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The present work investigates paper-paper friction dynamics by pulling a slider over a substrate.
It focuses on the transition between stick-slip and inertial regimes. Although the device is classical,
probing solid friction with the fewest contact damage requires that the applied load should be small.
This induces noise, mostly impulsive in nature, on the recorded slider motion and force signals. To
address the challenging issue of describing the physics of such systems, we promote here the use
of nonlinear filtering techniques relying on recent nonsmooth optimization schemes. In contrast
to linear filtering, nonlinear filtering captures the slider velocity asymmetry and, thus, the creep
motion before sliding. Precise estimates of the stick and slip phase durations can thus be obtained.
The transition between the stick-slip and inertial regimes is continuous. Here we propose a criterion
based on the probability of the system to be in the stick-slip regime to quantify this transition.
A phase diagram is obtained that characterizes the dynamics of this frictional system under low
confinement pressure.

I. INTRODUCTION

Since the first reports by Leonardo da Vinci in 1493 [1],
frictional properties of solids are inferred from classical
experiments, where a slider of mass m, imposing a nor-
mal load to the substrate, is pulled over a fixed substrate.
Starting from a slider at rest, the pulling force has to
increase above a threshold value to trigger the slider mo-
tion. The slider then slips over a given distance, then
stops. This dynamics, referred to as “stick-slip”, has
later been investigated by Amontons (17th century) and
Coulomb (18th century) [2]. In the last decades, system-
atic studies have considered a slider pulled at average
constant driving velocity V by means of a spring of stiff-
ness k. Monitoring the force F applied to the slider in
time thus provides a direct access to the slider dynam-
ics, and to the frictional properties of the material. In
the simplified framework of Amontons-Coulomb [3, 4],
starting from a slider initially at rest (stick phase), the
force F increases linearly with a slope proportional to
kV (Fig. 1a). Once a given threshold is reached (Fig. 1a,
white dot), the load starts sliding (slip phase). The du-
ration of the stick, τst, and slip, τsl, phases are controlled
by the experimental parameters (m, k, V ). In particular,
the characteristic time of motion, τm = τsl in this sim-
plistic model, almost equals T = π

√
m/k, i.e. half the

period of the spring-mass system (or inertial time).

However, the comparison of this simple model with
experiments reveals several limitations. First, the deter-
mination of the time during which the slider is in motion
is rather difficult. Indeed, the start of the slip motion
does not correspond to the maximum of the force signal
(Fig. 1a, white dot), and its stop does not correspond to
the minimum (Fig. 1a, gray dot). Moreover, the creep in-
troduces an additional contribution, τc, to the total time
during which the slider is indeed in motion, τm = τc+τsl
(Fig. 1b). Therefore, the accurate determination of the
start and stop times is challenging, especially when the

experimental data are noisy. Second, the frictional prop-
erties have been shown to depend on the contact time
between the surfaces, and on the sliding velocity [3–8].
Although this so-called rate-and-state modeling is now
widely recognized, it fails to account for the variations
in the friction coefficients due to spatial heterogeneities
of the material [9, 10], which may lead, for a given ma-
terial, to distributed values of (τst,τsl) rather than to
single values. Third, it is of particular interest to con-
sider the limit of vanishing normal load, in particular
to avoid polishing which damages surfaces and alters of
the local frictional properties. We thus are interested in
the frictional properties of materials easily worn by shear

FIG. 1. Different solid friction dynamics. (a) Stick-slip mo-
tion without creep. (b) Stick-slip motion with significant
creep. (c) Inertial motion [In panels (a), (b) and (c), F de-
notes the force applied to the slider pulled at average constant
driving velocity V by means of a spring of stiffness k. We de-
note τst and τsl the stick and slip phase durations, τc the
creep duration and τm the total time during which the slider
is in motion (gray region)].
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at loads far smaller than considered in previous studies
[11], which is still an open practical challenge. Indeed,
the use of very small normal loads induces a significant
noise, often impulsive in nature, in the recorded signals.
Furthermore, experimental data with low signal-to-noise
ratio often imply using sensitive recording devices, which
may be subjected to additional electronic noise.

