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Stability guarantees for nonlinear discrete-time systems controlled by approximate value iteration

Value iteration is a method to generate optimal control inputs for generic nonlinear systems and cost functions. Its implementation typically leads to approximation errors, which may have a major impact on the closed-loop system performance. We talk in this case of approximate value iteration (AVI). In this paper, we investigate the stability of systems for which the inputs are obtained by AVI. We consider deterministic discrete-time nonlinear plants and a class of general, possibly discounted, costs. We model the closed-loop system as a family of systems parameterized by tunable parameters, which are used for the approximation of the value function at different iterations, the discount factor and the iteration step at which we stop running the algorithm. It is shown, under natural stabilizability and detectability properties as well as mild conditions on the approximation errors, that the family of closed-loop systems exhibit local practical stability properties. The analysis is based on the construction of a Lyapunov function given by the sum of the approximate value function and the Lyapunov-like function that characterizes the detectability of the system. By strengthening our conditions, asymptotic and exponential stability properties are guaranteed.

I. INTRODUCTION

Value iteration (VI) is one of the pillars of dynamic programming, which allows generating optimal control inputs for general nonlinear systems and cost functions. While optimality is the primary concern in the dynamic programming literature, recent results in e.g. [START_REF] Heydari | Stability analysis of optimal adaptive control under value iteration using a stabilizing initial policy[END_REF], [START_REF] Rinehart | Value iteration for (switched) homogeneous systems[END_REF], [START_REF] Wei | Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems[END_REF] provide conditions under which the input sequence generated by VI stabilizes the origin of the closed-loop system. Nevertheless, a major downside of VI is its computational complexity, which makes it intractable in general. To overcome this issue, the so-called approximate value iteration (AVI) was proposed, leading to sub-optimal policies due to the induced approximation errors [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF], [START_REF] Bertsekas | Abstract Dynamic Programming[END_REF]. These errors must be carefully handled as they may have a major impact on the system performance. Thus, an important problem in approximate dynamic programming is the analysis of the impact of the approximation errors on the obtained value function, see e.g., [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF], [START_REF] Heydari | Theoretical and numerical analysis of approximate dynamic programming with approximation errors[END_REF], [START_REF] Liu | Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems[END_REF], [START_REF] Liu | Value iteration ADP for discrete-time nonlinear systems[END_REF], [START_REF] Munos | Finite-time bounds for fitted value iteration[END_REF], [START_REF] Scherrer | On the use of non-stationary policies for stationary infinite-horizon Markov decision processes[END_REF], [START_REF] Singh | An upper bound on the loss from approximate optimal-value functions[END_REF]. In this context, a discount factor is often introduced in the cost function to ensure that the value function does not blow up when iterating AVI [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF].

While the impact of approximation errors on optimality is largely covered in the literature, e.g., [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF], [START_REF] Bertsekas | Abstract Dynamic Programming[END_REF], [START_REF] Farahmand | Regularized fitted Q-iteration for planning in continuous-space Markovian decision problems[END_REF], [START_REF] Heydari | Theoretical and numerical analysis of approximate dynamic programming with approximation errors[END_REF], [START_REF] Liu | Value iteration ADP for discrete-time nonlinear systems[END_REF], [START_REF] Munos | Finite-time bounds for fitted value iteration[END_REF], their effect on the stability properties of the closed-loop system is less understood. The authors of [START_REF] Bian | Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design[END_REF] proposed a model-free version of AVI for linear stochastic and deterministic continuous-time systems with quadratic costs for which near-optimality and stability are ensured. In [START_REF] Liu | Finite approximation error-based value iteration ADP[END_REF], [START_REF] Wei | Stable iterative adaptive dynamic programming algorithm with approximation errors for discrete-time nonlinear systems[END_REF], nonlinear discrete-time systems with generic positive definite stage costs are investigated. Asymptotic stability properties are ensured provided conditions involving the optimal value function are satisfied, but these conditions may be difficult to verify. To overcome this potential issue, the author of [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF] provides explicit conditions on the approximation errors under which local asymptotic stability of the origin is guaranteed. The assumptions made in [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF] may be restrictive though. First, the approximation errors are required to vanish in the attractor, which may be difficult to ensure. Second, the proved stability property is asymptotic, while we know, from the parallel between VI and modelpredictive control [START_REF] Bertsekas | Dynamic programming and suboptimal control: A survey from ADP to MPC[END_REF] that, in general, only practical stability can be achieved for nonlinear systems [START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF]. Third, common points of [START_REF] Bian | Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design[END_REF], [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF], [START_REF] Liu | Finite approximation error-based value iteration ADP[END_REF], [START_REF] Wei | Stable iterative adaptive dynamic programming algorithm with approximation errors for discrete-time nonlinear systems[END_REF] are that the stability of the origin is studied, while the closed-loop system may have a more general type of attractor. Finally, the considered cost functions are undiscounted in these references, while discounted costs are customary in dynamic programming. We aim at relaxing these limitations in this paper.

We consider nonlinear deterministic discrete-time systems and general non-negative cost functions, possibly discounted. Stability is investigated in terms of a generic measuring function, thus covering the stability of the origin and of more general compact sets in a unified way, see e.g., [START_REF] Granzotto | Stability analysis of discrete-time finite-horizon discounted optimal control[END_REF], [START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF], [START_REF] Kellett | On the robustness of KL-stability for difference inclusions: smooth discrete-time Lyapunov functions[END_REF], [START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF], [START_REF] Teel | A smooth Lyapunov function from a class-KL estimate involving two positive semidefinite functions[END_REF]. This allows addressing situations in which the closed-loop system exhibits a limit cycle for instance. Approximation errors are considered in the evaluation of the approximate value function, in the approximate feedback policy and in the criterion at which we stop iterating the algorithm. These errors are parameterized by a vector of tunable parameters denoted ε, which model the meta-parameters, such as the number of points in an interpolation grid or the number of neurons in a neural network, used in the employed approximation scheme. We model the overall system as a family of systems parameterized by ε, a possible discount factor and the iteration step at which the algorithm is stopped. We make stabilizability and detectability assumptions on the plant and the stage cost like in [START_REF] Granzotto | Stability analysis of discrete-time finite-horizon discounted optimal control[END_REF], [START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF], [START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF]. We then impose conditions on the approximation errors, which state that these errors can be made as small as desired by suitably tuning ε (i.e. by increasing the computational power used when doing the approximations). We do not require the errors to vanish in the attractor as in [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF], and these conditions do not depend on the optimal value function as in [START_REF] Liu | Finite approximation error-based value iteration ADP[END_REF], [START_REF] Wei | Stable iterative adaptive dynamic programming algorithm with approximation errors for discrete-time nonlinear systems[END_REF]. Based on these assumptions and inspired by [START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF], [START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF], we construct a Lyapunov-like function given by the sum of the approximate value function and a function used in the detectability assumption. We then ensure a local practical stability property. Asymptotic and exponential stability properties are also derived by strengthening the assumptions. We finally discuss the relationship between our results and [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF]Theorem 2].

Compared to [8, Section V], where stability results applicable to AVI are provided, the analysis in this paper does not rely on the knowledge of near-optimality bounds but on the properties of the algorithm itself. This provides a clearer delineation of the conditions under which the algorithm will provide appropriate stability properties. This also allows us to rely on more natural assumptions. As a result, we are able to ensure an asymptotic stability property, as opposed to a practical one, in the absence of approximation errors and when there is no discount factor, contrary to [START_REF] Granzotto | Finite-horizon discounted optimal control: stability and performance[END_REF].

