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Stability guarantees for nonlinear discrete-time systems controlled by
approximate value iteration

Romain Postoyan, Mathieu Granzotto, Lucian Buşoniu, Bruno Scherrer, Dragan Nešić and Jamal Daafouz

Abstract— Value iteration is a method to generate optimal
control inputs for generic nonlinear systems and cost functions.
Its implementation typically leads to approximation errors,
which may have a major impact on the closed-loop system
performance. We talk in this case of approximate value iteration
(AVI). In this paper, we investigate the stability of systems
for which the inputs are obtained by AVI. We consider deter-
ministic discrete-time nonlinear plants and a class of general,
possibly discounted, costs. We model the closed-loop system
as a family of systems parameterized by tunable parameters,
which are used for the approximation of the value function
at different iterations, the discount factor and the iteration
step at which we stop running the algorithm. It is shown,
under natural stabilizability and detectability properties as
well as mild conditions on the approximation errors, that the
family of closed-loop systems exhibit local practical stability
properties. The analysis is based on the construction of a
Lyapunov function given by the sum of the approximate value
function and the Lyapunov-like function that characterizes the
detectability of the system. By strengthening our conditions,
asymptotic and exponential stability properties are guaranteed.

I. INTRODUCTION

Value iteration (VI) is one of the pillars of dynamic pro-
gramming, which allows generating optimal control inputs
for general nonlinear systems and cost functions. While
optimality is the primary concern in the dynamic program-
ming literature, recent results in e.g. [11], [22], [27] provide
conditions under which the input sequence generated by VI
stabilizes the origin of the closed-loop system. Nevertheless,
a major downside of VI is its computational complexity,
which makes it intractable in general. To overcome this
issue, the so-called approximate value iteration (AVI) was
proposed, leading to sub-optimal policies due to the induced
approximation errors [1], [3]. These errors must be carefully
handled as they may have a major impact on the system
performance. Thus, an important problem in approximate
dynamic programming is the analysis of the impact of the
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L. Buşoniu is with the Department of Automation, Technical University
of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania (e-
mail: lucian.busoniu@aut.utcluj.ro). His work was supported by a grant of
the Romanian Ministry of Research and Innovation, CNCS - UEFISCDI,
project number PN-III-P1-1.1-PD-2016-1304, contract PD 27/2018, within
PNCDI III.
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approximation errors on the obtained value function, see
e.g., [1], [10], [16], [18], [19], [23], [24]. In this context,
a discount factor is often introduced in the cost function
to ensure that the value function does not blow up when
iterating AVI [1].

While the impact of approximation errors on optimality
is largely covered in the literature, e.g., [1], [3], [6], [10],
[18], [19], their effect on the stability properties of the
closed-loop system is less understood. The authors of [4]
proposed a model-free version of AVI for linear stochastic
and deterministic continuous-time systems with quadratic
costs for which near-optimality and stability are ensured.
In [17], [26], nonlinear discrete-time systems with generic
positive definite stage costs are investigated. Asymptotic
stability properties are ensured provided conditions involving
the optimal value function are satisfied, but these conditions
may be difficult to verify. To overcome this potential is-
sue, the author of [12] provides explicit conditions on the
approximation errors under which local asymptotic stability
of the origin is guaranteed. The assumptions made in [12]
may be restrictive though. First, the approximation errors are
required to vanish in the attractor, which may be difficult to
ensure. Second, the proved stability property is asymptotic,
while we know, from the parallel between VI and model-
predictive control [2] that, in general, only practical stability
can be achieved for nonlinear systems [9]. Third, common
points of [4], [12], [17], [26] are that the stability of the
origin is studied, while the closed-loop system may have
a more general type of attractor. Finally, the considered
cost functions are undiscounted in these references, while
discounted costs are customary in dynamic programming.
We aim at relaxing these limitations in this paper.

We consider nonlinear deterministic discrete-time systems
and general non-negative cost functions, possibly discounted.
Stability is investigated in terms of a generic measuring
function, thus covering the stability of the origin and of
more general compact sets in a unified way, see e.g., [7], [9],
[14], [21], [25]. This allows addressing situations in which
the closed-loop system exhibits a limit cycle for instance.
Approximation errors are considered in the evaluation of
the approximate value function, in the approximate feedback
policy and in the criterion at which we stop iterating the algo-
rithm. These errors are parameterized by a vector of tunable
parameters denoted ε, which model the meta-parameters,
such as the number of points in an interpolation grid or the
number of neurons in a neural network, used in the employed
approximation scheme. We model the overall system as a
family of systems parameterized by ε, a possible discount



factor and the iteration step at which the algorithm is stopped.
We make stabilizability and detectability assumptions on the
plant and the stage cost like in [7], [9], [21]. We then impose
conditions on the approximation errors, which state that these
errors can be made as small as desired by suitably tuning
ε (i.e. by increasing the computational power used when
doing the approximations). We do not require the errors
to vanish in the attractor as in [12], and these conditions
do not depend on the optimal value function as in [17],
[26]. Based on these assumptions and inspired by [9], [21],
we construct a Lyapunov-like function given by the sum of
the approximate value function and a function used in the
detectability assumption. We then ensure a local practical
stability property. Asymptotic and exponential stability prop-
erties are also derived by strengthening the assumptions. We
finally discuss the relationship between our results and [12,
Theorem 2].

Compared to [8, Section V], where stability results appli-
cable to AVI are provided, the analysis in this paper does
not rely on the knowledge of near-optimality bounds but on
the properties of the algorithm itself. This provides a clearer
delineation of the conditions under which the algorithm will
provide appropriate stability properties. This also allows us
to rely on more natural assumptions. As a result, we are able
to ensure an asymptotic stability property, as opposed to a
practical one, in the absence of approximation errors and
when there is no discount factor, contrary to [8].

The rest of the paper is organized as follows. The problem
is formally stated in Section II. The assumptions are given
in Section III. The main results are presented in Section
IV. Section V provides conclusions. Long proofs have been
postponed to the appendix for the sake of readability.

Notation. Let R be the set of real numbers, R¥0 :� r0,8q,
R¡0 :� p0,8q, Z be the set of integers, Z¥0 :� t0, 1, 2, . . .u
and Z¡0 :� t1, 2, . . .u. We denote by Bnpεq the closed ball
of Rn centered at the origin of radius ε ¡ 0, n P Z¡0.
The notation px, yq stands for rxJ, yJsJ, where x P Rn and
y P Rm. A function χ : r0, aq Ñ R¥0 with a P R¡0 Y t8u
is of class K if it is continuous, zero at zero and strictly
increasing, and it is of class K8 if, in addition, a � 8
and it is unbounded. A continuous function χ : r0, aq �
R¥0 ÝÑ R¥0 with a P R¡0 Y t8u is of class KL if for
each t P R¥0, χp�, tq is of class K, and, for each s P r0, aq,
χps, �q is decreasing and converges to zero at infinity. In the
particular case where χ : ps1, s2q ÞÑ λ1s1e

�λ2s2 for some
λ1 P r1,8q and λ2 ¡ 0, we write that χ P exp�KL. A
function χ : r0, aq Ñ R¥0, with a P R¡0 Y t8u, is of
class N when it is non-decreasing. We say that a function
χ : r0, a1q�r0, a2q ÝÑ R¥0, with a1, a2 P R¡0Yt8u, is of
class KN when χp�, sq is of class-K for any s P r0, a2q and
χps, �q is of class N for any s P r0, a1q. The notation I stands
for the identity map from R¥0 to R¥0. The Euclidean norm
of vector x P Rn is denoted by |x| and the distance of x P Rn
to a set A � Rn is denoted by |x|A :� inft|x�y| : y P Au.