The aforementioned problems yield significant issues
in the analysis of the empirical data recorded to charac-
terize the slider dynamics. For small k and V , the slider
exhibits the typical stick-slip motion previously described
(Figs. 1a and 1b). However, when V is increased, the sys-
tem undergoes a transition to an inertial regime, where
the temporal force variations remain periodic, but no
longer show stick phases (Fig. 1c) [11, 12]. Other transi-
tions to continuous sliding are also reported for large V in
the case of granular friction [13] or for small V and large
k in the case of dry solid friction, the dynamics being
dominated by the creep in this limit [11, 14]. Although
a transition from stick-slip to continuous sliding is easy
to identify, thanks to the disappearance of the periodic-
ity, the transition between stick-slip and inertial regimes
remains far more difficult to detect, especially with noisy
experimental signals, wide distributions of (τst,τsl) and
the possible presence of creep.

The contribution of this work is twofold. First, to ex-
tract information from the experimental data, we pro-
mote the use of nonlinear filtering techniques, relying on
recent nonsmooth optimization schemes, and show their
benefits compared to classical linear filtering. Linear and
nonlinear filtering techniques are thus compared to de-
noise the temporal variations of the force signal, col-
lected on paper-paper friction experiments under small
normal loads (Sec. II). Contrary to the classical linear
filtering, nonlinear filtering is shown to successfully cap-
ture creep motion before sliding and to filter a large part
of the impulsive noise, thus permitting a better detec-
tion of the stick and slip phases (Sec. III). Second, the
proposed nonlinear analysis scheme is systematically ap-
plied to 189 experiments, obtained by varying k and V
(Sec. IV). This nonlinear filtering permits to precisely
investigate the transition between the stick-slip and iner-
tial regimes, and how the system undergoes this transi-
tion when varying the experimental parameters. A phase
diagram is finally devised in the k − V plane describing
the frictional properties of the paper-paper system under
study.

II. EXPERIMENT & DATA ACQUISITION

A. Experimental setup

The experimental setup consists of a slider pulled over
a solid substrate via a cantilever spring (Fig. 2). The sur-
face area of the slider, 9×6 cm2, and its mass, m = 30.7 g,
are chosen to avoid excessive wear of the sliding surfaces
by working at small normal stress (about 56 Pa). We

FIG. 2. Experimental setup. A cantilever spring of stiffness
k is pulled at constant velocity V at one end, and entrains a
slider of mass m at the other end. The deflection ∆x of the
cantilever spring, measured by an inductive sensor, provides
simultaneously the velocity of the slider in the frame of the
laboratory, ẋ = V − ∆ẋ, and the force, F ≡ k∆x, applied
to it. We denote ~T the tangential (friction) force and ~N the
normal load.

point out that previous studies, although working with a
similar setup, used a larger slider mass (300 g) and an ad-
ditional load of the order of 1000 g, corresponding to far
larger normal stresses of about 1300 Pa [11]. The contact
between the cantilever spring (metallic blade, stiffness k)
and the slider is ensured by a steel sphere glued to the
slider. This allows the free motion of the contact point.
The blade is translated at constant velocity V , and its de-
flection ∆x is measured by an inductive sensor (Baumer,
IPRM 12I9505/S14). The spring stiffness is varied be-
tween k = 168 and 3337 N/m and the driving velocity V
between 42 and 7200 µm/s.

The substrate and the bottom surface of the slider are
coated with Cansonr sheets, a drawing paper charac-
terized by a rough surface. Even for the chosen small
normal load, the surfaces exhibit undesired wear after
repeated experiments. Note that in Heslot et al. [11] the
absence of wear at larger normal load was attributed to
the properties of the Bristol board in use. To ensure re-
producibility, we perform 3 experimental runs for a given
set of parameters (k, V ). We then change the samples,
check for the same (k, V ) that the force signal has the
same characteristics, change the parameters (k, V ), per-
form again 3 series of experiments, and so on.

B. Data acquisition

From the blade deflection ∆x, after an appropriate cal-
ibration procedure, the force F applied to the slider is re-
constructed as F ≡ k∆x (Fig. 2). For each set of param-
eters (k, V ), the force signal is recorded over a total slider
displacement of about 1.5 cm, with a sampling frequency
of 2 kHz. The signal size thus varies from about 7.5×105

to 4.5 × 103 sample points. In the following, we use the
normalized force signal, F/mg, where g = 9.81 m.s−2 is
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the gravitational acceleration.
To quantify the system dynamics - and, therefore, the

frictional regime - we consider the slider velocity, ẋ =
V −∆ẋ, which can be rewritten as:

ẋ = V − 1

k

dF

dt
. (1)

Computing empirically a relevant derivative, and hence
an accurate estimate of the velocity, obviously requires
an efficient denoising of the force signal. The velocity ẋ
will be further used to detect slip events and estimate
accurately, for each event, the stick, creep and slip time
τst, τc and τsl. Here, the slip (or sliding) phase does not
include creep. The total time during which the slider is in
motion is therefore τm = τc+ τsl, as displayed in Fig. 1b.