The rest of the paper is organized as follows. The problem is formally stated in Section II. The assumptions are given in Section III. The main results are presented in Section IV. Section V provides conclusions. Long proofs have been postponed to the appendix for the sake of readability.

Notation. Let R be the set of real numbers, R ¥0 : r0, Vq, R ¡0 : p0, Vq, Z be the set of integers, Z ¥0 : t0, 1, 2, . . .u and Z ¡0 : t1, 2, . . .u. We denote by B n p q the closed ball of R n centered at the origin of radius ¡ 0, n Z ¡0 . The notation px, yq stands for rx t , y t s t , where x R n and y R m . A function χ : r0, aq Ñ R ¥0 with a R ¡0 tVu is of class K if it is continuous, zero at zero and strictly increasing, and it is of class K V if, in addition, a V and it is unbounded. A continuous function χ : r0, aq ¢ R ¥0 ÝÑ R ¥0 with a R ¡0 tVu is of class KL if for each t R ¥0 , χp¤, tq is of class K, and, for each s r0, aq, χps, ¤q is decreasing and converges to zero at infinity. In the particular case where χ : ps 1 , s 2 q Þ Ñ λ 1 s 1 e ¡λ2s2 for some λ 1 r1, Vq and λ 2 ¡ 0, we write that χ exp ¡KL. A function χ : r0, aq Ñ R ¥0 , with a R ¡0 tVu, is of class N when it is non-decreasing. We say that a function χ : r0, a 1 q¢r0, a 2 q ÝÑ R ¥0 , with a 1 , a 2 R ¡0 tVu, is of class KN when χp¤, sq is of class-K for any s r0, a 2 q and χps, ¤q is of class N for any s r0, a 1 q. The notation I stands for the identity map from R ¥0 to R ¥0 . The Euclidean norm of vector x R n is denoted by |x| and the distance of x R n to a set A R n is denoted by |x| A : inft|x ¡y| : y Au.

II. PROBLEM STATEMENT

Consider the nonlinear discrete-time system

x k 1 f px k , u k q, (1)
where x k R nx is the state, u k Upx k q is the control input, Upx k q R nu is the set of admissible inputs for state x k , k Z ¥0 is the time, f : W Ñ R nx with W : tpx, uq : x R nx , u Upxqu, and n x , n u Z ¡0 .

The cost function is given by

J γ px, uq : V ķ0 γ k pφpk, x, u| k q, u k q, (2) 
where x R nx , u pu 0 , u 1 , . . .q is an infinite-length sequence of admissible inputs, γ p0, 1s is possibly subunitary, : W Ñ R ¥0 is the stage cost, which takes nonnegative values, and φpk, x, u| k q is the solution to (1) at the k th -step starting at state x with input sequence u| k : pu 0 , . . . , u k¡1 q, which is the truncation of u to the first k Z ¡0 steps1 .

We investigate the scenario where approximate value iteration [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF] is employed to approximately minimize cost (2) over the sequence of inputs. We thus start from an initial value function p V 0 : R nx Ñ R ¥0 . We then iterate it as follows, for any x R nx and i Z ¥0 , p

V i 1 γ,ε V pxq min uU pxq px, uq γ p V i γ,ε V pfpx, uqq % e p V ,i 1 pγ, ε V , xq, (3) 
where p V 0 γ,ε V : p V 0 and e p

V ,i 1 : p0, 1s ¢ B n V p¯ q ¢ R nx Ñ
R is is an approximation error function. In general, there are two sources of error. The first is due to the limited approximation power of the given function space in which p V i γ,ε V is required to lie, characterized e.g. by the so-called inherent Bellman error in [START_REF] Munos | Finite-time bounds for fitted value iteration[END_REF], or by the smallest distance between any point in the function space and the optimal value function, see e.g. [START_REF] Bus ¸oniu | Approximate dynamic programming with a fuzzy parameterization[END_REF]. Depending on the particular approximation scheme employed, and if the value function satisfies certain smoothness properties, it may be possible to control this error arbitrarily close to zero by increasing the approximation power of the function space, which is done by tuning meta-parameters such as the number of points on an interpolation grid, number of neurons in a neural network etc. This is related to the so-called universal function approximation property that many approximators have been proved to satisfy. The variation of the error with these metaparameters is represented by the variation of ε V R n V . This vector of parameters is constrained in B n V p¯ q, where ¯ R ¡0 is an upper-bound on the norm of2 ε V , and n V Z ¡0 . Additionally, there is often a second source of error due to the limited number of samples used to compute p V i γ,ε V . The guarantees given in [START_REF] Munos | Finite-time bounds for fitted value iteration[END_REF] for stochastic problems ensure that this error goes to arbitrarily close to zero with probability arbitrarily close to 1, if the number of samples is large enough. Sometimes, e.g. in the deterministic case, when the approximator is interpolative and the samples are equal to the grid centers, this source of error can be removed [START_REF] Bus ¸oniu | Approximate dynamic programming with a fuzzy parameterization[END_REF].

We make the next standing assumption.

Standing Assumption 1 (SA1): For any γ p0, 1s, ε V B n V p¯ q, x R nx and i Z ¥0 , p

V i γ,ε V pxq ¥ 0.
l SA1 is natural in the context of the paper as the objective of (3) is to iteratively estimate the optimal value function associated to [START_REF] Bertsekas | Dynamic programming and suboptimal control: A survey from ADP to MPC[END_REF], which is non-negative as pWq R ¥0 .

It can be enforced by suitably selecting the function space where p V i γ,ε V , i Z ¥0 , is constrained to lie. The policy, or feedback, calculated at iteration i Z ¥0 , is given by ĥi γ,ε h pxq argmin uU pxq px, uq γ p

V i γ,ε V pfpx, uqq % e ĥ,i pγ, ε h , xq, (4) 
where e ĥ,i : p0, 1s ¢ B n h p¯ q ¢ R nx Ñ R nu is another approximation error function, which may arise when computing the argmin above, and which can be tuned via parameter

ε h B n h p¯ q, n h Z ¡0
. The norm of ε h is subject to the same constraint as ε V , namely |ε h | ¤ ¯ , without loss of generality as we can always define ¯ as the minimum of the respective bounds on the norms of ε h and ε V . Error e ĥ,i must be such that the next standing assumption holds.

Standing Assumption 2 (SA2): For any γ p0, 1s, ε h B n h p¯ q, x R nx and i Z ¥0 , ĥi γ,ε h pxq Upxq. l

We stop the iterating procedure (3) at any step i bigger than i Z ¡0 , which is assumed to satisfy the next property.

Standing Assumption 3 (SA3):

There exist i Z ¥0 and e stop,i : p0, 1s ¢B n V p¯ q¢B nstop p¯ q¢R nx Ñ R ¥0 with n stop Z ¡0 , such that for any γ p0, 1s,

ε V B n V p¯ q, ε stop B nstop p¯ q, x R nx and i ¥ i , T p V i γ,ε V pxq ¤ p V i γ,ε V pxq e stop,i pγ, ε V , ε stop , xq (5) 
where

T p V i γ,ε V pxq : min uU pxq px, uq γ p V i γ,ε V pfpx, uqq % . l Error e stop,i is called the Bellman residual [28] of p V i γ,ε V , i ¥ i .
It is allowed to depend on γ, ε V , x and also ε stop B nstop p¯ q a vector of additional adjustable parameters.