II. PROBLEM STATEMENT

Consider the nonlinear discrete-time system

xk�1 � fpxk, ukq, (1)

where xk P Rnx is the state, uk P Upxkq is the control
input, Upxkq � Rnu is the set of admissible inputs for
state xk, k P Z¥0 is the time, f : W Ñ Rnx with
W :� tpx, uq : x P Rnx , u P Upxqu, and nx, nu P Z¡0.

The cost function is given by

Jγpx,uq :�
8̧

k�0

γk`pφpk, x,u|kq, ukq, (2)

where x P Rnx , u � pu0, u1, . . .q is an infinite-length
sequence of admissible inputs, γ P p0, 1s is possibly sub-
unitary, ` : W Ñ R¥0 is the stage cost, which takes non-
negative values, and φpk, x,u|kq is the solution to (1) at
the kth-step starting at state x with input sequence u|k :�
pu0, . . . , uk�1q, which is the truncation of u to the first
k P Z¡0 steps1.

We investigate the scenario where approximate value itera-
tion [1] is employed to approximately minimize cost (2) over
the sequence of inputs. We thus start from an initial value
function pV 0 : Rnx Ñ R¥0. We then iterate it as follows, for
any x P Rnx and i P Z¥0,

pV i�1
γ,εV pxq � min

uPUpxq

�
`px, uq � γ pV iγ,εV pfpx, uqq�

�e
pV ,i�1pγ, εV , xq,

(3)

where pV 0
γ,εV :� pV 0 and e

pV ,i�1 : p0, 1s � BnV pε̄q � Rnx Ñ
R is is an approximation error function. In general, there
are two sources of error. The first is due to the limited
approximation power of the given function space in whichpV iγ,εV is required to lie, characterized e.g. by the so-called
inherent Bellman error in [19], or by the smallest distance
between any point in the function space and the optimal
value function, see e.g. [5]. Depending on the particular
approximation scheme employed, and if the value function
satisfies certain smoothness properties, it may be possible to
control this error arbitrarily close to zero by increasing the
approximation power of the function space, which is done
by tuning meta-parameters such as the number of points
on an interpolation grid, number of neurons in a neural
network etc. This is related to the so-called universal function
approximation property that many approximators have been
proved to satisfy. The variation of the error with these meta-
parameters is represented by the variation of εV P RnV . This
vector of parameters is constrained in BnV pε̄q, where ε̄ P R¡0

is an upper-bound on the norm of2 εV , and nV P Z¡0.
Additionally, there is often a second source of error due to
the limited number of samples used to compute pV iγ,εV . The
guarantees given in [19] for stochastic problems ensure that

1We use the convention φp0, x,u|0q � x where u|0 is the empty set.
2The adjustable parameter εV , later ε, is constrained in BnV pε̄q, later

Bnε pε̄q. The forthcoming results straightforwardly apply when we have ad-
ditional requirements, by constraining accordingly εV , ε, in the forthcoming
statements.



this error goes to arbitrarily close to zero with probability
arbitrarily close to 1, if the number of samples is large
enough. Sometimes, e.g. in the deterministic case, when the
approximator is interpolative and the samples are equal to
the grid centers, this source of error can be removed [5].

We make the next standing assumption.
Standing Assumption 1 (SA1): For any γ P p0, 1s, εV P

BnV pε̄q, x P Rnx and i P Z¥0, pV iγ,εV pxq ¥ 0. l

SA1 is natural in the context of the paper as the objective
of (3) is to iteratively estimate the optimal value function
associated to (2), which is non-negative as `pWq � R¥0.
It can be enforced by suitably selecting the function space
where pV iγ,εV , i P Z¥0, is constrained to lie.

The policy, or feedback, calculated at iteration i P Z¥0, is
given by

ĥiγ,εhpxq P argmin uPUpxq
�
`px, uq � γ pV iγ,εV pfpx, uqq�

�eĥ,ipγ, εh, xq,
(4)

where eĥ,i : p0, 1s � Bnhpε̄q � Rnx Ñ Rnu is another ap-
proximation error function, which may arise when computing
the argmin above, and which can be tuned via parameter
εh P Bnhpε̄q, nh P Z¡0. The norm of εh is subject to the
same constraint as εV , namely |εh| ¤ ε̄, without loss of
generality as we can always define ε̄ as the minimum of the
respective bounds on the norms of εh and εV . Error eĥ,i
must be such that the next standing assumption holds.

Standing Assumption 2 (SA2): For any γ P p0, 1s, εh P
Bnhpε̄q, x P Rnx and i P Z¥0, ĥiγ,εhpxq P Upxq. l

We stop the iterating procedure (3) at any step i bigger
than i� P Z¡0, which is assumed to satisfy the next property.

Standing Assumption 3 (SA3): There exist i� P Z¥0 and
estop,i : p0, 1s�BnV pε̄q�Bnstoppε̄q�Rnx Ñ R¥0 with nstop P
Z¡0, such that for any γ P p0, 1s, εV P BnV pε̄q, εstop P
Bnstoppε̄q, x P Rnx and i ¥ i�,

T pV iγ,εV pxq ¤ pV iγ,εV pxq � estop,ipγ, εV , εstop, xq (5)

where T pV iγ,εV pxq :� min
uPUpxq

�
`px, uq � γ pV iγ,εV pfpx, uqq�. l

Error estop,i is called the Bellman residual [28] of pV iγ,εV ,
i ¥ i�. It is allowed to depend on γ, εV , x and also
εstop P Bnstoppε̄q a vector of additional adjustable parameters.
The expression of estop,i allows both the usual iteration error
like in (3), and an additional error due e.g. to stopping the al-
gorithm early (i.e. before some asymptotic regime is exactly
reached). The latter component typically arises implicitly as
a result of the stopping condition of the algorithm.