Considering the 9 driving velocities, 7 spring stiffnesses
and 3 runs for each set of parameters, the total amount
of experiments and, therefore, signals to analyze, is 189.

III. NONLINEAR DENOISING

The challenge in working at small normal loads is the
poor signal to noise ratio, which requires a careful signal
analysis to quantify the physical properties of the system.
Solid friction dynamics is classically studied by means
of low-pass linear filtering for denoising the force signal
prior to computing the velocity. The drawback of such
linear filtering is not only to remove the noise but also
to alter a relevant high-frequency part of the friction dy-
namics, especially during the stick-slip regime. To over-
come this limitations stemming from linear filtering, we
propose here to use nonlinear filtering techniques, relying
on nonsmooth optimization schemes. We devise corre-
sponding iterative minimization algorithms that benefit
both from reasonable computational costs, thus permit-
ting the analysis of large-size signals, and from theoretical
recovery and convergence guarantees [15, 16].

A. Force denoising and event detection

1. Principle

Linear filtering – Let fobs denote the normalized force
signal to analyze, fobs = F/mg, of size N samples. Lin-
ear filtering consists of a convolution with a filter h [17],

f̂Lin = h ∗ fobs. (2)

Linear filtering can also be rewritten as a minimization
problem,

f̂Lin = arg min
f

1

2
‖f − fobs‖22 + λ‖Hf‖22 (3)

= (Id + 2λH>H)−1fobs (4)

where ‖ · ‖22 is the usual euclidean norm and
(Id + 2λH∗H)−1 is the matrix of size N × N asso-
ciated with the shape of filter h. Parameter λ > 0
essentially controls the width of the band of the low-pass
filter h.

Nonlinear filtering – To remove high frequency noise
while keeping sharp discontinuities in signals, it has been
proposed in the inverse problem literature to replace the
`2-norm with a `1-norm (‖u‖1 =

∑
i |ui|) in the filtering

term [18]:

f̂NonLin = arg min
f

1

2
‖f − fobs‖22 + λ‖Hf‖1. (5)

When using a finite difference (increment) filter h =
[−1,+1], such nonlinear filtering yields piecewise con-

stant estimates f̂NonLin [18]. However, in the context
of friction data, the force signal is better approximated
with piecewise linear estimates (notably in the stick-slip
regime). Therefore, we propose to use Laplacian filters
(h = [−1, 2,−1]) that favor such behaviors.

2. Iterative algorithms

The main issue in practically implementing nonlinear
filtering as in Eq. (5) above lies in the absence of closed

form solution for f̂NonLin, thus implying the recourse to
iterative algorithms to minimize the corresponding func-
tional, leading to potentially high computational costs.
In addition, the non differentiability of the functional to
minimize induced by the use of the `1-norm precludes
the use of gradient descent algorithms. Instead, gradient
operators need to be replaced with proximity operators
[16, 20]. Finally, the large data size (N ∼ 106) of friction
signals requires the use of fast algorithms. Therefore,
we have devised Algorithm 1, that relies on the use of
the notion of strong convexity into primal-dual proximal
scheme to achieve fast minimization of Eq. (5), via a se-

quence (f [k])k∈N that converges to f̂NonLin with linear
convergence rate [19, 20]. The proximity operator of the
`1-norm consists of a soft-thresholding operation [16, 21],
with γ > 0,

proxγ‖·‖1(u) =


ui − γ if ui > γ,

ui + γ if ui < −γ,
0 otherwise.

(6)

3. Selection of the regularization parameter λ

In linear filtering, parameter λ essentially acts as the
(inverse of the) width of the low-pass filter (Fig. 3). In
nonlinear filtering, parameter λ also impacts the solution

f̂NonLin: A small λ leads to f̂NonLin close to the input
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FIG. 3. Examples of nonlinear (a,c) and linear (b,d) filtering
for small and large values of the parameter λ. (a,b) Stick-slip
regime [V = 42 µm/s, k = 1002 N/m]. (c,d) Inertial regime
[V = 4300 µm/s, k = 1002 N/m].

data fobs while a large λ yields piecewise linear estimates,
with only a few segments (Fig. 3).