The expression of e stop,i allows both the usual iteration error like in (3), and an additional error due e.g. to stopping the algorithm early (i.e. before some asymptotic regime is exactly reached). The latter component typically arises implicitly as a result of the stopping condition of the algorithm. Remark 1: It is important to note that typical bounds in the literature on performance guarantees are given on the distance between the optimal value function and the last value function iterate p V i γ,ε V . It can then easily be shown that the Bellman residual in ( 5) is at most p1 γq| p

V i γ,ε V pxq ¡ V γ,V pxq|, where V γ,V is the optimal value function of cost (2).

l

We concatenate the adjustable parameters arising in the approximation errors as ε : pε V , ε h , ε stop q R nε where

n ε : n h n V n stop .
We write in the following the approximate value function as p V i γ,ε instead of p V i γ,ε V for the sake of convenience. We similarly write ĥi γ,ε instead of ĥi γ,ε h . As a result, the closed-loop feedback system is given by

x k 1 f ¡ x k , argmin u k Upx k q px k , u k q γ p V i γ,ε pfpx k , u k qq % e ĥ,i pγ, ε h , x k q © : p F γ,ε,i px k q.
(6) Equation ( 6) describes a family of systems parameterized by γ, ε and i. Note that (6) indeed depends on ε V and ε stop through (3) and [START_REF] Bus ¸oniu | Approximate dynamic programming with a fuzzy parameterization[END_REF].

Our objective is to analyse stability properties of the family of systems [START_REF] Farahmand | Regularized fitted Q-iteration for planning in continuous-space Markovian decision problems[END_REF]. For this purpose, we make assumptions on the detectability of system (1) with respect to the stage cost , on the approximation errors e p V ,i , e ĥ,i and e stop,i , and on the stabilizability of system (1).

III. ASSUMPTIONS

We use a generic measuring function of the state σ : R nx Ñ R ¥0 to investigate stability like in [START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF], [START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF], which is required to satisfy the next assumption.

Assumption 1:

Function σ is continuous on R nx . Assumption 1 is verified when σ is defined as | ¤ |, | ¤ | 2 or x Þ Ñ x t P x
with P a real, symmetric and positive definite matrix, when studying the stability of x 0. This condition is also verified when σ is given by |¤| A or |¤| 2 A with A R n , when studying the stability of set A.

A. Detectability

We make the next detectability assumption on system (1) with respect to as in [START_REF] Granzotto | Stability analysis of discrete-time finite-horizon discounted optimal control[END_REF], [START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF], [START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF].

Assumption 2: There exist a continuous function W :

R nx Ñ R ¥0 , α W K V and α W : R ¥0 Ñ R ¥0 continuous,
nondecreasing and zero at zero, such that the following holds for any px, uq W W pxq ¤ α W pσpxqq W pfpx, uqq ¡ W pxq ¤ ¡α W pσpxqq px, uq. (7) l

Assumption 2 is indeed a detectability property. The best way to see it is when [START_REF] Granzotto | Stability analysis of discrete-time finite-horizon discounted optimal control[END_REF] holds with W 0. Then, [START_REF] Granzotto | Stability analysis of discrete-time finite-horizon discounted optimal control[END_REF] implies that px, uq ¥ α W pσpxqq, which means that, if px, uq 0 (is small), then σpxq 0 (is small) as α W K V . Note that Assumption 2 is independent of γ and the approximation errors as it only involves stage cost and system (1). Assumption 2 generalizes the common requirement that px, uq is positive definite as in e.g., [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF],

[17], [START_REF] Rinehart | Value iteration for (switched) homogeneous systems[END_REF], [START_REF] Wei | Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems[END_REF]. Remark 2: It is possible to relax Assumption 2 by replacing the second inequality in [START_REF] Granzotto | Stability analysis of discrete-time finite-horizon discounted optimal control[END_REF] with W pfpx, uqq ¡Wpxq ¤ ¡α W pσpxqq χp px, uqq, where χ K V , as in [START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF]SA3].

This extension is left for future work.

l B. Approximation errors

We make assumptions on the approximation errors e p V ,i , e ĥ,i and e stop,i with i ¥ i in order to prove stability properties for system [START_REF] Farahmand | Regularized fitted Q-iteration for planning in continuous-space Markovian decision problems[END_REF]. For this purpose, we constrain the state to a given compact set X R nx . This is justified by the fact that AVI is often applied on a compact subset of the state space, which corresponds to X here. We make the next assumption on X .

Assumption 3: The set tx R n : σpxq 0u is included in the interior of X .

l Assumption 3 is verified when σ is defined as the distance to a compact set for example, and this set is included in the interior of X .

For any γ p0, 1s, ε B nε p¯ q, x X , consider ĥi γ,ε pxq as in [START_REF] Bian | Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design[END_REF]. We define

h i γ,ε pxq : ĥi γ,ε pxq ¡ e ĥ,i pγ, ε h , xq. (8) 
which corresponds to the feedback ĥi γ,ε in ( 4) not affected by the error term e ĥ,i . Hence h i γ,ε pxq

argmin uU pxq px, uq γ p V i γ,ε V pfpx, uqq %
. We make the next assumption.

Assumption 4:

There exist α stop , p α V , p α KN , α W , α ε K such that, for any γ p0, 1s, ε B nε p¯ q, x X and i ¥ i , e stop,i pγ, ε V , ε stop , xq ¤ α stop p|ε|, σpxqq (9a) min 3 |e p V ,i pγ, ε V , xq|, e stop,i pγ, ε V , ε stop , xq A ¤ α W pσpxqq ¡ α W pσpxqq α ε p|ε|q (9b) § § § p V i γ,ε pfpx, h i γ,ε pxqqq ¡ p V i γ,ε pfpx, ĥi γ,ε pxqqq § § § ¤ p α V p|ε|, σpxqq (9c) § § § px, h i γ,ε pxqq ¡ px, ĥi γ,ε pxqq § § § ¤ p α p|ε|, σpxqq. (9d) l
Condition (9a) implies that the iteration (3) practically converges, so that the mismatch T p

V i γ,ε V ¡ p V i γ,ε V can be made
as small as desired by reducing |ε|. This condition covers properties previously assumed in the literature. For instance, [4, Algorithm 1] ensures (9a) by taking α stop p|ε|, σpxqq |ε|λ max pP i qσpxq where λ max pP i q is the maximum eigenvalue of symmetric, positive definite matrix P i , ε i ε and σpxq |x| 2 , using the notation of this reference. Also, [17, (3.2.10)] implies that (9a) holds with α stop p|ε|, σpxqq |ε|. In this case, that is when (9a) is satisfied with α stop independent of σpxq, (9b) follows with α W α W and α ε α stop . Similarly, when |e p V ,i pγ, ε V , xq| ¤ α V,ε p|ε|q with α V,ε K for any x X and ε B nε p¯ q, (9b) is verified with α W α W and α ε α V,ε . In this case, Lemma 1 in [START_REF] Munos | Finite-time bounds for fitted value iteration[END_REF] provides conditions under which (9a) holds with α stop , which only depends on ε.

The last two conditions of Assumption 4 state that the mismatch between the values of px, ¤q and p V i γ,ε pfpx, ¤qq for i ¥ i evaluated at the applied policy ĥi γ,ε h pxq and at the ideal one h i γ,ε h pxq can be made as small as desired by tuning ε. The next lemma provides sufficient conditions to ensure (9c)-(9d). Its proof is omitted for space reasons. Lemma 1: Suppose the following holds.

(i) For any i ¥ i , p

V i γ,ε is continuous on X .

