N

N

Efficient configuration management of automotive
software

Cornelia Heinisch, Volker Feil, Martin Simons

» To cite this version:

Cornelia. Heinisch, Volker Feil, Martin Simons. Efficient configuration management of automotive
software. 2nd Embedded Real Time Software Congress (ERTS’04), 2004, Toulouse, France. hal-
02271215

HAL Id: hal-02271215
https://hal.science/hal-02271215v1
Submitted on 26 Aug 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02271215v1
https://hal.archives-ouvertes.fr

Session 6B: Development Process and its Improvement
Efficient configuration management of automotive software

Cornelia Heinisch
STZ Softwaretechnik

Volker Feil, Martin Simons
DaimlerChrysler

Abstract

The need for managing configurations of automotive software is growing significantly as a consequence of the
continuously increasing volume of software in vehicles and due to the possibility to exchange software in vehicles
over their lifetime.

In this paper, we discuss concepts for configuration selection, configuration verification, and configuration update
and show an evolution for the step-wise introduction of these concepts to gain an efficient configuration
management of automotive software. We propose a configuration model that defines automotive hardware and
software releases and describes the dependencies between these releases. This configuration model forms the
basis for an update management which enables the download and installation of new software releases into cars to
maintain the car’s software over its lifetime. We illustrate and discuss a prototypical realization, which takes the
proposed concepts into account.

1 Introduction

The history of configuration management (CM) goes back to the early Fifties and has its roots in the aerospace
industry. In the Apollo Space Program, thousands of changes were tracked using a defined configuration
management process. At that time, the tracked changes belonged almost exclusively to hardware elements. For a
long time, configuration management has been used also successfully for software. Elementary to Software
Configuration Management (SCM) is the term configuration, where a configuration consists of configuration items
(for example source code files, documents, executable system parts, etc.) and a tested configuration is called a
baseline. SCM goes back to the mid Seventies and began with the introduction of the first SCM tools SCCS
(Source Code Control System) [1] and Make [2]. Since that time the discipline of SCM has continuously evolved:
RCS (Revision Control System) [3] replaced SCCS in 1985 and one year later RCS was extended to CVS
(Concurrent Versions System) [4]. A configuration was created by labeling or marking a particular version of each
file belonging to the system. Today, tools like Rational ClearCase [5] support the developers in SCM. The basic
functionality offered by these tools is still the same as in the predecessor tools RCS and CVS.

The term software configuration management is used in diverse areas ([7], [8]). According to [6], the most relevant
aspects in today’s SCM tools are: version management, configuration selection, concurrent development, build
management, release management, workspace management, and change management. In this paper, we
consider software configuration management with respect to configuration selection, configuration verification, and
configuration update, because we believe that these aspects are the most relevant to get an efficient configuration
management of automotive software. For being efficient a configuration management must efficiently handle the
increasing complexity of automotive software (see section 3.1). The key to success is to use hierarchical
dependencies between configuration items for configuration selection, to define dependencies between

llllsummary <@llliprevious nextllip

2" European Congress ERTS -1- 21 - 22 - 23 January 2004

configuration items to verify the correctness of a configuration and to use a configuration update concept which
allows to update individual system parts.

Section 2 introduces configuration selection (section 2.1), configuration verification (section 2.2), and configuration
update (section 2.3) precisely and section 3 discusses these three configuration management concepts as parts of
an efficient configuration management for automotive software. The subsection 3.1 describes a way from a
completely implicit configuration management to a completely explicit configuration management and subsection
3.2 discusses a prototypical realization of an efficient configuration management of automotive software. An
outlook towards an efficient configuration selection is given in subsection 3.3. The paper concludes with a summary
in section 4.

2 Configuration management concepts

In this section we introduce concepts for configuration selection, configuration verification and configuration update.

2.1 Configuration selection

Configuration selection (also known as configuration construction) determines which configuration items belong to
a configuration. A configuration item (Cl) is a physical entity (source code file, header file, documentation,
executable, subsystem, etc.) which is subject to configuration control. A Cl can be an aggregation of other Cls,
organized in a hierarchy. Any member of this hierarchy can exist in several versions, each being a separate CI.
This means, a Cl is a version of a node in the hierarchy.

Typically, modern SCM tools allow a hierarchical composition of SCM components to build up an overall system
baseline, where a SCM component is a set of related files and directories (the Cls) that are versioned and
baselined as a single unit [5]. A Cl can be atomic, like documents and modules, or composed, like libraries and
systems. According to [9], versions of a SCM component are also Cls at a higher level. A composed Cl which
forms an executable system part is called a runtime version. Depending on the complexity and on the fact whether
a system under construction will be distributed or not, the system is fragmented into one or more SCM
components. These SCM components can be composed to larger SCM components (subsystems) in a hierarchical
structure. If a version of the overall software system meets the requirements of the customer it is released and
called a software release. While the configuration management of the developers deals with the management of
source code files, typically complete executable software systems are delivered to customers in the form of
releases. These software systems contain executable components which have been generated from a
configuration of source code files.