As for linear filtering, automatically tuning the regu-
larization parameter λ in nonlinear filtering to achieve
optimal denoising is a complex task. Systematically in-
specting the denoised signals obtained from data col-
lected over all 63 different experimental sets of param-
eters for several λ, permitted to select the optimal λ as
the one that better removes noise while preserving the
sharp and meaningful changes of the force signals, a slow
climb (stick) and a fast descent (slip). For nonlinear fil-
tering, λ = 0.8 was found to be robust for all sets of data,
while for linear filtering, λ needs to be adjusted to each
set of experimental parameters over a wide range, typi-
cally between 102 to 104. For automated selection of λ,
we could consider either an empirical rule that consists

Initialization: Choose τ0, σ0 > 0 with τ0σ0 ≤ 1

Initialization: Choose f [0] ∈ RN , g[0] ∈ RN , and f
[0]

= f [0]

For k = 0, 1, . . .

t[k] = g[k] + σkHf
[k]

g[k+1] = t[k] − σkprox λ
σk
‖·‖1

( t[k]
σk

)
f [k+1] =

1

1 + τk
(f [k] − τkH>g[k+1] + τkfobs)

θk = 1/
√

1 + 2τk, τk+1 = θkτk, σk+1 = σk/θk

f
[k+1]

= f [k+1] + θk(f [k+1] − f [k])

Algorithm 1: Proximal primal-dual algorithm.

FIG. 4. Normalized force F/mg (a,b) and slider velocity ẋ
(c,d) obtained from nonlinear (a,c) and linear (b,d) filter-
ing in the stick-slip regime [V = 70 µm/s]. The dots in
(a) and (b) indicate the start (white dots) and stop (gray
dots) of the slider motion [black segments in (c) and (d)].
(c,d) The dashed line indicates the velocity threshold for
event detection, and the dotted line the noise level (see text)
[k = 1002 N/m].

in setting λ ∼ N1/2σ/4 where N is the signal size and
σ the noise standard deviation estimated from the me-
dian value of the absolute value of the wavelet coefficients
[22], or the Stein Unbiased Risk Estimator (SURE) which
provides an unbiaised estimator of the mean square error
[23–25]. However both techniques fail to provide us with
a reliable estimate of λ, the results being too noisy. Note
that the empirical rule gives a good order of magnitude
of λ for the nonlinear filtering, and could serve as a first
estimation of this parameter before its final tuning.

4. Event detection

Figure 4 displays the normalized force F/mg and slider
velocity ẋ obtained from nonlinear and linear denoising
techniques. The automated detection of events, corre-
sponding to a slider motion, is conducted as follows.
First, the standard deviation of the base line of the slider
velocity is computed and used as a proxy for the noise
level on the velocity signal (dotted line, Figs. 4c and
4d). This analysis can be performed only for experiments
where the slider exhibits a stick-slip motion. In such ex-
periments, the noise level in the slider velocity is of about
40 µm/s. Second, slip events are detected by threshold-
ing the velocity signal above ten times the noise level
(dashed line, Figure 4c,d). Third, motion events (includ-
ing slip and possible creep motion) are reconstructed by
complementing detection on the velocity signal down to
the noise level (Figs. 4c and 4d, dark segments). Note
that we systematically complemented the velocity signal
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FIG. 5. Example of creep motion before slip. Normalized
force signal (a,b) associated with slider velocity (c,d) for non-
linear (a,c) and linear (b,d) filtering. Dashed line in (a,b)
is the slope associated with slip on raw experimental data.
Dashed and dotted lines in (c,d) indicate the velocity thresh-
old for event detection and the noise level [k = 1002 N/m,
V = 42 µm/s].

down to the first point below the noise level, not to miss
any abrupt velocity rise or drop which may occur in the
vicinity. Due to the signal discretization, the events start
and stop may thus appear either very close, or clearly
below to the noise level, depending on the local velocity
variations (see dark segments in Figs. 4c, for instance).
This procedure ensures a relevant detection of the slider
motion, its start times tstart (white dots, Fig. 4a) and
stop times tstop (gray dots, Fig. 4a), thus yielding an ac-
curate quantification, for each event i, of its duration,
τm(i) = tstop(i) − tstart(i), and of the preceding stick
phase, τst(i) = tstart(i)− tstop(i− 1).