(ii) There exists α σ K V such that σpxq ¥ α σ p|x|q for any x R n .

(iii) One of the next conditions holds.

(iii-a) There exists θ K such that | px, uq¡ px, vq| ¤ θ p|u ¡ v|q for any x X and pu, vq Upxq 2 . (iii-b) There exist α σ K V and ϑ h : R ¥0 Ñ R ¥0

non-decreasing such that, for any γ p0, 1s, ε B nε p¯ q, i ¥ i , x X , σpxq ¥ α σ p|x|q and |h i γ,ε pxq| ¤ ϑ h pσpxqq. (iii) There exist α h KN such that, for any γ p0, 1s, ε B nε p¯ q, i ¥ i and x X , |e ĥ,i pγ,

ε h , xq| ¤ α h p|ε h |, σpxqq.
Then (9c)-(9d) hold.

l

The continuity of p V i γ,ε in item (i) of Lemma 1 can be enforced by suitably selecting the function space where p V i γ,ε is constrained to lie. Item (ii) is verified when σ is defined as the distance to a compact set, which includes the origin, for example. Item (iii-a) of Lemma 1 is verified when the stage cost can be written as px, uq 1 pxq 2 puq for any x X and u Upxq V where 2 is continuous and V is compact for instance. In this case, 2 is uniformly continuous on V by Heine theorem and ϑ corresponds to the modulus of continuity, see Proposition A.2.1 in [START_REF] Postoyan | Commande et construction d'observateurs pour les systèmes non linéaires à données échantillonnées et en réseau[END_REF]. Regarding item (iii-b) of Lemma 1, the condition on σ is verified for the examples provided at the beginning of this section for example when the set A is compact. The condition on h i γ,ε , on the other hand, is verified when Upxq V with V compact to give an example, as it suffices to define ϑ h as the constant function whose value is the maximum norm of the elements of V. Finally, item (iv) implies that the error e ĥ,i pγ, ε h , xq in (4) can be made as small as desired by tuning ε h .

C. Stabilizability

We make the next assumption on the approximate value function p

V i γ,ε with i ¥ i . Assumption 5: There exist α V , α ε K V such that for any γ p0, 1s, ε B nε p¯ q, i ¥ i , x X , p V i γ,ε pxq ¤ α V pσpxqq α ε p|ε|q. (10)
l Assumption 5 is related to the stabilizability of system (1). To see it, assume there exists q α V KN such that for any γ p0, 1s,

ε V B n V p¯ q, x X and i Z ¥0 , |e p V ,i pγ, ε V , xq| ¤ q α V p|ε V |, σpxqq.
Such an assumption is generally needed for the satisfaction of the first two inequalities in [START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF]. Define the modified stage cost r px, uq : px, uq q α V p¯ , σpxqq for any px, uq W. The associated undiscounted optimal value function is r V pxq : min uU pxq V ķ0 r pφpk, x, u| k q, u k q for any x X . The next lemma gives a condition on r V ensuring Assumption 5.

Lemma 2: Under Assumption 4, if there exists r

α V K V such that, for any x X , r V pxq ¤ r α V pσpxqq (11) 
then Assumption 5 holds with α V r α V and α ε 0. l

Proof. The proof is similar to [10, Section V.B]. In view of the definition of r and Assumption 4, γ px, uq ¤ px, uq ¤ r px, uq for any px, uq W and γ p0, 1s. Hence, by definition of r V , for any γ p0, 1s, ε B nε p¯ q, x X , i ¥ i , it holds p V i γ,ε pxq ¤ r V pxq. The desired result is obtained by invoking [START_REF] Heydari | Stability analysis of optimal adaptive control under value iteration using a stabilizing initial policy[END_REF]. Condition ( 11) is a stabilizability property of system (1) with respect to stage cost r according to [9, Section III] and in [21, Lemma 1], which we recall below.

Lemma 3: Consider system (1) and suppose that r is uniformly globally exponentially stabilizable to zero with respect to σ : R nx Ñ R ¥0 , i.e. there exist M ¡ 0 and λ ¡ 0, where λ is called the decrease rate, such that for any x R nx there exists an admissible infinite-length control input sequence upxq verifying r pφpk, x, u| k pxqq, u k pxqq ¤ M σpxqe ¡λk for any k Z ¡0 . Then [START_REF] Heydari | Stability analysis of optimal adaptive control under value iteration using a stabilizing initial policy[END_REF] holds with r α V psq M s 1¡e ¡λ for any s ¥ 0. l The works in [START_REF] Liu | Finite approximation error-based value iteration ADP[END_REF], [START_REF] Wei | Stable iterative adaptive dynamic programming algorithm with approximation errors for discrete-time nonlinear systems[END_REF] require [START_REF] Heydari | Theoretical and numerical analysis of approximate dynamic programming with approximation errors[END_REF] to hold with α ε 0, see the proof of Theorem 4 in [START_REF] Wei | Stable iterative adaptive dynamic programming algorithm with approximation errors for discrete-time nonlinear systems[END_REF] for instance. On the other hand, condition [START_REF] Heydari | Stability analysis of optimal adaptive control under value iteration using a stabilizing initial policy[END_REF] typically requires e p V ,i 1 pγ, ε V , xq to vanish in the attractor tx X : σpxq 0u to hold, which may be difficult to ensure. When this is not the case, Assumption 5 is more likely to be verified with α ε $ 0 in [START_REF] Heydari | Theoretical and numerical analysis of approximate dynamic programming with approximation errors[END_REF].

Remark 3: As mentioned in the introduction, [8, Section V] also allows investigating stability of nonlinear discretetime systems controlled by AVI. While Assumption 2 is also considered in [START_REF] Granzotto | Finite-horizon discounted optimal control: stability and performance[END_REF], Assumptions 4 and 5 are more closely related to the approximation errors, which we can tune when implementing AVI, and not on near-optimality bounds as in [8, Assumption 3] that may be subject to some conservatism.

l IV. STABILITY GUARANTEES A. Main result

Based on Assumptions 1-5, we can state the next theorem about the existence of a Lyapunov-like function for system [START_REF] Farahmand | Regularized fitted Q-iteration for planning in continuous-space Markovian decision problems[END_REF].

Theorem 1: Under Assumptions 1-5, there exist α Y , α Y , α Y K V and Υ KN such that for any pγ, εq p0, 1s ¢ B nε p¯ q, and i ¥ i where i comes from [START_REF] Farahmand | Regularized fitted Q-iteration for planning in continuous-space Markovian decision problems[END_REF]. The expressions of α Y , α Y , α Y and Υ are provided in Table I.

SA3, function Y i γ,ε : p V i γ,ε W defined on R nx satisfies the following. (a) For any x X , α Y pσpxqq ¡ α ε p|ε|q ¤ Y i γ,ε pxq ¤ α Y pσpxqq α ε p|ε|q. (b) For any x X , υ p F γ,ε,i pxq, Y i γ,ε pυq ¡ Y i γ,ε pxq ¤ ¡α Y pσpxqq Υ 1¡γ γ |ε|, σpxq ¨, where p F γ,ε,i is defined in

l

We are ready to state the main stability result.