Figure 1 shows a hierarchical structure of Cls. The atomic Cls (AV1, ..., AV4,BV1,BV2,CV1,CV2, EV1, EV2,
F V1, .., FV3, GV1)are grouped in two SCM components D and H. A SCM component consists of a tuple of Cls.

llllsummary <@llliprevious nextllip

2" European Congress ERTS -2- 21 — 22 - 23 January 2004

Socigté des
gerieus g8

A ilay
Alutomobile

configuration selection

————— system baseline / version

. . composed Cls
component baselines / versions > P

DV2 w .~ \

SCM component |)
N\
FV3
B\iﬂ ,C—V1C|V2 FVF1V2 eVt > atomic Cls
SCM component D SCM component H
J

Figure 1: A system baseline made up of component baselines

For the SCM component D (A V1, ..., AV4, B V1, B V2, C V1, C V2), the component baselines D V1 (A V2, B V2)
and D V2 (A V4, B V2, C V2) are defined, and for SCM component H (E V1, E V2, F V1, ..., F V3, G V1) the
component baseline H V1 (E V2, F V2) is defined. Different versions of a SCM component (component baseline)
are represented by different tuples. Two tuples are different, if they contain different combinations of Cls. A Cl is a
version of a node — in case of software a node is represented by a file. For example, the CIs (A V1, AV2, AV3, A
V4) are different versions of a single file. Typically, a baseline contains just one distinct version of a file.

Configuration selection (baselining) is performed by considering dependencies in hierarchies between father nodes
and child nodes.

One characteristic of defining system baselines — by selecting specific atomic Cls and specific component
baselines — is that all Cls belonging to a specific configuration have to be selected manually — there are no rules,
that verify whether the selected configuration really is a valid configuration that can be built, deployed, and
installed, and which is running correctly. Therefore configuration selection (baselining) is still a tough job, despite
good tool support.

2.2 Configuration verification

Configuration verification uses dependency descriptions (consistency criteria [10]) between composed Cls of a
SCM component to verify the correctness of a configuration selection. Figure 2 shows dependencies used for
configuration verification.

dependencies used for
configuration verification

> composed Cls

Figure 2: Dependencies used for configuration verification

Dependencies between composed Cls at the same level of a hierarchy, are used for configuration verification.
These dependencies are used to verify whether a set of runtime versions forms a valid configuration. This
verification can take place during configuration selection and after configuration selection, e.g., during system

llllsummary <@llliprevious nextllip

2" European Congress ERTS -3- 21 — 22 - 23 January 2004

installation or at system start-up. Having selected a specific Cl the configuration verification can assist configuration
selection by suggesting all Cls which can or should be added to the configuration.

Dependencies between atomic Cls (source code level) are not in the scope of this paper. It would be too complex
to describe the dependencies between these atomic Cls (source code files, documentation, header files, etc.) to
assist configuration selection of a component baseline. The only relevant dependencies between atomic Cls would
be those which exist between configuration items located in different SCM components. But these dependencies
can also be defined between the composed Cls themselves one level higher in the hierarchy than the atomic Cls.

We distinguish between three types of dependencies used for configuration verification:
e Direct dependencies between runtime versions

o Dependencies between runtime versions by using interfaces

o Dependencies between runtime versions by using contracts

We describe each kind of dependency description in the following subsections.

2.2.1 Direct Dependencies between runtime versions

Runtime versions are composed Cls which are executable system parts. For example, automotive flashware
modules are runtime versions. A flashware module can be seen as a piece of code that can be written into the flash
memory (a non-volatile memory device) of an ECU. A flashware module can also contain data like a characteristic
curve which is required during the execution of an ECU application. Depending on the flash memory of an ECU
and the structure of the ECU application, the software of an ECU can be divided into 1 up to n flashware modules.
Today, automotive software is distributed over dozens of interconnected ECUs and is either located in ROM (Read-
Only-Memory) or in flash memory. Software located in ROM is inseparably connected with the hardware.
Consequently, the complete ECU is a composed Cl and forms a runtime version.