B. Nonlinear vs. linear denoising

This section compares the efficiency of the nonlinear
versus the linear filtering techniques in analyzing the
force signals, with focus i) on the relevance of denoising,
ii) on the accuracy in measuring short timescales in slip
phases, iii) on detecting creep motion, iv) on detecting
whether the slider experiences motion or not (hereafter
called “event”) and whether the motion is sustained over
more than one period of the force signal. This latter
quantification will be further necessary to define an ac-
curate criterion for the transition between stick-slip and
inertial motion.

1. Denoising

Figs. 3 and 5 clearly illustrate that, while linear fil-
tering can be tuned to filter correctly the experimental
impulsive noise, it also significantly smooths out sharp
changes in the force signals, hence precluding a relevant
analysis of the temporal dynamics in frictional motion,
notably a correct estimation of the slip duration. To the
contrary, nonlinear filtering as defined in Eq. (5), both re-
moves noise and preserves the features of the force signal
that are meaningful for friction temporal dynamics.

2. Creep and slip phases

Fig. 5 further focuses on a single event, for an experi-
ment at small driving velocity (V = 42 µm/s). As often
encountered experimentally (see Fig. 1b), the slider ex-
hibits a slow motion (creep) before the slip phase. Classi-
cal techniques of event detection by picking the maximum
and minimun of the force signal find here their limit. In-
deed, the creep motion can have a duration comparable
to or even larger than that of the slip phase (Figs. 5a and
5c). Not detecting this slow motion would lead to an in-
correct estimate of the stick duration, as well as of the
duration of the slider motion (creep + slip). Although
the nonlinear filtering provides by definition a stepped
velocity signal (Fig. 5c), it captures successfully both the
slope of the force drop and the creep motion previous to
the slip, visible via a strong asymmetry in ẋ when the
slider moves. Conversely, the linear filtering provides a
smoother signal, but smooths the force drop too much
(Fig. 5b). Hence, it does not capture neither the correct
slope nor the velocity asymmetry (Fig. 5d). Not only
no creep motion can be detected here, but the duration
of the slider motion is overestimated because of the de-
crease in the slope of the force drop associated with the
slip event (gray dashed line, Fig. 5c).

Figs. 6a and 6b show further examples of nonlinear (a)
and linear (b) filtering applied to the force signals in the
stick-slip regime. As in previous figures, the white and
gray dots indicate the detection of the start and stop of
motion events (including possible creep). The creep and
slip phases can be measured as:

τc = (tstop − tstart)− T (7)

τsl = 2(tstop − tmax) (8)

with tmax the time at which velocity is maximum and
(tstop − tstart) the total duration of the slider motion
during one event. Creep motion is estimated with the
theoretical sliding duration T (Sec. I) to avoid that errors
made on τslip estimate impact the corresponding values of
τc for the same event. Figs. 6c and 6d display the empir-
ical probability density function (PDF) of τsl/T for the
nonlinear and linear filtering. Although slightly shifted
toward lower values due to the sharp end of the sliding
motion after filtering, data obtained with the nonlinear



6

FIG. 6. Nonlinear vs. linear filtering in the stick-slip regime.
(a,b) Normalized force signal for the nonlinear (a, λ = 0.8)
and linear (b, λ = 104) filtering. (c,d) Probability den-
sity function (PDF) of the slip time τsl normalized by the
theoretical slip time T . The vertical dashed line indicates
τsl = T [k = 1002 N/m, V = 42 µm/s].

denoising exhibit a peak close to τsl/T ' 1, as expected
in the stick-slip regime. Conversely, the linear filtering
overestimates τsl/T by a factor of about 2, because of the
smoothing effect of the short time-scale force drop, not
accurately captured by this technique.

3. Number of events

The dynamics of the slider can be further characterized
by comparing the number of sliding events, Ne against
the number of oscillations in the force signal, No (de-
fined here as a rise followed by a drop). In the stick-slip
regime, at low driving velocity V , Ne equals No (Ne/No
= 1), as the slider experiences a rest phase in-between two
force drops. When the driving velocity is increased, the
slider may experience two or more force rises and drops
without coming to rest. In these situations, No > Ne.
Consequently, upon increase of the velocity V , Ne/N0

decreases until reaching 0 for inertial motion.
Fig. 7 displays Ne/No, measured after nonlinear and

linear filtering, as a function of the driving velocity V .
For the same number of oscillations in the force signal,
the linear filtering yields a much larger number of de-
tections of sliding events. Indeed, the smoothing of the
force signal induced by the linear filtering not only artifi-
cially decreases the sliding velocity (Sec. III B 2) but also
tends to decrease the rising slopes of the force signal. As
a consequence, the estimated velocity decreases and, in
some cases, can go below the threshold for motion de-
tection: a stop phase is attributed to the slider, while it