Theorem 2: Consider system (6) and suppose Assumptions 1-5 hold. There exists β KL such that for any δ R ¡0 , there exists pγ , , ∆q p0, 1q ¢ p0, ¯ q ¢ R ¡0 such that for any i ¥ i , γ rγ , 1s, r0, s, ε B nε p q, x X with Y i γ,ε pxq ¤ ∆, where Y i γ,ε is defined in Theorem 1, any solution3 φp¤, xq to system (6) satisfies φpk, xq X and σpφpk, xqq ¤ βpσpxq, kq δ,

for all k Z ¥0 . l

Theorem 2 ensures a local practical stability property with respect to σ, in the sense that given any neighborhood of the set tx X : σpxq 0u, there exists a tuple composed of a lower bound on the discount factor γ, an upper-bound on the norm of the tunable parameters ε and an upper-bound ∆ on the initial value of the Lyapunov function such that, for any pair pγ, εq satisfying this bound, any solution initialized at x such that Y i γ,ε pxq ¤ ∆ lies in X for all positive times and converges to the desired neighborhood of tx X : σpxq 0u. It is possible to ensure stronger properties by strengthening the conditions of Theorem 2, see Section IV-B.

Theorem 2, as well as the stability results presented in the sequel, can in principle be used to compute bounds on the minimum allowable discount factor γ , the maximal error , see [START_REF] Williams | Tight performance bounds on greedy policies based on imperfect value functions[END_REF], and ∆. However, first, it is likely that the obtained values are subject to some conservatism because of the used proof techniques. Second, tight bounds would also require precise characterizations of the functions introduced in Assumptions 2, 4 and 5, which may be difficult to achieve. In this case, our stability results can be applied in a qualitative way, meaning that for large enough γ and small enough and ∆, stability follows and the type of stability depends on the type of functions in Assumptions 2, 4 and 5, and not their precise expressions.

Remark 4: In the absence of errors, i.e. ε 0, and when γ 1, the set tx : σpxq 0u is locally asymptotically stable. This follows directly from the proof of Theorem 2. This result is consistent with [START_REF] Heydari | Stability analysis of optimal adaptive control under value iteration using a stabilizing initial policy[END_REF]Theorem 1] where σ is the Euclidean distance, which is generalized here to a larger class of stage costs and to more general types of attractors. Moreover, this fact is an improvement over the general results in [START_REF] Granzotto | Finite-horizon discounted optimal control: stability and performance[END_REF], which ensures a practical stability property in this case.

l B. Stronger statements

The next result ensures an asymptotic and exponential stability properties for system (6) and the bounds γ and are independent of constant ∆, contrary to 4 Theorem 2.

Corollary 1: Consider system (6) and suppose the following holds.

(i) Assumptions 1 and 3 hold.

(ii) e ĥ,i 0 in (4) for any i Z ¥0 .

α Y : α W α Y : α V α W α Y : α W Υ : ps 1 , s 2 q Þ Ñ 1 ¡ γ γ ¡ α V ps 2 q αεps 1 q αstopps 1 , s 2 q © p α ps 1 , s 2 q αstopps 1 , s 2 q p α V ps 1 , s 2 q TABLE I EXPRESSIONS OF THE FUNCTIONS USED IN THEOREM 1.
(iii) Assumptions 2, 4 and 5 hold with α W psq a W ¤ s, α V psq a V ¤ s, α ε 0, α stop ps 1 , s 2 q a stop ps 1 qs 2 , α ε 0, where a W , a V ¡ 0 and a stop K, for any s, s 1 , s 2 ¥ 0. Let pγ , q p0, 1q ¢ p0, ¯ q be such that

1 ¡ γ γ ¡ āV a stop p q © a stop p q a W . ( 13 
)
There exist β KL and ∆ ¡ 0 such that for any i ¥ i , γ rγ , 1s, r0, s, ε B nε p q, and x X such that Y i γ,ε pzq ¤ ∆, any solution φp¤, xq to system (6) initialized at x X satisfies φpk, xq X and σpφpk, xqq ¤ βpσpxq, kq,

for all k Z ¥0 . In addition, when α W psq a W ¤ s for any s ¥ 0, β exp ¡KL. l

Sufficient conditions that ensure the satisfaction of the properties required by Corollary 1 are given in the following. Corollary 1 differs from Theorem 2 on two points. First, property ( 14) is no longer practical but asymptotic (or exponential) as σpφpk, xqq is guaranteed to converge to the origin as the time tends to infinity, contrary to [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF]. Second, the pair pγ , q is independent of ∆, contrary to Theorem 2.

Note that condition ( 13) is always verified for γ sufficiently close to 1 and sufficiently small as a stop K.

To relate the conditions of Corollary 1 to those in [12, Theorem 2], we first need to adapt one of the assumptions in [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF]Theorem 2]. Indeed, the work in [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF] does not interpret system (1) controlled by AVI as a family of parameterized systems as we do, but as a single system with fixed parameters. However, if we view constant c in [12, Assumption 2] as a parameter, it would then correspond to |ε V | with our notation. We also need to add a few extra conditions, otherwise we do not see how to prove that solutions initialized in a neighborhood of the origin remains in the set X , contrary to what [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF]Theorem 2] states, as explained in the following. Once this is done, the obtained set of conditions imply the satisfaction of the requirements of Corollary 1. As a result, the origin of system ( 6) is locally asymptotically stable.

Corollary 2: Consider system (6) and suppose the following holds.

(i) Set X R nx is compact, connected and the origin is in its interior.

(ii) For any px, uq W, px, uq Qpxq Rpuq with Q and R continuous and positive definite.

(iii) γ 1 in (2).
(iv) There exists ¯ r0, 1q such that for any ε

V B n V p¯ q |e p V ,i 1 p1, ε V , xq| ¤ |ε V | px, 0q for any x X . (v) For any ε V r0, ¯ q, x R nx zX and i Z ¥0 , p V i γ,ε V pxq ¥ 0. (vi) For any i Z ¥0 , ε h R n h and x R nx ,
e ĥ,i p1, ε h , xq 0 in ( 4). (vii) There exists d ¡ 0 such that p V 0 pxq ¤ dQpxq for any x X . Then the conditions of Corollary 1 hold with σ Q, W 0, α W α W I, a W 1, α V 2dI, a V 2d, α ε 0, α stop ps 1 , s 2 q a stop ps 1 qds 2 with a stop ps 1 q 4s1 1¡s1 for any

s 1 r0, 1q and s 2 ¥ 0, α ε 0, α W p1 ¡ ¯ qI and a W 1 ¡ ¯ . l
The conditions of Corollary 2 correspond to those in [12, Theorem 2] except that we have considered a parameterized version of [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF]Assumption 2] in item (iv) of Corollary 2 as explained above, and we have added items (i) and (v). The latter are essential to prove the forward invariance of Lyapunov level set p B i r as defined in [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF]Theorem 2]. Indeed, the corresponding Lyapunov function needs to be non-negative on R nx and not only on X as written in [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF], thus justifying item (v) of Corollary 2. Moreover, for set p B i r to be not only the origin, the latter needs to be in the interior of X as stated in item (i) of Corollary 2 (and X does not actually need to be connected). Corollary 2 indeed leads to a local asymptotic stability property for the origin of system (6) consistently with [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF]Theorem 2], by application of Corollary 1. As Q is positive definite and continuous, there exist α

Q , α Q K V such that α Q p|x|q ¤ Qpxq ¤ α Q p|x|q for any x X , as X is compact here, in view of 5 [15, Lemma 4.3]. Hence, (14) leads to |φpk, xq| ¤ βp|x|, kq with βps 1 , s 2 q Þ Ñ α ¡1 Q βpα Q ps 1 q, s 2 q ¨ KL
, which is the standard characterization of (local) asymptotic stability of the origin. Moreover, condition ( 13) is, in this case,

1 4d 1
, which is less restrictive than the corresponding condition, namely

1 2d ¡ 4d 2 4d, in [12, Theorem 2].

