analysis of the impeller given in Fig. 5 do match with slightly

higher amplitudes of vibration in the frequency map. For in-

stance, around Ω ≃ Ω5,1 = 2.12, significant peaks are visible

around the 12th and 14th engine order lines (see highlighted ar-

eas A and B in Fig. 10). Nevertheless, none of these predicted

critical rotational speeds match the highest peak of amplitudes.

Overall, the discrepancy between the linear prediction of the

critical rotational speeds — mentioned in Fig. 5 — and those

identified with numerical simulations is patent. For highly non-

linear phenomena such as blade-tip/casing contacts, linear inter-

action criteria often fail [2, 4]. In particular, contact simulations

on axial compressors have revealed the key role of the structure

super harmonics in potential interaction areas: rotational speeds

Ω = f1/n, n= 1,2 . . . are privileged critical speeds. Accordingly,

it seems of great interest to consider super harmonics of the first

free vibration modes of the impeller in order to identify more

critical rotational speeds. Super harmonics n = 2 of the two first

stages of modes and the associated predicted critical rotational

speeds are depicted in the Campbell diagram in Fig. 11. For the

radial compressors, the number of critical speeds increases sig-

nificantly: these speeds are listed in Tab. 2.

In addition, critical speeds associated with super harmonics

of high free vibration modes are prone to fall within the rotational

speed range of interest. Only the critical rotational speeds associ-

ated with super harmonics of the two first families of modes are
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FIGURE 11: FIRST SUPER HARMONIC ABSOLUTE

FRAME CAMPBELL DIAGRAM: n = 2, i = 0 ( ), i = 1

( ), i = 2 ( ), i = 3 ( ), i = 4 ( ) AND i = 5 ( )

FOR FIRST (SOLID) AND SECOND (DASHED) MODAL

FAMILIES

considered in the following.

Frequency Split Study

Looking closely at the results in Fig. 10 around area (E),

the odd engine order lines feature a response that was previously

unknown to the authors in the speed range ∆Ω = [5.33;5.58].
Firstly, a response on the odd engine order lines does not comply

with the linear interaction considerations, as well as secondly, a

symmetric frequency split around the 1st, 3rd and 5th engine or-

der is observed for Ω> 5.50 (see area E in Fig. 10). A refinement

of the aforementioned speed range — with an increased resolu-

tion since 150 time simulations1 are carried out over ∆Ω — is

1A time simulation is a simulation of the contact configuration over 50 revo-

lutions at a given rotational speed Ω

6



E

5.4 5.5
0

10

20

30

(a) ûr
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(5)
r

max

10−1

10−2

10−3

10−4

10−5

min

R
ad

ia
l

D
is

p
la

ce
m

en
t

S
ca

le
u

r

∆Ω

FIGURE 12: SPECTRUM OVER ∆Ω FOR EACH NODAL DIAMETER COMPONENT

TABLE 2: PREDICTED CRITICAL ROTATIONAL SPEEDS.

Ωn
i, j (i, j,n) Ωn

i, j (i, j,n)

0.67 (5,1,3) 2.33 (3,2,3)

0.83 (4,1,3) 2.67 (4,2,2)

1.00 (5,1,2) 2.75 (4,1,1)

1.12 (3,1,3) 2.75 (2,1,2)

1.29 (4,1,2) 3.37 (2,2,3)

1.42 (5,2,3) 3.67 (3,2,2)

1.71 (2,1,3) 4.00 (1,1,3)

1.75 (3,1,2) 4.04 (3,1,1)

1.75 (4,2,3) 4.50 (5,2,1)

2.12 (5,1,1) 5.37 (2,2,2)

2.12 (5,2,2) 5.83 (4,2,1)

depicted in Fig. 12(a). This section aims at identifying the nature

of this frequency split.

Figure 12(a) represents the frequency domain representation

of the radial displacement of trailing edge contact node of the

first sector and Figs. 12(b)-(g) show the frequency content for

each harmonic component. It is visible that each harmonic domi-

nates on distinct engine order lines. More precisely, the response

of harmonic i = 0 is dominant at the zero frequency line, the re-

sponse of harmonic i = 2 dominates along the 2nd engine order

line, the response of harmonic i = 4 is dominant along the 4th

and 6th engine order lines due to the aliasing effect, while odd

engine orders show an almost negligible participation.