For each runtime version (e.g. a version of a flashware module) it has to be defined explicitly which other runtime
versions it requires to run (see Figure 3).

runtime
version A R<_
V5.0 ~~~4 runtime runtime
versionC [K—————- version D
prad V1.0 V3.0
runtime -
version B =
V2.0 {requires A V5.0 or B V2.0} {requires C V1.0}

Figure 3: Dependency description between runtime versions

The challenge is to define for each runtime version — for an automotive example that means for each version of a
flashware module — which dependencies with other runtime versions exist. This procedure is not only time-
consuming but is also complex and very error-prone. An additional complexity is introduced by the need to express,
if, for example, runtime version C V 1.0 requires AV 5.0 and B V 2.0 or runtime version C V 1.0 requires either AV
5.0 or B V 5.0. Figure 3 shows a possible additional notation to describe the restriction which states that runtime
version AV 5.0 is a variant to runtime version B V 2.0 and therefore runtime version C V 1.0 does require just A V
5.0 or B V 2.0. Dependencies between runtime versions based on interfaces make the dependency description
between Cls easier and allow a simple and unique notation of variants.

4l previous next!lmp

<l surnmary

2" European Congress ERTS -4 - 21 — 22 - 23 January 2004

2.2.2 Dependencies between runtime versions by using interfaces

A runtime version can export an interface to indicate which services it provides and can import an interface to
indicate which services it requires. An interface contains all call interfaces e.g. all object-oriented method
declarations of that methods which are imported or exported, respectively. By using interfaces to describe
dependencies between runtime versions it is not necessary that it is separately described by restrictions on which
other runtime versions a runtime version is dependent — it is sufficient to declare which kind of runtime version, i.e.
which interface it requires. A runtime version which defines what is required and what is provided by the usage of
interfaces can be called a software component.

CORBA (Common Object Request Broker Architecture) [11] is a well-known example of a component-based
system. The Object Management Group published the first standard for CORBA in 1991. In component-based
systems, components publish their export interfaces (services) in a registry and use it to ask for an import service
they require. Components typically run in the context of a framework, which may be distributed and which provides
a runtime environment for software components. Another component framework which is more relevant for
automotive applications is specified by OSGi (Open Service Gateway Initiative) [12]. Component frameworks as
specified by CORBA or by OSGi use dependency descriptions based on interfaces to set up a complete running
system. Nowadays, component frameworks can be found in cars of the luxury class. There, a powerful telematics
ECU has the resources to integrate a component framework like OSGi. Software components that implement, for
example, navigation based services can be loaded, installed, started, stopped and uninstalled dynamically.

A flashware module — which is the typical representation of a runtime version considering automotive software —
contains only application code and data and does not contain information about the services it provides and the
services it requires. But this information can be added for the purpose of configuration management in the form of
an additional information to the CI representing a flashware module. The additional information shows the
dependency on an (import) interface or the implementation of an (export) interface.

interface interface
X Y
runtime //v V1.0 V2.0
version A |7 W .requires”, W .requires®,
V5.0 //</ \\depends on //</ \\depends on
/ H AN / H \
,realize, N . ,/ realize, N .
run?lme //
version B V1.0 V3.0
V2.0

Figure 4: Dependency descriptions based on interfaces

Figure 4 shows a runtime version C which depends on (requires) a runtime version which implements interface X,
version 1.0. Two runtime versions (A and B) implement interface X, version 1.0. Compared to an dependency
description based on runtime versions this way of describing dependencies is much easier, because no knowledge
about the specific runtime versions A and B is necessary. A further advantage: if a runtime version is added which
also implements interface X, version 1.0, no additional dependency description has to be added to runtime version
C.

The limitation of an interface is, that it does not allow to describe in which order the methods have to be called, nor
does it allow to describe which timing constraints should be granted. This limitation can be put behind by using
contracts to describe dependencies between runtime versions.

llllsummary <@llliprevious nextllip

2" European Congress ERTS -5- 21 - 22 - 23 January 2004

2.2.3 Dependencies between runtime versions using contracts

Contracts provide mechanisms to describe behavioral aspects with the aid of assertions, i.e. pre- and post-
conditions and invariants (Design by Contract) ([13], [14]). Additional approaches exist to add synchronization and
quality of service aspects to contracts [15]. A contract defines the rights and duties between the involved parties. A
component providing a service guarantees that the post-conditions will be hold if the pre-conditions are fulfilled.

A pre-condition is a condition under which a call of a method is allowed. A post-condition describes the state of the
system after the call of a method. The post-condition guarantees that after executing a method the state conforms
to certain characteristics, provided that the pre-conditions have been hold before calling the method. Invariants
describe certain properties which hold for all methods of a class and not only for individual methods.