V. CONCLUSION

We have presented conditions under which a nonlinear discrete-time system whose inputs are generated by AVI satisfies stability properties. A key idea is to consider the closed-loop system as a family of systems parameterized by tunable algorithmic parameters, the discount factor and the iteration step at which we stop running the algorithm. Stability is defined using a generic measuring function, covering point and set stability. Stabilizability and detectability assumptions are made for this purpose, which are in line with conditions imposed in previous papers in different contexts [START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF], [START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF]. The approximation errors arising in the implementation of AVI are required to satisfy mild conditions. As a result, local practical stability properties are guaranteed, which become asymptotic or exponential under stronger conditions. This work can be extended in various ways, among which the case where the policy is time-varying as in [START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF]. We will also investigate the issue of robustness, which is not trivial in discrete-time [START_REF] Kellett | On the robustness of KL-stability for difference inclusions: smooth discrete-time Lyapunov functions[END_REF].

VI. APPENDIX

Proof of Theorem 1. Let γ p0, 1s, ε B nε p¯ q, i ¥ i , x X and υ p F γ,ε,i pxq. Hence, υ f px, ĥi γ,ε pxqq for some ĥi γ,ε pxq defined as in (4). We first prove item (i) of Theorem 1. In view of Assumptions 2 and 5 and the definition of

Y i γ,ε , Y i γ,ε pxq ¤ α V pσpxqq α ε p|ε|q α W pσpxqq. Hence Y i γ,ε pxq ¤ α Y pσpxqq α ε p|ε|q where α Y : α V α W K V . In view of SA3, p V i γ,ε pxq ¥ px, h i γ,ε pxqq γ p V i γ,ε pfpx, h i γ,ε pxqqq ¡e stop,i pγ, ε V , ε stop , xq, (15) 
where h i γ,ε pxq is as in [START_REF] Granzotto | Finite-horizon discounted optimal control: stability and performance[END_REF]. We deduce that

Y i γ,ε pxq p V i γ,ε pxq W pxq ¥ px, h i γ,ε pxqq γ p V i γ,ε pfpx, h i γ,ε pxqqq ¡ e stop,i pγ, ε V , ε stop , xq W pxq. According to SA1, γ p V i γ,ε pfpx, h i γ,ε pxqqq ¥ 0, thus Y i γ,ε pxq ¥ px, h i γ,ε pxqq ¡ e stop,i pγ, ε V , ε stop , xq W pxq.
On the other hand, according to Assumption 2,

W pxq ¥ α W pσpxqq ¡ px, h i γ,ε pxqq. We derive Y i γ,ε pxq ¥ ¡e stop,i pγ, ε V , ε stop , xq α W pσpxqq.
In view of the last inequality in (9), we have, when e stop,i pγ,

ε V , ε stop , xq ¤ |e p V ,i pγ, ε V , xq|, Y i γ,ε pxq ¥ α W pσpxqq ¡ α ε p|ε|q. If e stop,i pγ, ε V , ε stop , xq ¡ |e p V ,i pγ, ε V , xq|, in view of (3), p V i γ,ε pxq px, h i¡1 γ pxqq γ p V i¡1 γ,ε pfpx, h i¡1 γ pxqqq e p V ,i pγ, ε V , xq. (16) 
By following similar lines as above, we derive that

Y i γ,ε pxq ¥ e p V ,i pγ, ε V , xq α W pσpxqq ¥ ¡|e p V ,i pγ, ε V , xq| α W pσpxqq.
Then, in view of the last inequality in (9), we derive

Y i γ,ε pxq ¥ α W pσpxqq ¡ α ε p|ε|q. Thus, item (i) of Theorem 1 holds with α Y α W K V .
We now prove item (ii) of Theorem 1. We have that

Y i γ,ε pυq ¡ Y i γ,ε pxq p V i γ,ε pυq ¡ p V i γ,ε pxq W pυq ¡ W pxq. (17) 
In view of [START_REF] Khalil | Nonlinear systems[END_REF],

Y i γ,ε pυq ¡ Y i γ,ε pxq ¤ p V i γ,ε pυq ¡ px, h i γ,ε pxqq ¡γ p V i γ,ε pfpx, h i γ,ε pxqqq e stop,i pγ, ε V , ε stop , xq W pυq ¡ W pxq. (18) 
We obtain, by adding and subtracting p

V i γ,ε pfpx, h i γ,ε pxqqq, Y i γ,ε pυq ¡ Y i γ,ε pxq ¤ p V i γ,ε pυq ¡ p V i γ,ε pfpx, h i γ,ε pxqqq ¡ px, h i γ,ε pxqq p1 ¡ γq p V i γ,ε pfpx, h i γ,ε pxqqq e stop,i pγ, ε V , ε stop , xq W pυq ¡ W pxq. (19)
From Assumption 2 and by definition of υ, we have W pυq ¡ W pxq ¤ ¡α W pσpxqq px, ĥi γ,ε pxqq. (20) Therefore, in view of [START_REF] Munos | Finite-time bounds for fitted value iteration[END_REF],

Y i γ,ε pυq ¡ Y i γ,ε pxq¤¡α W pσpxqq px, ĥi γ,ε pxqq ¡ px, h i γ,ε pxqq p1 ¡ γq p V i γ,ε pfpx, h i γ,ε pxqqq e stop,i pγ, ε V , ε stop , xq p V i γ,ε pυq ¡ p V i γ,ε pfpx, h i γ,ε pxqqq. ( 21 
)
The rest of the proof consists in suitably upper-bounding px, ĥi γ,ε pxqq ¡ px, h i γ,ε pxqq, p1 ¡ γq p

V i γ,ε pfpx, h i γ,ε pxqqq, p V i γ,ε pυq ¡ p V i
γ,ε pfpx, h i γ,ε pxqqq and e stop,i pγ, ε V , ε stop , xq to obtain the desired result. In view of ( 15) and since takes non-negative values, We introduce several quantities, which are essential in the rest of the proof. We define ∆ R ¡0 , the biggest positive constant such that tx R nx : α Y pσpxqq ¤ α ε p˜ q ∆u X , which exists in view of the definition of ˜ above, Assumption 1, and the fact that X is compact. We also define δ : min

p V i γ,ε pfpx, h i γ,ε pxqqq ¤ 1 γ ¡ p V i γ,ε pxq e stop,i pγ, ε V , ε stop , xq © . (22) 
5 ¢ I ¡ r α Y 2 ¡1 ¥ α Y pδq, 1 2 
α Y p 1 2 δq, ∆ C where r α Y psq : α Y ¥ α ¡1 Y p 1 2 sq for any s ¥ 0. Note that ¡ I ¡ r α Y 2 © ¡1
is well-defined as we can assume without loss of generality that I ¡ r α Y 2 K V , see [8, footnote 5]. We select γ p0, 1q and p0, ˜ q such that 6 9 9 9 9 9 8 9 9 9 9 9 7

Υ ¢ 1 ¡ γ γ , α ¡1 Y ps α ε p qq ¤ 1 2 r α Y psq ds r δ, ∆s α ¡1 Y p2α ε p qq α ¡1 Y p2β Y p4α ε p q, 0qq ¤ 1 2 δ 2α ε p q Υ ¡ 1¡γ γ , α ¡1 Y ¥ α ε p q © ¤ δ, (24) 
with β Y some KL-function defined in the following. This is always possible as Υ is of class KN , we can thus select a pair pγ , q p0, 1q ¢ p0, ¯ q such that

Υ ¡ 1¡γ γ , α ¡1 Y p∆ α ε p qq © ¤ 1 2 r α Y p δq, which en-
sures the first inequality in [START_REF] Singh | An upper bound on the loss from approximate optimal-value functions[END_REF]. The second and third inequalities are satisfied by selecting ¡ 0 sufficiently small and large γ p0, 1q in view of the properties of the involved functions.