In order to better understand the nature of the response on

the odd engine order lines, two zooms over the frequency spec-

trum obtained for each harmonic for two different rotational

speeds Ωa = 5.33 and Ωb = 5.53 are respectively pictured in

Figs. 13 and 14. The spectrum depicted in Fig. 13 is obtained

for a rotational speed below the one for which the frequency split

occurs: the three peaks of interest on the 1st, 3rd and 5th engine

order lines solely involve even harmonics.
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FIGURE 13: FFT AT Ωa = 5.33: i = 0 ( ), i = 1 ( ), i = 2

( ), i = 3 ( ), i = 4 ( ) AND i = 5 ( )

Similarly, when looking at the spectrum given in Fig. 14 —

computed for the rotational speed Ωb, depicted in Fig. 10, for

which the frequency split is observed — it is visible that the resid-

ual peaks only involve even harmonics.

Because of their position on odd engine order lines, these

peaks cannot be linked with fundamental harmonics of free vi-
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FIGURE 14: FFT AT Ωb = 5.53: i = 0 ( ), i = 1 ( ), i = 2

( ), i = 3 ( ), i = 4 ( ) AND i = 5 ( )

bration modes of the impeller. Accordingly, their very existence

is an illustration of the incorrectness of linear considerations for

the prediction of critical rotational speeds. Taking into account

previous results obtained with axial compressors [12], it seems

reasonable to assume that these peaks stem from super harmon-

ics influence. Supporting evidence of this assumption lies in the

agreement between a few critical rotational speeds predicted for

super harmonics n = 2 and n = 3 and the presented numerical

results. The nature of the frequency split remains to be investi-

gated.

CONCLUSION

This study focuses on the numerical simulation of

blade/casing structural contacts for the centrifugal compressor of

a helicopter engine. The use of cyclic symmetry and component

mode synthesis method allows for efficient time simulations over

a wide rotational speed range. The contact configuration involves

a rigid ovalized casing and unilateral contact is accounted for on

ten contact nodes on each main blade of the impeller.

Similarly to what was already witnessed with axial compres-

sors [4] asymptotic space and time convergence are shown. A

modal analysis of the impeller leads to the computation of its

Campbell diagram and the usual linear criterion — defined by

the intersection between frequency lines and engine order lines

— is used to predict potential critical rotational speeds.

Results are presented both in time and frequency domains.

It is first highlighted that linearly predicted critical rotational

speeds do not match with the numerically predicted critical ro-

tational speeds. Based on an in-depth frequency domain analy-

sis as well as previous observations with axial compressors, the

assumption is made that super harmonics of the free vibration

modes of the impeller play a key role in the occurrence of criti-

cal regimes.

Work is in progress for the precise identification of the split

frequency phenomenon observed around odd engine order lines

for high rotational speeds. Also, further numerical studies will

incorporate abradable coating on the casing. Also, accounting

for a flexible casing within the presented strategy will allow for

the detection of travelling modal coincidence [17] in the absolute

frame.
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NOMENCLATURE

Roman Symbols

0a,b matrices of zeros with a lines and b columns

CN contact constraints matrix

D damping matrix

F Fourier matrix

g gap function

I identity matrix

K stiffness matrix

M mass matrix

u displacements

f frequency

h time step

N number of harmonics

Nb number of blades

nb number of contact degrees of freedom

nc number of degrees of freedom on one cyclic boundary

ni number of internal degrees of freedom

Greek Symbols

α sector angle

λ contact force

Φ modal reduction basis matrix

Ψco constraint modes

Ψs static modes

ϒ global reduction basis matrix

Ω rotational speed

Ω1 upper bound of the rotational speed range

Abbreviations

CMS component mode synthesis

DOF degree of freedom

FFT fast Fourier transform

Superscripts
ˆ symbol used for matrices written in the harmonic space
(i) superscript relative to harmonic number i
T transpose
c correction
n super harmonic number
p prediction
q q-th time step

Subscripts

a absolute frame

b relative to contact degrees of freedom

c relative to degrees of freedom in one cyclic boundary

i relative to internal degrees of freedom

j relative to the mode family number

r refers to matrices written in the reduced space
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