Remark 1: It is important to note that typical bounds in
the literature on performance guarantees are given on the
distance between the optimal value function and the last
value function iterate pV iγ,εV . It can then easily be shown that
the Bellman residual in (5) is at most p1 � γq|pV iγ,εV pxq �
V �
γ,8pxq|, where V �

γ,8 is the optimal value function of cost
(2). l

We concatenate the adjustable parameters arising in the
approximation errors as ε :� pεV , εh, εstopq P Rnε where
nε :� nh � nV � nstop. We write in the following the

approximate value function as pV iγ,ε instead of pV iγ,εV for the
sake of convenience. We similarly write ĥiγ,ε instead of ĥiγ,εh .

As a result, the closed-loop feedback system is given by

xk�1P f
�
xk, argmin ukPUpxkq

�
`pxk, ukq � γ pV iγ,εpfpxk, ukqq�

�eĥ,i�pγ, εh, xkq
	

�: pFγ,ε,ipxkq.
(6)

Equation (6) describes a family of systems parameterized by
γ, ε and i. Note that (6) indeed depends on εV and εstop
through (3) and (5).

Our objective is to analyse stability properties of the fam-
ily of systems (6). For this purpose, we make assumptions
on the detectability of system (1) with respect to the stage
cost `, on the approximation errors e

pV ,i, eĥ,i and estop,i, and
on the stabilizability of system (1).

III. ASSUMPTIONS

We use a generic measuring function of the state σ :
Rnx Ñ R¥0 to investigate stability like in [9], [21], which
is required to satisfy the next assumption.

Assumption 1: Function σ is continuous on Rnx .
Assumption 1 is verified when σ is defined as | � |, | � |2 or

x ÞÑ xJPx with P a real, symmetric and positive definite
matrix, when studying the stability of x � 0. This condition
is also verified when σ is given by |�|A or |�|2A with A � Rn,
when studying the stability of set A.

A. Detectability

We make the next detectability assumption on system (1)
with respect to ` as in [7], [9], [21].

Assumption 2: There exist a continuous function W :
Rnx Ñ R¥0, αW P K8 and αW : R¥0 Ñ R¥0 continuous,
nondecreasing and zero at zero, such that the following holds
for any px, uq PW

W pxq ¤ αW pσpxqq
W pfpx, uqq �W pxq ¤ �αW pσpxqq � `px, uq.

(7)

l

Assumption 2 is indeed a detectability property. The best
way to see it is when (7) holds with W � 0. Then,
(7) implies that `px, uq ¥ αW pσpxqq, which means that,
if `px, uq � 0 (is small), then σpxq � 0 (is small) as
αW P K8. Note that Assumption 2 is independent of γ
and the approximation errors as it only involves stage cost
` and system (1). Assumption 2 generalizes the common
requirement that `px, uq is positive definite as in e.g., [12],
[17], [22], [27].

Remark 2: It is possible to relax Assumption 2 by replac-
ing the second inequality in (7) with W pfpx, uqq�W pxq ¤
�αW pσpxqq � χp`px, uqq, where χ P K8, as in [9, SA3].
This extension is left for future work. l



B. Approximation errors

We make assumptions on the approximation errors e
pV ,i,

eĥ,i and estop,i with i ¥ i� in order to prove stability
properties for system (6). For this purpose, we constrain the
state to a given compact set X � Rnx . This is justified by
the fact that AVI is often applied on a compact subset of the
state space, which corresponds to X here. We make the next
assumption on X .

Assumption 3: The set tx P Rn : σpxq � 0u is included
in the interior of X . l

Assumption 3 is verified when σ is defined as the distance
to a compact set for example, and this set is included in the
interior of X .

For any γ P p0, 1s, ε P Bnεpε̄q, x P X , consider ĥiγ,εpxq
as in (4). We define

hiγ,εpxq :� ĥiγ,εpxq � eĥ,ipγ, εh, xq. (8)

which corresponds to the feedback ĥiγ,ε in (4) not
affected by the error term eĥ,i. Hence hiγ,εpxq P

argmin uPUpxq
�
`px, uq � γ pV iγ,εV pfpx, uqq�. We make the

next assumption.
Assumption 4: There exist αstop, pαV , pα` P KN , αW , αε P

K such that, for any γ P p0, 1s, ε P Bnεpε̄q, x P X and
i ¥ i�,

estop,ipγ, εV , εstop, xq ¤ αstopp|ε|, σpxqq (9a)

min
!
|e

pV ,ipγ, εV , xq|, estop,ipγ, εV , εstop, xq
)

¤ αW pσpxqq � αW pσpxqq � αεp|ε|q (9b)��� pV iγ,εpfpx, hiγ,εpxqqq � pV iγ,εpfpx, ĥiγ,εpxqqq���
¤ pαV p|ε|, σpxqq (9c)���`px, hiγ,εpxqq � `px, ĥiγ,εpxqq
��� ¤ pα`p|ε|, σpxqq. (9d)

l

Condition (9a) implies that the iteration (3) practically
converges, so that the mismatch T pV iγ,εV � pV iγ,εV can be made
as small as desired by reducing |ε|. This condition covers
properties previously assumed in the literature. For instance,
[4, Algorithm 1] ensures (9a) by taking αstopp|ε|, σpxqq �
|ε|λmaxpPiqσpxq where λmaxpPiq is the maximum eigen-
value of symmetric, positive definite matrix Pi, ε � εiε̄
and σpxq � |x|2, using the notation of this reference. Also,
[17, (3.2.10)] implies that (9a) holds with αstopp|ε|, σpxqq �
|ε|. In this case, that is when (9a) is satisfied with αstop
independent of σpxq, (9b) follows with αW � αW and
αε � αstop. Similarly, when |e

pV ,ipγ, εV , xq| ¤ αV,εp|ε|q with
αV,ε P K for any x P X and ε P Bnεpε̄q, (9b) is verified with
αW � αW and αε � αV,ε. In this case, Lemma 1 in [19]
provides conditions under which (9a) holds with αstop, which
only depends on ε.

The last two conditions of Assumption 4 state that the
mismatch between the values of `px, �q and pV iγ,εpfpx, �qq for
i ¥ i� evaluated at the applied policy ĥiγ,εhpxq and at the
ideal one hiγ,εhpxq can be made as small as desired by tuning

ε. The next lemma provides sufficient conditions to ensure
(9c)-(9d). Its proof is omitted for space reasons.

Lemma 1: Suppose the following holds.
(i) For any i ¥ i�, pV iγ,ε is continuous on X .

(ii) There exists ασ P K8 such that σpxq ¥ ασp|x|q for
any x P Rn.

(iii) One of the next conditions holds.
(iii-a) There exists θ` P K such that |`px, uq�`px, vq| ¤

θ`p|u� v|q for any x P X and pu, vq P Upxq2.
(iii-b) There exist ασ P K8 and ϑh : R¥0 Ñ R¥0

non-decreasing such that, for any γ P p0, 1s, ε P
Bnεpε̄q, i ¥ i�, x P X , σpxq ¥ ασp|x|q and
|hiγ,εpxq| ¤ ϑhpσpxqq.

(iii) There exist αh P KN such that, for any γ P p0, 1s,
ε P Bnεpε̄q, i ¥ i� and x P X , |eĥ,ipγ, εh, xq| ¤
αhp|εh|, σpxqq.