FIG. 7. Number of sliding events normalized by the total
number of oscillations Ne/No for the nonlinear (solid black
line & dots) and the linear (dashed black line & empty dots)
filtering as functions of the driving velocity V . The shape of
the asymmetry parameter, ξ (gray line & triangles) evidences
the relevance of nonlinear filtering (see text). A potentially
relevant criterion to quantify the transition between stick-slip
and inertial regime is given by Ne/No = 1/2 [k = 1002 N/m].

only experiences deceleration and slow motion.

To quantify the ability of the nonlinear filtering to cap-
ture the dynamics of the slider, we introduce a parame-
ter ξ characterizing the asymmetry of the velocity signal,
computed as the ratio of the time during which the slider
velocity is above its average (i.e. the driving velocity V )
to the time during which the slider velocity is smaller
than V :

ξ =

∫
H(ẋ− V )dt∫
H(V − ẋ)dt

(9)

where H denotes the Heaviside function and the integral
is performed over the total signal duration. For small
V , the slider exhibits a stick-slip motion and is at rest
most of the time, hence ξ ' 0. Increasing V induces
an increase in ξ. At large V , the slider is continuously
in motion, and spends half the time above and half the
time below V , which leads to ξ = 1. Fig. 7 displays ξ as
a function of V (gray curve and triangles). When com-
puted after the nonlinear filtering, ξ shows an excellent
agreement in shape with the expected anti-correlation
with the ratio Ne/No. This is far less the case with the
linear filtering. In addition, both ξ and Ne/No show no
strong discontinuities as functions of V , indicating the
absence of a sharp transition between the stick-slip and
inertial regimes in the paper-paper friction. To charac-
terize the evolution from stick-slip to inertial motion, a
potentially relevant criterion is Ne/N0 < 1/2 or ξ > 1/2.
Both criteria are observed to reach the 50% threshold at
about the same critical velocity Vc, a very satisfactory
outcome of using the nonlinear filtering to characterize
the slider dynamics.
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FIG. 8. Dimensionless force F/mg as a function of time, for different spring stiffness (a-c) k = 168 N/m, (d-f) k = 1002 N/m,
(g-i) k = 2254 N/m and three different driving velocities (a,d,g) V = 42 µm/s, (b,e,h) V = 1100 µm/s, (c,f,i) V = 4300 µm/s.
The white and gray dots indicate the beginning and end of sliding events, detected automatically after nonlinear filtering. The
signal at large k and small V (g) is characteristic of continuous sliding (see text). All panels in this figure can be reproduced
using the toolbox provided in Supplemental Material.

IV. FRICTIONAL REGIMES
CHARACTERISTICS & PHASE DIAGRAM

The previous section clearly established both qualita-
tively and quantitatively the benefits of the nonlinear
filtering compared to the linear filtering in capturing fea-
tures of the force signal relevant for the analysis of friction
dynamics. The nonlinear filtering is thus now systemat-
ically applied to the analysis of all 189 recordings, with
the aim to characterize the different frictional regimes
encountered in the proposed solid friction experiment.

A. Different regimes

Fig. 8 displays the dimensionless force F/mg as a func-
tion of time for different values of the spring stiffness
k and driving velocity V . For k = 1002 N/m (middle
column), at small velocity, the system exhibits a clear
stick-slip regime (Fig. 8d). When the driving velocity is
increased, the slider has less and less stick phases (sev-
eral oscillations without any stop, Fig. 8e,f). The force
signal oscillations become more and more symmetric, a
characteristic of the inertial regime. For smaller k (left
column, Fig. 8), the driving velocity has to be larger to
trigger the inertial regime, while for large k (right col-
umn, Fig. 8), a clear inertial behavior without any stick

phase is reported (Fig. 8i).

For large k and small V , the signal-to-noise ratio is
very small (Fig. 8g). This type of signals is character-
istic of continuous sliding in which no more oscillations
are reported, often associated with a steady creep of the
slider [11, 14, 26]. The nonlinear filtering successfully re-
moves impulsive noise from the normalized force signal
(Fig. 8g). This regime can be easily recognized either
by eye or by a spectral analysis (not performed here).
The slider is always in motion, and no further analysis is
performed.