Let γ rγ , 1s, r0, s, ε B nε p q, and x X be 6 such that Y i γ,ε pxq ¤ ∆, and υ p F γ,ε,i pxq. We first consider the case where α Y pσpxqq ¥ α ε p|ε|q. As a result, in view

of item (i) of Theorem 1, Y i γ,ε pxq ¤ α Y pσpxqq α ε p|ε|q ¤ 2α Y pσpxqq. In view of Theorem 1, the definition of r α Y and the fact that Υ KN , Y i γ,ε pυq ¡ Y i γ,ε pxq ¤ ¡r α Y pY i γ,ε pxqq Υ ¡ 1¡γ γ |ε|, α ¡1 Y Y i γ,ε pxq α ε p|ε|q ¨© . ( 25 
)
Since γ rγ , 1s, ε B nε p q and Υ KN ,

Y i γ,ε pυq ¡ Y i γ,ε pxq ¤ ¡r α Y pY i γ,ε pxqq Υ ¡ 1¡γ γ , α ¡1 Y Y i γ,ε pxq α ε p q ¨© . (26) 
When Y i γ,ε pxq r δ, ∆s, in view of ( 24) and [START_REF] Wei | Stable iterative adaptive dynamic programming algorithm with approximation errors for discrete-time nonlinear systems[END_REF],

Y i γ,ε pυq ¡ Y i γ,ε pxq ¤ ¡ 1 2 r α Y pY i γ,ε pxqq. (27) 
When Y i γ,ε pxq r0, δs, in view of ( 24), [START_REF] Wei | Stable iterative adaptive dynamic programming algorithm with approximation errors for discrete-time nonlinear systems[END_REF], the definition of δ and since I ¡ r α Y can be assumed to be in K V without loss of generality [8, Remark 5],

Y i γ,ε pυq¤pI ¡ r α Y q pY i γ,ε pxqq Υ ¡ 1¡γ γ , α ¡1 Y Y i γ,ε pxq α ε p q ¨© ¤pI ¡ r α Y q p δq Υ ¡ 1¡γ γ , α ¡1 Y p δ α ε p qq © ¤pI ¡ r α Y q p δq 1 2 r α Y p δq I ¡ 1 2 r
α Y ¨pδ q.

(28) Thus, whenever Y i γ,ε pxq ¤ δ, Y i γ,ε pυq ¤ δ. We now consider the case where α Y pσpxqq ¤ α ε p|ε|q, which implies Y i γ,ε pxq ¤ 2α ε p|ε|q according to item (i) of Theorem 1. Consequently, in view of item (ii) of Theorem 6 It is always possible to find such x in view of Assumption 3 and item (i) of Theorem 1.

1,

Y i γ,ε pυq ¤ Y i γ,ε pxq ¡ α Y pσpxqq Υ ¡ 1¡γ γ |ε|, σpxq © ¤ Y i γ,ε pxq Υ ¡ 1¡γ γ |ε|, σpxq © ¤ 2α ε p|ε|q Υ ¡ 1¡γ γ |ε|, α ¡1 Y ¥ α ε p|ε|q © . (29) 
Since |ε| ¤ and γ rγ , 1s,

Y i γ,ε pυq ¤ 2α ε p q Υ ¡ 1¡γ γ , α ¡1 Y ¥ α ε p q © ( 30 
)
We then deduce from the last inequality in (24) that max 2

Y i γ,ε pxq, Y i γ,ε pυq @ ¤ δ. (31) 
The solutions to (6) initialized at x remain in the set X for all positive times. Indeed, since x X and Y i γ,ε pxq ¤ ∆, [START_REF] Wei | Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems[END_REF]. Moreover, [START_REF] Williams | Tight performance bounds on greedy policies based on imperfect value functions[END_REF] and (31) imply that Y i γ,ε pυq ¤ δ ¤ ∆ by definition of δ.

Y i γ,ε pυq ¤ Y i γ,ε pxq ¤ ∆ according to
Hence, in both cases, Y i γ,ε pυq ¤ ∆ which means that υ X as

2 z R nx : Y i γ,ε pzq ¤ ∆ @ tz R nx : α Y pσpzqq ¤ α ε p˜ q ∆u X
in view of item (i) of Theorem 1 and the definition of ∆. By proceeding iteratively, we deduce that any solution to (6) initialized at x remain in the set X .

Based on the above fact, item (i) of Theorem 1, ( 27) and ( 28), we follow the same arguments as in the proof of Theorem 2 in [START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF] to conclude that there exists βY KL such that for any k Z ¥0 and any solution φ to system (6)

initialized at x, Y i γ,ε pφpk, xqq ¤ max 3 β Y pY i γ,ε pxq, kq, δA . ( 32 
) We deduce from item (i) of Theorem 1, since |ε| ¤ , α Y pσpφpk, xqqq ¡ α ε p q ¤ max 3 β Y pα Y pσpxqq α ε p q, kq, δA . Hence, σpφpk, xqq ¤ α ¡1 Y ¡ max 3 β Y pα Y pσpxqq α ε p q, kq, δA α ε p q © .
Using the property that αps 1 s 2 q ¤ αp2s 1 q αp2s 2 q for any α K, s 1 , s 2 R ¥0 , see [13, (6)], we derive σpφpk, xqq

¤ α ¡1 Y ¡ max 3 β Y p2α Y pσpxqq, kq β Y p2α ε p q, 0q, δA α ε p q © . Thus, by using twice the same property σpφpk, xqq ¤ α ¡1 Y ¡ 2 max 3 β Y p2α Y pσpxqq, kq β Y p2α ε p q, 0q, δA© α ¡1 Y p2α ε p qq max 3 α ¡1 Y 2β Y p2α Y pσpxqq, kq 2β Y p2α ε p q, 0q ¨, α ¡1 Y p2 δq A α ¡1 Y p2α ε p qq ¤ max 3 α ¡1 Y 4β Y p2α Y pσpxqq, kq ¨ α ¡1 Y 4β Y p2α ε p q, 0q ¨, α ¡1 Y p2 δq A α ¡1 Y p2α ε p qq. Since maxts 1 , s 2 u ¤ s 1 s 2 for any s 1 , s 2 R ¥0 , σpφpk, xqq ¤ α ¡1 Y p4β Y p2α Y pσpxqq, kqq α ¡1 Y p4β Y p2α ε p q, 0qq α ¡1 Y p2 δq α ¡1 Y p2α ε p qq . (33) 
By definition of δ and in view of the second inequality in [START_REF] Singh | An upper bound on the loss from approximate optimal-value functions[END_REF],

σpφpk, xqq ¤ α ¡1 Y p4β Y p2α Y pσpxqq, kqq δ. (34)
This inequality ensures that ( 12) is satisfied with

βps 1 , s 2 q α ¡1 Y p4β Y p2α Y ps 1 q, s 2 qq for any s 1 , s 2 ¥ 0.
Sketch of proof of Corollary 1. As in the proof of Theorem 2, let ˜ p0, ¯ s be small enough such that the set tx R nx : α Y pσpxqq ¤ α ε p˜ qu is included in the interior of X . We define ∆ R ¡0 , the biggest positive constant such that tx R nx : α Y pσpxqq ¤ α ε p˜ q ∆u X , which exists in view of the definition of ˜ above, Assumption 1, and the fact that X is compact.