Then (9c)-(9d) hold. l

The continuity of pV iγ,ε in item (i) of Lemma 1 can be
enforced by suitably selecting the function space where pV iγ,ε
is constrained to lie. Item (ii) is verified when σ is defined
as the distance to a compact set, which includes the origin,
for example. Item (iii-a) of Lemma 1 is verified when the
stage cost can be written as `px, uq � `1pxq � `2puq for any
x P X and u P Upxq � V where `2 is continuous and V is
compact for instance. In this case, `2 is uniformly continuous
on V by Heine theorem and ϑ` corresponds to the modulus
of continuity, see Proposition A.2.1 in [20]. Regarding item
(iii-b) of Lemma 1, the condition on σ is verified for
the examples provided at the beginning of this section for
example when the set A is compact. The condition on hiγ,ε,
on the other hand, is verified when Upxq � V with V
compact to give an example, as it suffices to define ϑh as
the constant function whose value is the maximum norm of
the elements of V . Finally, item (iv) implies that the error
eĥ,ipγ, εh, xq in (4) can be made as small as desired by tuning
εh.

C. Stabilizability

We make the next assumption on the approximate value
function pV iγ,ε with i ¥ i�.

Assumption 5: There exist αV , αε P K8 such that for any
γ P p0, 1s, ε P Bnεpε̄q, i ¥ i�, x P X ,pV iγ,εpxq ¤ αV pσpxqq � αεp|ε|q. (10)

l

Assumption 5 is related to the stabilizability of system (1).
To see it, assume there exists qαV P KN such that for any γ P
p0, 1s, εV P BnV pε̄q, x P X and i P Z¥0, |e

pV ,ipγ, εV , xq| ¤qαV p|εV |, σpxqq. Such an assumption is generally needed for
the satisfaction of the first two inequalities in (9). Define
the modified stage cost r̀px, uq :� `px, uq � qαV pε̄, σpxqq for
any px, uq P W . The associated undiscounted optimal value

function is rV pxq :� min
uPUpxq

8̧

k�0

r̀pφpk, x,u|kq, ukq for any

x P X . The next lemma gives a condition on rV ensuring
Assumption 5.



Lemma 2: Under Assumption 4, if there exists rαV P K8

such that, for any x P X ,rV pxq ¤ rαV pσpxqq (11)

then Assumption 5 holds with αV � rαV and αε � 0. l

Proof. The proof is similar to [10, Section V.B]. In view of
the definition of r̀ and Assumption 4, γ`px, uq ¤ `px, uq ¤r̀px, uq for any px, uq P W and γ P p0, 1s. Hence, by
definition of rV , for any γ P p0, 1s, ε P Bnεpε̄q, x P X , i ¥ i�,
it holds pV iγ,εpxq ¤ rV pxq. The desired result is obtained by
invoking (11). �

Condition (11) is a stabilizability property of system (1)
with respect to stage cost r̀ according to [9, Section III] and
in [21, Lemma 1], which we recall below.

Lemma 3: Consider system (1) and suppose that r̀ is uni-
formly globally exponentially stabilizable to zero with respect
to σ : Rnx Ñ R¥0, i.e. there exist M ¡ 0 and λ ¡ 0, where
λ is called the decrease rate, such that for any x P Rnx there
exists an admissible infinite-length control input sequence
upxq verifying r̀pφpk, x,u|kpxqq, ukpxqq ¤ Mσpxqe�λk for
any k P Z¡0. Then (11) holds with rαV psq � Ms

1�e�λ
for any

s ¥ 0. l

The works in [17], [26] require (10) to hold with αε � 0,
see the proof of Theorem 4 in [26] for instance. On the
other hand, condition (11) typically requires e

pV ,i�1pγ, εV , xq
to vanish in the attractor tx P X : σpxq � 0u to hold,
which may be difficult to ensure. When this is not the case,
Assumption 5 is more likely to be verified with αε � 0 in
(10).

Remark 3: As mentioned in the introduction, [8, Section
V] also allows investigating stability of nonlinear discrete-
time systems controlled by AVI. While Assumption 2 is also
considered in [8], Assumptions 4 and 5 are more closely
related to the approximation errors, which we can tune when
implementing AVI, and not on near-optimality bounds as in
[8, Assumption 3] that may be subject to some conservatism.
l

IV. STABILITY GUARANTEES

A. Main result

Based on Assumptions 1-5, we can state the next theorem
about the existence of a Lyapunov-like function for system
(6).

Theorem 1: Under Assumptions 1-5, there exist
αY , αY , αY P K8 and Υ P KN such that for any
pγ, εq P p0, 1s � Bnεpε̄q, and i ¥ i� where i� comes from
SA3, function Y iγ,ε :� pV iγ,ε � W defined on Rnx satisfies
the following.

(a) For any x P X , αY pσpxqq � αεp|ε|q ¤ Y iγ,εpxq ¤
αY pσpxqq � αεp|ε|q.

(b) For any x P X , υ P pFγ,ε,ipxq, Y iγ,εpυq � Y iγ,εpxq ¤

�αY pσpxqq � Υ
�

1�γ
γ � |ε|, σpxq

�
, where pFγ,ε,i is

defined in (6).
The expressions of αY , αY , αY and Υ are provided in Table
I. l

We are ready to state the main stability result.

Theorem 2: Consider system (6) and suppose Assump-
tions 1-5 hold. There exists β P KL such that for any
δ P R¡0, there exists pγ�, ε�,∆q P p0, 1q � p0, ε̄q � R¡0

such that for any i ¥ i�, γ P rγ�, 1s, ε P r0, ε�s, ε P Bnεpεq,
x P X with Y iγ,εpxq ¤ ∆, where Y iγ,ε is defined in Theorem
1, any solution3 φp�, xq to system (6) satisfies φpk, xq P X
and

σpφpk, xqq ¤ βpσpxq, kq � δ, (12)

for all k P Z¥0. l

Theorem 2 ensures a local practical stability property with
respect to σ, in the sense that given any neighborhood of the
set tx P X : σpxq � 0u, there exists a tuple composed of
a lower bound on the discount factor γ, an upper-bound on
the norm of the tunable parameters ε and an upper-bound ∆
on the initial value of the Lyapunov function such that, for
any pair pγ, εq satisfying this bound, any solution initialized
at x such that Y iγ,εpxq ¤ ∆ lies in X for all positive times
and converges to the desired neighborhood of tx P X :
σpxq � 0u. It is possible to ensure stronger properties by
strengthening the conditions of Theorem 2, see Section IV-
B.