B. Creep motion statistics

Creep motion in the stick-slip regime (typically for
V ≤ 70 µm/s) is analyzed. Fig. 9 displays the empir-
ical probability density function of the creep duration,
τc, for different values of the control parameters (k, V ).
The dashed line indicates, as a reference, the theoretical
sliding time, T , independent of V , which decreases as k is
increased (Sec. I). Interestingly, the average duration of
the creep motion, τc ∼ 0.01−0.02 s, does not exhibit any
significant dependence on the parameters (k, V ). Due to
the slow motion of the slider in the creep regime, this
characteristic time probably depends on the properties
of the material and on the tangential stress only.
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FIG. 9. Histograms of τc for different driving velocities and
stiffness. The vertical dashed lines point the theoretical slid-
ing time, T , as a reference. The vertical dotted lines corre-
spond to the average value of τc for each distribution.

C. Transition to the inertial regime

Further, creep and slip motions are combined, and
phases during which the slider is at rest (duration τst)
or in motion (duration τm, including possible creep) are
characterized, thus making possible the definition of a
criterion that quantifies the transition between the stick-
slip and inertial regimes. The signals shown in Fig. 8
suggest a dispersion of the frictional properties of the
material, for which a visual proxy may consist of the
variations in the maximum and minimum values of the
normalized force F/mg. Such variations are hence di-
rectly reflected in the variations of the times associated
with the stick and motion phases, τst and τm (Fig. 1).
To account for this variability and to further investigate
the transition between the stick-slip and inertial regimes,
Fig. 10 displays the distributions of τst/T and τm/T for
several driving velocity V . At small velocity (Fig. 10a,b),
τm/T exhibits a clear peak around 1. The peak is, how-
ever, not exactly located at 1, as the motion includes
creep, thus shifting τm/T towards larger values (inset,
Fig. 10a). The distribution of τst/T displays larger vari-
ations: It is broadly extended to small velocities. When
V is increased, the distributions get narrower and their
average tends to 1, i.e. the duration of the stick phase
becomes of the order of the duration of the slip phase,
without any creep. Above a threshold velocity (between
70 and 450 µm/s), the slider can remain in motion during
several characteristic times T , and experiences succes-
sive accelerations and decelerations before coming again
to rest. We observe that the distribution of τm broad-
ens whereas the average of the stick time τst gets smaller
and smaller. These changes in the distributions point
out that the slider is no longer in the regular stick-slip
regime.

FIG. 10. Histograms of τst/T (light gray) and τm/T (dark
gray) (with T the theoretical sliding time in stick-slip regime,
see text) for different driving velocities (a) V = 42 µm/s, (b)
V = 70 µm/s, (c) V = 450 µm/s. The inset in (a) is a zoom
on the peak of τm/T distribution. The dashed line indicates
τm/T = 1 [k = 1002 N/m].

D. Phase diagram

To quantify the different regimes, based on the deter-
mination of τst and τm, we compute Pm, the fraction of
time during which the slider is in motion over the exper-
imental run. For some sets of control parameters (k, V ),
as discussed previously, the slider experiences a contin-
uous sliding and the denoising technique presented here
fails in recovering the signal characteristics, although it
captures well its variations (Fig. 8g). Indeed, in these
cases, impulsive noise dominates, leading to wrong de-
termination of τm and τst. For these regimes, which are
easily identified by eye, Pm is set to 100%.

We report in Fig. 11 a phase diagram that summa-
rizes the different dynamics revealed by the analysis of
the present paper-paper friction experiment under small
normal load. In this diagram, CS denotes the continu-
ous sliding regime; SS the stick-slip regime in which the
slider is in the stick phase at least 50% of the time; IR
the inertial regime in which the slider experiences mo-
tion at least 50% of the time; and IR+ the pure inertial
regime in which the slider is never at rest and exhibits a
steady oscillatory motion. Although this phase diagram
attempts to assess boundaries between regimes, transi-
tions found from experimental data are smooth. Except
for the continuous sliding regime, the symbols displayed
in Fig. 11 may depend on the definition of the stick-slip
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FIG. 11. Phase diagram (k, V ) summarizing the differ-
ent regimes for the dynamics of paper-paper friction [CS
= continuous sliding; SS = stick-slip; IR = inertial regime;
IR+ = 100% inertial]. The background color represents Pm,
the percentage of time the slider spends in motion [Red
squares indicate continuous sliding, blue triangles Pm < 50%,
yellow disks including blue triangle Pm > 50% and yellow
disks Pm = 100%, the black lines are from the heuristic model
and gray lines only guides to the eye].

and inertial regimes (SS and IR are defined based on an
arbitrary 50% time criterion). Only the region denoted
IR+ exhibits a pure inertial regime as shown in Fig. 1c,
without any rest phase of the slider (Pm = 100%).