If the service user guarantees that the pre-conditions will be fulfilled, the service provider guarantees, that the post-
conditions will be fulfilled after the service is executed. Then a contract explicitly defines under which conditions a
component works correctly. A service user should test in advance, if it is able to fulfill the pre-conditions of the
service contract. If this is true, the contract is valid and a valid configuration of components is found.

2.3 Configuration update

Configuration update aims to update an installed configuration (a software release) with a new configuration. The
first step of updating an out-of-date configuration is to calculate the difference to an up-to-date configuration [16]
and to provide instructions for performing the update from the out-of-date configuration to the up-to-date
configuration. Consider the following example: software release A with the Cls a, b, c, d, and f is installed in a car
and should be updated to configuration B with the Cls b, c, e, and g. The update instructions can be as follows:
Delete a, d and f and install e and g, where e may be a new version of d. This additional information can be added
to the update instructions and is especially useful in the case where some user defined data of the Cl d to be
deleted should be transferred to the new version of d which is configuration item e.

The update instructions together with the new Cls (in our example e and g) can be packed into an update package.
The update package then contains everything required to update a specific installed configuration to a new
configuration.

The second task of configuration update is to perform the update instructions. This can either be done during non-
operation (see section 2.3.1) or during operation (see section 2.3.2) of a system. Configuration update while a
system is running is also known as dynamic change management and is additionally used for the migration of
entities at runtime. In contrast to a runtime version which represents executable code such as flashware modules
or software components an entity exists only at runtime. Typically an entity is instantiated from a runtime version.
For example an entity (object, instance) is instantiated from a class file which represents a runtime version.

2.3.1 Updating configurations only during non-operation of the system

A configuration of a system can be updated safely, if the system is non-operating. The update package containing
the new Cls and the instructions is unpacked and the instructions are executed. Before the update instructions are
executed it has to be ensured, that the currently installed configuration is identical with the configuration the update
package is generated for. Additionally it is important, that all update instructions are executed completely and
correctly to gain a valid configuration and a correctly running system. An example of updating configurations during
non-operation can be found in automotive industry. Flashware modules can be exchanged during the vehicle’s
lifetime e.g. in order to remove errors. These flashware modules can be only exchanged in a workshop during a
vehicle diagnosis session. Then, the car is non-driving and therefore its systems are not normally operating but
vehicle diagnosis can take place in this special system mode.

llllsummary <@llliprevious nextllip

2" European Congress ERTS -6 - 21 - 22 - 23 January 2004

2.3.2 Dynamic change management

If there is a dependency between runtime versions as described in section 2.2.1, 2.2.2, and 2.2.3 the entities of
these runtime versions can interact at runtime. Changing one interacting entity can lead to inconsistencies to all
entities that are involved in the interaction. Examples for changes are the migration of an entity to a new
environment (e.g. to balance load) as well as the update of an entity. For instance, if the entity is realized as a
software component that consists of a set of objects, it can be dynamically updated by exchanging some old
objects with new ones. However, what shall happen with the local variables of an obsolete method that are stored
in the execution stack of the runtime environment? Which instruction shall be executed, if the instruction that is
pointed from the instruction pointer of the runtime environment is no more existing? Familiar dynamic update
management approaches ([17], [18]) avoid the dealing with these questions, because they prevent the changing of
an interacting entity. Then, this update management is responsible for the monitoring of this prevention: Only
operable entities are allowed to interact. Only non-interacting entities are allowed to become non-operable in order
to get changed.

The concepts of dynamic change management (that includes dynamic update management) are relevant for
managing long running, non-interruptible programs. For instance, such kind of programs run in satellites. However,
for automotive software the update management in non-operational state is more interesting, because the vehicle’s
software running is interrupted at every drive break.

3 Concepts for configuration management of automotive software

In this section we apply the introduced basic concepts for configuration selection, configuration verification and
configuration update to the management of automotive software and show a way to an efficient configuration
management. The next subsection describes an evolution from an implicit to an explicit configuration management
of automotive software.

3.1 From implicit to explicit configuration management

For managing the configurations of small systems, which consist of only a few software modules, it is sufficient to
consider points in time where old runtime versions are replaced by new runtime versions. For example, if there is a
new runtime version replacing an old one with the same functionality it is deployed to a specific server and made
available for end-of-line production. Henceforth, the new runtime version is used in end-of-line production. Such a
point-in-time-related configuration selection has the following consequence: Every time, once new runtime versions
are deployed, vehicles with identical functionality will have a different configuration from vehicles manufactured
before this point in time. If the number of configuration items to be managed is not very high and if no configuration
update is performed over the lifecycle of a car, such an implicit configuration selection will be sufficient (see the
bottom left quadrant in Figure 5).