Theorem 2, as well as the stability results presented in the
sequel, can in principle be used to compute bounds on the
minimum allowable discount factor γ�, the maximal error
ε�, see (28), and ∆. However, first, it is likely that the
obtained values are subject to some conservatism because of
the used proof techniques. Second, tight bounds would also
require precise characterizations of the functions introduced
in Assumptions 2, 4 and 5, which may be difficult to
achieve. In this case, our stability results can be applied in a
qualitative way, meaning that for large enough γ and small
enough ε and ∆, stability follows and the type of stability
depends on the type of functions in Assumptions 2, 4 and 5,
and not their precise expressions.

Remark 4: In the absence of errors, i.e. ε � 0, and when
γ � 1, the set tx : σpxq � 0u is locally asymptotically
stable. This follows directly from the proof of Theorem 2.
This result is consistent with [11, Theorem 1] where σ is
the Euclidean distance, which is generalized here to a larger
class of stage costs and to more general types of attractors.
Moreover, this fact is an improvement over the general results
in [8], which ensures a practical stability property in this
case. l

B. Stronger statements

The next result ensures an asymptotic and exponential
stability properties for system (6) and the bounds γ� and
ε� are independent of constant ∆, contrary to4 Theorem 2.

Corollary 1: Consider system (6) and suppose the follow-
ing holds.

(i) Assumptions 1 and 3 hold.
(ii) eĥ,i � 0 in (4) for any i P Z¥0.

3We use the same notation to denote a solution to (6) and to (1), see (2),
with some slight abuse.

4See (24).



αY :� αW
αY :� αV � αW

αY :� αW

Υ :� ps1, s2q ÞÑ
1� γ

γ

�
αV ps2q � αεps1q � αstopps1, s2q

	
� pα`ps1, s2q � αstopps1, s2q � pαV ps1, s2q

TABLE I
EXPRESSIONS OF THE FUNCTIONS USED IN THEOREM 1.

(iii) Assumptions 2, 4 and 5 hold with αW psq � aW � s,
αV psq � aV � s, αε � 0, αstopps1, s2q � astopps1qs2,
αε � 0, where aW , aV ¡ 0 and astop P K, for any
s, s1, s2 ¥ 0.

Let pγ�, ε�q P p0, 1q � p0, ε̄q be such that

1� γ�

γ�

�
āV � astoppε

�q
	
� astoppε

�q   aW . (13)

There exist β P KL and ∆ ¡ 0 such that for any i ¥ i�,
γ P rγ�, 1s, ε P r0, ε�s, ε P Bnεpεq, and x P X such that
Y iγ,εpzq ¤ ∆, any solution φp�, xq to system (6) initialized at
x P X satisfies φpk, xq P X and

σpφpk, xqq ¤ βpσpxq, kq, (14)

for all k P Z¥0. In addition, when αW psq � aW � s for any
s ¥ 0, β P exp�KL. l

Sufficient conditions that ensure the satisfaction of the
properties required by Corollary 1 are given in the following.
Corollary 1 differs from Theorem 2 on two points. First,
property (14) is no longer practical but asymptotic (or
exponential) as σpφpk, xqq is guaranteed to converge to the
origin as the time tends to infinity, contrary to (12). Second,
the pair pγ�, ε�q is independent of ∆, contrary to Theorem 2.
Note that condition (13) is always verified for γ� sufficiently
close to 1 and ε� sufficiently small as astop P K.

To relate the conditions of Corollary 1 to those in [12,
Theorem 2], we first need to adapt one of the assump-
tions in [12, Theorem 2]. Indeed, the work in [12] does
not interpret system (1) controlled by AVI as a family of
parameterized systems as we do, but as a single system with
fixed parameters. However, if we view constant c in [12,
Assumption 2] as a parameter, it would then correspond to
|εV | with our notation. We also need to add a few extra
conditions, otherwise we do not see how to prove that
solutions initialized in a neighborhood of the origin remains
in the set X , contrary to what [12, Theorem 2] states, as
explained in the following. Once this is done, the obtained
set of conditions imply the satisfaction of the requirements
of Corollary 1. As a result, the origin of system (6) is locally
asymptotically stable.

Corollary 2: Consider system (6) and suppose the follow-
ing holds.

(i) Set X � Rnx is compact, connected and the origin is
in its interior.

(ii) For any px, uq P W , `px, uq � Qpxq � Rpuq with Q
and R continuous and positive definite.

(iii) γ � 1 in (2).

(iv) There exists ε̄ P r0, 1q such that for any εV P BnV pε̄q
|e

pV ,i�1p1, εV , xq| ¤ |εV |`px, 0q for any x P X .
(v) For any εV P r0, ε̄q, x P RnxzX and i P Z¥0,pV iγ,εV pxq ¥ 0.

(vi) For any i P Z¥0, εh P Rnh and x P Rnx ,
eĥ,ip1, εh, xq � 0 in (4).

(vii) There exists d ¡ 0 such that pV 0pxq ¤ dQpxq for any
x P X .

Then the conditions of Corollary 1 hold with σ � Q, W � 0,
αW � αW � I, aW � 1, αV � 2dI, aV � 2d, αε � 0,
αstopps1, s2q � astopps1qds2 with astopps1q �

4s1
1�s1

for any
s1 P r0, 1q and s2 ¥ 0, αε � 0, αW � p1 � ε̄qI and aW �
1� ε̄. l

The conditions of Corollary 2 correspond to those in [12,
Theorem 2] except that we have considered a parameterized
version of [12, Assumption 2] in item (iv) of Corollary
2 as explained above, and we have added items (i) and
(v). The latter are essential to prove the forward invariance
of Lyapunov level set pBir as defined in [12, Theorem 2].
Indeed, the corresponding Lyapunov function needs to be
non-negative on Rnx and not only on X as written in [12],
thus justifying item (v) of Corollary 2. Moreover, for set pBir
to be not only the origin, the latter needs to be in the interior
of X as stated in item (i) of Corollary 2 (and X does not
actually need to be connected).

Corollary 2 indeed leads to a local asymptotic stability
property for the origin of system (6) consistently with [12,
Theorem 2], by application of Corollary 1. As Q is positive
definite and continuous, there exist αQ, αQ P K8 such
that αQp|x|q ¤ Qpxq ¤ αQp|x|q for any x P X , as
X is compact here, in view of5 [15, Lemma 4.3]. Hence,
(14) leads to |φpk, xq| ¤ β̃p|x|, kq with β̃ps1, s2q ÞÑ
α�1
Q

�
βpαQps1q, s2q

�
P KL, which is the standard characteri-

zation of (local) asymptotic stability of the origin. Moreover,

condition (13) is, in this case, ε�  
1

4d� 1
, which is less

restrictive than the corresponding condition, namely ε�  

1� 2d�
a

4d2 � 4d, in [12, Theorem 2].