Let i ¥ i , γ rγ , 1s, r0, s, ε B nε p q, x X such that Y i γ,ε pxq ¤ ∆ and υ p F γ,ε,i pxq. In view of ( 21), [START_REF] Scherrer | On the use of non-stationary policies for stationary infinite-horizon Markov decision processes[END_REF] and items (ii)-(iii) of Corollary 1, a stop p q 0. Hence, there exists ν ¡ 0 independent of pγ, q and sufficiently small such that Y i γ,ε pυq ¡ Y i γ,ε pxq ¤ ¡νσpxq.

Y i γ,ε pυq ¡ Y i γ,ε pxq ¤ ¡a W σpxq
(36)

We then apply similar arguments as in the proof of Theorem 2 to obtain the desired result.

When, in addition α W psq a W ¤s for any s ¥ 0, we also have that a Y σpxq ¤ Y i γ,ε pxq ¤ a Y σpxq in view of item (i)

of Theorem 1 and item (iii) of Corollary 1. We then deduce from (36) that β exp ¡KL in [START_REF] Kellett | On the robustness of KL-stability for difference inclusions: smooth discrete-time Lyapunov functions[END_REF], like in the proof of Corollary 2 in [START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF].

Proof of Corollary 2. We first prove that the standing assumptions hold. Let x X , u be any admissible input, ε V B n V p¯ q and i Z ¥0 . In view of item (iv) of Corollary 2, px, uq e p V ,i 1 p1, ε V , xq ¥ px, uq ¡ |ε V | px, 0q ¥ p1¡¯ qQpxq Rpuq. Recalling that Q and R take non-negative values and ¯ r0, 1q according to item (iv) of Corollary 2, we derive that p V i 1,ε V pxq ¥ 0. SA1 follows by invoking item (v) of Corollary 2. SA2, and item (ii) of Corollary 1, trivially hold in view of item (vi) of Corollary 2.

In view of items (iv) and (vi) of Corollary 2, we can invoke [12, (20),(37)], that is, for any x X , ε V B n V p¯ q and i Z ¥0 ,

T p V i 1,ε V pxq ¤ p V i 1,ε V pxq 2|ε V | V i pxq ¤ p V i 1,ε V pxq 2|ε V | 1¡|ε V | V 0 pxq, (37) 
where V i pxq is defined in [12, Lemma 1] and V 0 pxq ¤ 2 p V 0 pxq. Therefore, in view of item (vii) of Corollary 2,

T p V i 1,ε V pxq ¤ p V i i,ε V pxq 2¯ 1¡¯ 2dQpxq. (38) 
Thus SA3 holds for x X with e stop,i p1, ε V , xq 4ε V 1¡ε V dQpxq for any x X , any i Z ¥0 and there is no parameter ε stop . Also, SA3 holds is trivially verified with e stop,i p1, ε V , xq T p V i γ,ε V pxq when x R nx zX. Note that i 0 here and that ε reduces to ε V .

We prove in the following that Assumptions 1-5 are satisfied.

Assumption 1 is verified by taking σ Q, as Q is continuous according to item (ii) of Corollary 2.

In view of item (ii) of Corollary 2, Assumption 2 is verified with W 0, α W α W a W I with a W 1 as σ Q and px, uq ¥ px, 0q Qpxq σpxq for any x R nx and u R nu .

Assumption 3 is satisfied in view of items (i)-(ii) of Corollary 2 and the definition of σ. Hence, item (i) of Corollary 1 holds.

The first inequality in ( 9) is verified in view of (38) by taking α stop p|ε|, σpxqq 4ε 1¡ε dσpxq for any x X and ε B n V p¯ q, which indeed defines a KN -function. Moreover, α stop p|ε|, σpxqq a stop p|ε|qσpxq with a stop psq 4s 1¡s d for any s r0, 1q, which defines a class-K function as required in item (iii) of Corollary 1. The third and fourth inequalities in Assumption 4 and item (ii) of Corollary 1 hold as e ĥ,ε h ,i 0 in view of item (vi) of Corollary 2. Regarding (9b), for any x X , i Z ¥0 and ε B n V p¯ q, we have |e p V ,i p1, ε, xq| ¤ |ε| px, 0q Qpxq ¡ p1 ¡ |ε|qQpxq ¤ Qpxq ¡ p1 ¡ ¯ qQpxq. Therefore, (9b) holds with α W a W I, a W 1 ¡ ¯ and α ε 0.

Let x X , ε B n V p¯ q and i ¥ 0. As p V i 1,ε pxq ¤ V i pxq according to [12, Theorem 1] and V i pxq ¤ V 0 pxq as explained after [12, (36)], p V i 1,ε pxq ¤ V 0 pxq and since V 0 pxq ¤ 2dQpxq as shown above, p V i 1,ε pxq ¤ 2dQpxq. Thus, [START_REF] Heydari | Theoretical and numerical analysis of approximate dynamic programming with approximation errors[END_REF] is verified with α V 2dI K V and α ε 0:

  γ rγ , 1s and r0, s, ¡a W 1¡γ γ

  Hence, in view of Assumptions 4 and 5, Proof of Theorem 2. Let δ ¡ 0, i ¥ i and ˜ p0, ¯ s be small enough such that the set tx R nx : α Y pσpxqq ¤ α ε p˜ qu is included in the interior of X , where α Y is defined in TableIand α ε comes from Assumption 4. Such a constant ˜ always exists in view of Assumptions 1 and 3.

	p1 ¡ γq p V i γ,ε pfpx, h i γ,ε pxqqq ¤ 1 ¡ γ γ ¡ α V pσpxqq α ε p|ε|q α stop p|ε|, σpxqq	©	.
	(23) γ,ε pxq ¤ γ,ε pυq¡Y i Consequently, by applying Assumption 4, Y i ¡α W pσpxqq p α p|ε|, σpxqq 1 ¡ γ γ ¡ α V pσpxqq α ε p|ε|q α stop p|ε|, σpxqq © α stop p|ε|, σpxqq p α V p|ε|, σpxqq ¡α Y pσpxqq Υ ¡ 1 ¡ γ © |ε|, σpxq , with α Y and Υ γ defined as in Table I, which are indeed of class K V and
	KN , respectively, in view of the properties of the involved
	functions. We have proved that item (ii) of Theorem 1
	holds.		

We use the convention φp0, x, u| 0 q x where u| 0 is the empty set.

The adjustable parameter ε V , later ε, is constrained in Bn V p¯ q, later Bn ε p¯ q. The forthcoming results straightforwardly apply when we have additional requirements, by constraining accordingly ε V , ε, in the forthcoming statements.

We use the same notation to denote a solution to[START_REF] Farahmand | Regularized fitted Q-iteration for planning in continuous-space Markovian decision problems[END_REF] and to[START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF], see[START_REF] Bertsekas | Dynamic programming and suboptimal control: A survey from ADP to MPC[END_REF], with some slight abuse.

Lemma 4.3 in [15] ensures the existence of such functions α Q , α Q in K but these functions can be taken in K8 as X is compact.

Assumption 5 is satisfied.

We have proved that item (iii) of Corollary 1 is satisfied. This completes the proof.
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