It is of particular interest to compare this diagram to
the previous results by Heslot et al., obtained with a sim-
ilar system, but at much larger normal load [11]. Note
first that the phase diagram is qualitatively the same,
with a stick-slip regime at both small stiffness k and ve-
locity V . Their analysis of the system is based on the fact
that the friction coefficient depends logarithmically on
the slider velocity ẋ [27]. They suggest to write, at small
slider velocity ẋ, as long as the dynamics is primarily gov-
erned by slow contact relaxation and creep phenomena,
the friction coefficient in the form

µd = a+ b ln

(
D0

ẋ

)
(10)

where D0 is a microscopic length that characterizes the
surfaces in frictional contact. This small velocity approx-
imation of µd holds true as long as the typical contact
time D0/ẋ is large compared to the inertial time

√
m/k.

The associated boundary corresponds to the transition
from CS to IR in which the slider is continuously in mo-
tion with ẋ ∼ V . From the thick black line in Fig. 11, we
get D0 = (2.0 ± 0.2) µm (extreme values are indicated
by the dotted lines on both sides). Note that the same
transition line could be used to distinguish two regimes
in the SS region as done in [11]. We observe that, on the
left of the boundary (small V ), that the system spends
a majority of the time in the stick-slip regime whereas,
on the right (large V ) it spends a majority of the time in
the inertial regime. However the transition is continuous

and poorly marked (thin black line). It is rather charac-
terized by the probability map. Let us comment that the
lengthscale D0 is of the order of the micrometer, as found
by Heslot et al. for another type of paper. Moreover, D0

is of the order of the typical diameter of the paper fiber,
in agreement with its physical origin.

The equation (10) can be used at small V to determine
the critical stiffness kc at the transition between SS and
CS regimes [11]

kc =
mg

D0
b . (11)

From the experimental diagram, we infer kc = (1250 ±
250) N/m (horizontal dashed black line) from which we
get b ' 8.3 10−3. This value, which is of the same order
of the value in [11], corresponds to a reasonable decrease
of the friction coefficient by 0.06 (∼ 20%) from rest to
1 mm/s. Note that experimentally kc is not constant and
decreases when V is increased (thick gray curve): this
trend is due to higher order terms in the dependence of µd
on ẋ and could be, in principle, determined theoretically
provided the knowledge of µd(ẋ).

Finally, the phase diagram must be complemented by
the boundary between the SS and the IR regime (thick
grey line) for which we do not have any theoretical back-
ground. The behavior of the system around this transi-
tion is rather complex, the system exhibiting hysteresis
and being sensitive to noise [11]. In addition, we can also
add to this diagram a guide to the eye around the region,
IR+, of pure inertial regime.

V. CONCLUSION

A nonlinear filtering technique relying on recent non-
smooth optimization formulation was shown to permit
to relevantly characterize force signals and solid (paper-
paper) friction dynamics. It makes it possible, in the
stick-slip regime, to capture the slider velocity asymme-
try and, thus, the creep motion before sliding. Creep is
therefore correctly accounted for as motion. This makes
it possible to estimate accuratly the time spent by the
slider in the stick regime (τst) or in motion (τm). Large
size statistics on the signals show that (i) the creep mo-
tion duration is constant in average, independently of
(k, V ); (ii) although peaked, the distributions of τst and
τm are broad, indicating important variations of the fric-
tional properties of the paper in space (heterogeneities)
and time (possible sample wear due to shear). Using the
fraction of time spent in motion, Pm, a tentative phase
diagram for the dynamics of solid paper-paper friction
was proposed. Based on the qualitative similarities with
the phase diagram for paper-paper friction under larger
normal load [11], we can conclude that even at low con-
finement pressure, the macroscopic friction is driven by
microscopic contacts. In addition, this complete phase
diagram makes it possible, for the first time, to quantify
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the continuous transition between the stick-slip and in-
ertial regime. Further work will be required to assess the
universality of such diagram.

The Matlabr toolbox developed in the framework of
this study for nonlinear and linear filtering is available
as Supplementary Material, and can be downloaded and
used by readers interested in denoising raw experimental
data on friction (or other) experiments.
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