V. CONCLUSION

We have presented conditions under which a nonlinear
discrete-time system whose inputs are generated by AVI
satisfies stability properties. A key idea is to consider the
closed-loop system as a family of systems parameterized by

5Lemma 4.3 in [15] ensures the existence of such functions αQ, αQ in
K but these functions can be taken in K8 as X is compact.



tunable algorithmic parameters, the discount factor and the it-
eration step at which we stop running the algorithm. Stability
is defined using a generic measuring function, covering point
and set stability. Stabilizability and detectability assumptions
are made for this purpose, which are in line with conditions
imposed in previous papers in different contexts [9], [21].
The approximation errors arising in the implementation of
AVI are required to satisfy mild conditions. As a result, local
practical stability properties are guaranteed, which become
asymptotic or exponential under stronger conditions.

This work can be extended in various ways, among which
the case where the policy is time-varying as in [12]. We will
also investigate the issue of robustness, which is not trivial
in discrete-time [14].

VI. APPENDIX

Proof of Theorem 1. Let γ P p0, 1s, ε P Bnεpε̄q, i ¥ i�,
x P X and υ P pFγ,ε,ipxq. Hence, υ � fpx, ĥiγ,εpxqq for some
ĥiγ,εpxq defined as in (4). We first prove item (i) of Theorem
1. In view of Assumptions 2 and 5 and the definition of
Y iγ,ε, Y

i
γ,εpxq ¤ αV pσpxqq � αεp|ε|q � αW pσpxqq. Hence

Y iγ,εpxq ¤ αY pσpxqq�αεp|ε|q where αY :� αV �αW P K8.
In view of SA3,pV iγ,εpxq ¥ `px, hiγ,εpxqq � γ pV iγ,εpfpx, hiγ,εpxqqq

�estop,ipγ, εV , εstop, xq,
(15)

where hiγ,εpxq is as in (8). We deduce that
Y iγ,εpxq � pV iγ,εpxq � W pxq ¥ `px, hiγ,εpxqq �

γ pV iγ,εpfpx, hiγ,εpxqqq � estop,ipγ, εV , εstop, xq � W pxq.
According to SA1, γ pV iγ,εpfpx, hiγ,εpxqqq ¥ 0, thus
Y iγ,εpxq ¥ `px, hiγ,εpxqq � estop,ipγ, εV , εstop, xq � W pxq.
On the other hand, according to Assumption 2,
W pxq ¥ αW pσpxqq � `px, hiγ,εpxqq. We derive
Y iγ,εpxq ¥ �estop,ipγ, εV , εstop, xq�αW pσpxqq. In view of the
last inequality in (9), we have, when estop,ipγ, εV , εstop, xq ¤
|e

pV ,ipγ, εV , xq|, Y iγ,εpxq ¥ αW pσpxqq � αεp|ε|q. If
estop,ipγ, εV , εstop, xq ¡ |e

pV ,ipγ, εV , xq|, in view of (3),

pV iγ,εpxq � `px, hi�1
γ pxqq � γ pV i�1

γ,ε pfpx, h
i�1
γ pxqqq

�e
pV ,ipγ, εV , xq.

(16)
By following similar lines as above, we derive that Y iγ,εpxq ¥
e
pV ,ipγ, εV , xq�αW pσpxqq ¥ �|e

pV ,ipγ, εV , xq|�αW pσpxqq.
Then, in view of the last inequality in (9), we derive
Y iγ,εpxq ¥ αW pσpxqq � αεp|ε|q. Thus, item (i) of Theorem
1 holds with αY � αW P K8.

We now prove item (ii) of Theorem 1. We have that

Y iγ,εpυq � Y iγ,εpxq � pV iγ,εpυq � pV iγ,εpxq
�W pυq �W pxq.

(17)

In view of (15),

Y iγ,εpυq � Y iγ,εpxq ¤ pV iγ,εpυq � `px, hiγ,εpxqq

�γ pV iγ,εpfpx, hiγ,εpxqqq
�estop,ipγ, εV , εstop, xq
�W pυq �W pxq.

(18)

We obtain, by adding and subtracting pV iγ,εpfpx, hiγ,εpxqqq,
Y iγ,εpυq � Y iγ,εpxq ¤ pV iγ,εpυq � pV iγ,εpfpx, hiγ,εpxqqq

�`px, hiγ,εpxqq

�p1� γqpV iγ,εpfpx, hiγ,εpxqqq
�estop,ipγ, εV , εstop, xq
�W pυq �W pxq.

(19)
From Assumption 2 and by definition of υ, we have

W pυq �W pxq ¤ �αW pσpxqq � `px, ĥiγ,εpxqq. (20)

Therefore, in view of (19),

Y iγ,εpυq � Y iγ,εpxq¤�αW pσpxqq

�`px, ĥiγ,εpxqq � `px, hiγ,εpxqq

�p1� γqpV iγ,εpfpx, hiγ,εpxqqq
�estop,ipγ, εV , εstop, xq

�pV iγ,εpυq � pV iγ,εpfpx, hiγ,εpxqqq.
(21)

The rest of the proof consists in suitably upper-bounding
`px, ĥiγ,εpxqq � `px, hiγ,εpxqq, p1 � γqpV iγ,εpfpx, hiγ,εpxqqq,pV iγ,εpυq � pV iγ,εpfpx, hiγ,εpxqqq and estop,ipγ, εV , εstop, xq to
obtain the desired result. In view of (15) and since ` takes
non-negative values,

pV iγ,εpfpx, hiγ,εpxqqq ¤ 1

γ

�pV iγ,εpxq � estop,ipγ, εV , εstop, xq
	
.

(22)
Hence, in view of Assumptions 4 and 5,

p1� γqpV iγ,εpfpx, hiγ,εpxqqq
¤

1� γ

γ

�
αV pσpxqq � αεp|ε|q � αstopp|ε|, σpxqq

	
.

(23)
Consequently, by applying Assumption 4, Y iγ,εpυq�Y

i
γ,εpxq ¤

�αW pσpxqq� pα`p|ε|, σpxqq� 1� γ

γ

�
αV pσpxqq�αεp|ε|q�

αstopp|ε|, σpxqq
	

� αstopp|ε|, σpxqq � pαV p|ε|, σpxqq �

�αY pσpxqq � Υ
�1� γ

γ
� |ε|, σpxq

	
, with αY and Υ

defined as in Table I, which are indeed of class K8 and
KN , respectively, in view of the properties of the involved
functions. We have proved that item (ii) of Theorem 1
holds. �

Proof of Theorem 2. Let δ ¡ 0, i ¥ i� and ε̃ P p0, ε̄s be
small enough such that the set tx P Rnx : αY pσpxqq ¤
αεpε̃qu is included in the interior of X , where αY is defined
in Table I and αε comes from Assumption 4. Such a constant
ε̃ always exists in view of Assumptions 1 and 3.

We introduce several quantities, which are essential in
the rest of the proof. We define ∆ P R¡0, the biggest
positive constant such that tx P Rnx : αY pσpxqq ¤
αεpε̃q �∆u � X , which exists in view of the definition of ε̃
above, Assumption 1, and the fact that X is compact. We also

define δ̃ :� min

#�
I�

rαY
2


�1

� αY pδq,
1

2
αY p

1

2
δq,∆

+
where rαY psq :� αY � α�1

Y p 1
2sq for any s ¥ 0. Note that



�
I� rαY

2

	�1

is well-defined as we can assume without loss

of generality that I� rαY
2 P K8, see [8, footnote 5].

We select γ� P p0, 1q and ε� P p0, ε̃q such that$'''''&'''''%
Υ

�
1� γ�

γ�
� ε�, α�1

Y ps� αεpε
�qq



¤

1

2
rαY psq

@s P rδ̃,∆s
α�1
Y p2αεpε

�qq � α�1
Y p2βY p4αεpε

�q, 0qq ¤ 1
2δ

2αεpε
�q �Υ

�
1�γ�

γ� � ε�, α�1
Y � αεpε

�q
	
¤ δ̃,

(24)
with βY some KL-function defined in the following.

This is always possible as Υ is of class KN , we can
thus select a pair pγ�, ε�q P p0, 1q � p0, ε̄q such that

Υ
�

1�γ�

γ� � ε�, α�1
Y p∆� αεpε

�qq
	
¤

1

2
rαY pδ̃q, which en-

sures the first inequality in (24). The second and third
inequalities are satisfied by selecting ε� ¡ 0 sufficiently
small and large γ� P p0, 1q in view of the properties of the
involved functions.

Let γ P rγ�, 1s, ε P r0, ε�s, ε P Bnεpεq, and x P X be6

such that Y iγ,εpxq ¤ ∆, and υ P pFγ,ε,ipxq. We first consider
the case where αY pσpxqq ¥ αεp|ε|q. As a result, in view
of item (i) of Theorem 1, Y iγ,εpxq ¤ αY pσpxqq � αεp|ε|q ¤
2αY pσpxqq. In view of Theorem 1, the definition of rαY and
the fact that Υ P KN ,

Y iγ,εpυq � Y iγ,εpxq ¤ �rαY pY iγ,εpxqq
�Υ

�
1�γ
γ � |ε|, α�1

Y

�
Y iγ,εpxq � αεp|ε|q

�	
.

(25)
Since γ P rγ�, 1s, ε P Bnεpε�q and Υ P KN ,

Y iγ,εpυq � Y iγ,εpxq ¤ �rαY pY iγ,εpxqq
�Υ

�
1�γ�

γ� � ε�, α�1
Y

�
Y iγ,εpxq � αεpε

�q
�	
.

(26)
When Y iγ,εpxq P rδ̃,∆s, in view of (24) and (26),

Y iγ,εpυq � Y iγ,εpxq ¤ � 1
2 rαY pY iγ,εpxqq. (27)

When Y iγ,εpxq P r0, δ̃s, in view of (24), (26), the definition
of δ̃ and since I� rαY can be assumed to be in K8 without
loss of generality [8, Remark 5],

Y iγ,εpυq¤pI� rαY q pY iγ,εpxqq
�Υ

�
1�γ�

γ� � ε�, α�1
Y

�
Y iγ,εpxq � αεpε

�q
�	

¤pI� rαY q pδ̃q �Υ
�

1�γ�

γ� � ε�, α�1
Y pδ̃ � αεpε

�qq
	

¤pI� rαY q pδ̃q � 1
2 rαY pδ̃q

�
�
I� 1

2 rαY � pδ̃q.
(28)

Thus, whenever Y iγ,εpxq ¤ δ̃, Y iγ,εpυq ¤ δ̃.
We now consider the case where αY pσpxqq ¤ αεp|ε|q,

which implies Y iγ,εpxq ¤ 2αεp|ε|q according to item (i) of
Theorem 1. Consequently, in view of item (ii) of Theorem

6It is always possible to find such x in view of Assumption 3 and item
(i) of Theorem 1.

1,

Y iγ,εpυq ¤ Y iγ,εpxq � αY pσpxqq

�Υ
�

1�γ
γ � |ε|, σpxq

	
¤ Y iγ,εpxq �Υ

�
1�γ
γ � |ε|, σpxq

	
¤ 2αεp|ε|q

�Υ
�

1�γ
γ � |ε|, α�1

Y � αεp|ε|q
	
.

(29)

Since |ε| ¤ ε� and γ P rγ�, 1s,

Y iγ,εpυq ¤ 2αεpε
�q

�Υ
�

1�γ�

γ� � ε�, α�1
Y � αεpε

�q
	 (30)

We then deduce from the last inequality in (24) that

max
 
Y iγ,εpxq, Y

i
γ,εpυq

(
¤ δ̃. (31)

The solutions to (6) initialized at x remain in the set X
for all positive times. Indeed, since x P X and Y iγ,εpxq ¤ ∆,
Y iγ,εpυq ¤ Y iγ,εpxq ¤ ∆ according to (27). Moreover, (28)
and (31) imply that Y iγ,εpυq ¤ δ̃ ¤ ∆ by definition of δ̃.
Hence, in both cases, Y iγ,εpυq ¤ ∆ which means that υ P X
as

 
z P Rnx : Y iγ,εpzq ¤ ∆

(
� tz P Rnx : αY pσpzqq ¤

αεpε̃q � ∆u � X in view of item (i) of Theorem 1 and the
definition of ∆. By proceeding iteratively, we deduce that
any solution to (6) initialized at x remain in the set X .

Based on the above fact, item (i) of Theorem 1, (27)
and (28), we follow the same arguments as in the proof of
Theorem 2 in [21] to conclude that there exists β̃Y P KL
such that for any k P Z¥0 and any solution φ to system (6)
initialized at x,

Y iγ,εpφpk, xqq ¤ max
!
βY pY

i
γ,εpxq, kq, δ̃

)
. (32)

We deduce from item (i) of Theorem 1,
since |ε| ¤ ε�, αY pσpφpk, xqqq � αεpε

�q ¤

max
!
βY pαY pσpxqq � αεpε

�q, kq, δ̃
)

. Hence, σpφpk, xqq ¤

α�1
Y

�
max

!
βY pαY pσpxqq � αεpε

�q, kq, δ̃
)
� αεpε

�q
	

.
Using the property that αps1�s2q ¤ αp2s1q�αp2s2q for any
α P K, s1, s2 P R¥0, see [13, (6)], we derive σpφpk, xqq ¤
α�1
Y

�
max

!
βY p2αY pσpxqq, kq � βY p2αεpε

�q, 0q, δ̃
)

�αεpε
�q
	

. Thus, by using twice
the same property σpφpk, xqq ¤

α�1
Y

�
2 max

!
βY p2αY pσpxqq, kq � βY p2αεpε

�q, 0q, δ̃
)	

�

α�1
Y p2αεpε

�qq � max
!
α�1
Y

�
2βY p2αY pσpxqq, kq �

2βY p2αεpε
�q, 0q

�
, α�1

Y p2δ̃q
)

� α�1
Y p2αεpε

�qq ¤

max
!
α�1
Y

�
4βY p2αY pσpxqq, kq

�
�

α�1
Y

�
4βY p2αεpε

�q, 0q
�
, α�1

Y p2δ̃q
)
� α�1

Y p2αεpε
�qq. Since

maxts1, s2u ¤ s1 � s2 for any s1, s2 P R¥0,

σpφpk, xqq ¤ α�1
Y p4βY p2αY pσpxqq, kqq

�α�1
Y p4βY p2αεpε

�q, 0qq � α�1
Y p2δ̃q

�α�1
Y p2αεpε

�qq .
(33)



By definition of δ̃ and in view of the second inequality in
(24),

σpφpk, xqq ¤ α�1
Y p4βY p2αY pσpxqq, kqq � δ. (34)

This inequality ensures that (12) is satisfied with
βps1, s2q � α�1

Y p4βY p2αY ps1q, s2qq for any s1, s2 ¥ 0. �

Sketch of proof of Corollary 1. As in the proof of Theorem
2, let ε̃ P p0, ε̄s be small enough such that the set tx P
Rnx : αY pσpxqq ¤ αεpε̃qu is included in the interior of X .
We define ∆ P R¡0, the biggest positive constant such that
tx P Rnx : αY pσpxqq ¤ αεpε̃q � ∆u � X , which exists in
view of the definition of ε̃ above, Assumption 1, and the fact
that X is compact.

Let i ¥ i�, γ P rγ�, 1s, ε P r0, ε�s, ε P Bnεpεq, x P X such
that Y iγ,εpxq ¤ ∆ and υ P pFγ,ε,ipxq. In view of (21), (23)
and items (ii)-(iii) of Corollary 1,

Y iγ,εpυq � Y iγ,εpxq ¤ �aWσpxq

� 1�γ
γ

�
āV σpxq � astopp|ε|qσpxq

	
�astopp|ε|qσpxq

�
�
� aW �

1� γ

γ

�
āV � astopp2|ε|q

	
�astopp2|ε|q

	
σpxq.

(35)
Since γ P rγ�, 1s and ε P r0, ε�s, �aW � 1�γ

γ

�
āV �

astopp|ε|q
	
� astopp|ε|q ¤ �aW � 1�γ�

γ�

�
āV � astoppε

�q
	
�

astoppε
�q   0. Hence, there exists ν ¡ 0 independent of

pγ, εq and sufficiently small such that

Y iγ,εpυq � Y iγ,εpxq ¤ �νσpxq. (36)

We then apply similar arguments as in the proof of Theorem
2 to obtain the desired result.

When, in addition αW psq � aW �s for any s ¥ 0, we also
have that aY σpxq ¤ Y iγ,εpxq ¤ aY σpxq in view of item (i)
of Theorem 1 and item (iii) of Corollary 1. We then deduce
from (36) that β P exp�KL in (14), like in the proof of
Corollary 2 in [21]. �

Proof of Corollary 2. We first prove that the standing
assumptions hold. Let x P X , u be any admissible input,
εV P BnV pε̄q and i P Z¥0. In view of item (iv) of Corollary
2, `px, uq � e

pV ,i�1p1, εV , xq ¥ `px, uq � |εV |`px, 0q ¥
p1�ε̄qQpxq�Rpuq. Recalling that Q and R take non-negative
values and ε̄ P r0, 1q according to item (iv) of Corollary 2,
we derive that pV i1,εV pxq ¥ 0. SA1 follows by invoking item
(v) of Corollary 2.

SA2, and item (ii) of Corollary 1, trivially hold in view
of item (vi) of Corollary 2.

In view of items (iv) and (vi) of Corollary 2, we can invoke
[12, (20),(37)], that is, for any x P X , εV P BnV pε̄q and
i P Z¥0,

T pV i1,εV pxq ¤ pV i1,εV pxq � 2|εV |V̆
ipxq

¤ pV i1,εV pxq � 2|εV |
1�|εV |

V
0
pxq,

(37)

where V̆ ipxq is defined in [12, Lemma 1] and V
0
pxq ¤

2pV 0pxq. Therefore, in view of item (vii) of Corollary 2,

T pV i1,εV pxq ¤ pV ii,εV pxq � 2ε̄
1�ε̄2dQpxq. (38)

Thus SA3 holds for x P X with estop,ip1, εV , xq �
4εV

1�εV
dQpxq for any x P X , any i P Z¥0 and there is no

parameter εstop. Also, SA3 holds is trivially verified with
estop,ip1, εV , xq � T pV iγ,εV pxq when x P RnxzX . Note that
i� � 0 here and that ε reduces to εV .

We prove in the following that Assumptions 1-5 are
satisfied.

Assumption 1 is verified by taking σ � Q, as Q is
continuous according to item (ii) of Corollary 2.

In view of item (ii) of Corollary 2, Assumption 2 is verified
with W � 0, αW � αW � aW I with aW � 1 as σ � Q
and `px, uq ¥ `px, 0q � Qpxq � σpxq for any x P Rnx and
u P Rnu .

Assumption 3 is satisfied in view of items (i)-(ii) of
Corollary 2 and the definition of σ. Hence, item (i) of
Corollary 1 holds.

The first inequality in (9) is verified in view of (38) by
taking αstopp|ε|, σpxqq � 4ε

1�εdσpxq for any x P X and
ε P BnV pε̄q, which indeed defines a KN -function. Moreover,
αstopp|ε|, σpxqq � astopp|ε|qσpxq with astoppsq �

4s
1�sd for

any s P r0, 1q, which defines a class-K function as required in
item (iii) of Corollary 1. The third and fourth inequalities in
Assumption 4 and item (ii) of Corollary 1 hold as eĥ,εh,i � 0
in view of item (vi) of Corollary 2. Regarding (9b), for any
x P X , i P Z¥0 and ε P BnV pε̄q, we have |e

pV ,ip1, ε, xq| ¤
|ε|`px, 0q � Qpxq � p1 � |ε|qQpxq ¤ Qpxq � p1 � ε̄qQpxq.
Therefore, (9b) holds with αW � aW I, aW � 1 � ε̄ and
αε � 0.

Let x P X , ε P BnV pε̄q and i ¥ 0. As pV i1,εpxq ¤

V
i
pxq according to [12, Theorem 1] and V

i
pxq ¤ V

0
pxq

as explained after [12, (36)], pV i1,εpxq ¤ V
0
pxq and since

V
0
pxq ¤ 2dQpxq as shown above, pV i1,εpxq ¤ 2dQpxq.

Thus, (10) is verified with αV � 2dI P K8 and αε � 0:
Assumption 5 is satisfied.

We have proved that item (iii) of Corollary 1 is satisfied.
This completes the proof. �
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Regularized fitted Q-iteration for planning in continuous-space Marko-
vian decision problems. In American Control Conference, St. Louis,
U.S.A., pages 725–730, 2009.



[7] M. Granzotto, R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz.
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