llllsummary <@llliprevious nextllip

2" European Congress ERTS -7- 21 - 22 - 23 January 2004

|
|
implicit !
configuration
» selection
g 2 / -
° configuration explicit
S verification configuration
- selection
RS /
= . .
o implicit configuration
> configuration verification
s o selection
g < /
no configuration
verification
|
low mid high

number of Cls

Figure 5: Relevance of configuration verification and configuration selection

If software is exchangeable over the lifecycle of a car - for example in workshops where some flashware modules
but also whole ECUs have to be exchanged because of damage, corrective maintenance or because of new
functionality is ordered - it has to be verified which flashware modules/ECUs have to be exchanged additionally to
get a valid configuration again. Consider the following example: In the case an ECU is damaged the complete ECU
will be exchanged. If the old version of the ECU is no longer available an ECU with a newer version will be
mounted. In this case it has to be ensured that the software within this ECU is still compatible with the software in
the other ECUs. To solve this problem dependencies between runtime versions can be introduced. These
dependencies describe which runtime version requires which other runtime versions and can be used in the
workshops to verify if a configuration is still valid when a runtime version should be added or exchanged. By this
way configuration verification is introduced using direct dependencies between runtime versions (see the upper left
quadrant in Figure 5). To make the dependency description between runtime versions easier and more reliable
interfaces or contracts can be introduced between runtime versions.

A further step is to introduce an explicit configuration selection. That means, valid software releases are defined
explicitly. By this step the number of configurations which can be built into a car can be limited and a configuration
verification has only to be executed during the configuration selection, when a new software release is defined. The
number of distinct configurations built into vehicles can be limited, because only predefined software releases are
allowed to be built or installed in a car and consequently only updates to predefined software and hardware
releases are allowed. Possible other configurations which may be also valid considering the dependency
descriptions are not allowed. In very large and distributed systems it is highly recommendable to reduce the
delivered configurations by an explicit configuration selection in order to reduce possible sources of errors (see the
right quadrant in Figure 5).

The explicit definition of software releases is also advantageous to perform updates. In the case it is known which
software release is installed and to which software release an update should be performed, the difference between
the installed configuration and the new configuration can be calculated and an update package can be
automatically generated. This makes configuration update very efficient, because no configuration verification is
required to perform an update of a configuration. If different parties or the customers themselves are allowed to
install software on a single platform, it is not possible to easy determine which software release is installed. But if
only one authority is allowed to manipulate a system it can be known in advance or easy determined which
software release is inside a car.

The continuously increasing software volume in vehicles and the possibility to exchange software in vehicles over
their lifetime requires an explicit configuration selection and the definition of dependencies based on interfaces or
contracts to assist configuration selection. Furthermore the explicit configuration selection enables an efficient
configuration update.

llllsummary <@llliprevious nextllip

2" European Congress ERTS -8 - 21 - 22 - 23 January 2004

3.2 Prototypical realization of configuration management

In this section we discuss a configuration model in which automotive hardware and software releases are defined.
This configuration model is used in a prototype to realize an efficient update management for automotive software.

3.2.1 Configuration model for automotive software

In section 2.1 we only discussed software-related Cl (e.g. runtime versions). In this section we additionally
introduce ECUs as hardware-related Cl. A configuration of software-related Cls which is released is called a
software release and a configuration of hardware-related Cls which is released is called a hardware release. In this
section we introduce a configuration model in the form of an Entity Relationship Model (ERM). This configuration
model defines automotive software and hardware releases (see Figure 6).

hardware software
release 1..n release
1..n
n n n
n n n
ECU 0. .n flashware 0. n coding value
module
1..n 1..n
L | >
is executable in is configured by

Figure 6: ERM for the definition of automotive software and hardware releases

Specific to automotive software is that the software is either located in ROM or in flash memory. As discussed in
section 2.2.1, software located in ROM is inseparably connected with the hardware. This is the reason why in
Figure 6 an ECU hosts 0 up to n flashware modules. Zero holds where the ECU software is located in ROM and 1
up to n holds where the software is located in flash memory. Vice versa one flashware module is executable in 1 up
to n ECUs. Typically a flashware module can only be executed in exactly that hardware it is compiled for. But if
there are two devices with changes in hardware that do not influence the controller architecture it is possible to
have two distinct ECUs which are able to execute the same flashware modules.

Coding values are used to activate or deactivate a functionality which is implemented in a flashware module. That
means if a specific functionality is not ordered by a customer it might just be deactivated by a specific coding value.
These coding values are used, for example, in end-of-line programming or in workshops to adjust the ECU
software to reflect the ordered functionality. A flashware module can be configured by O up to n coding values and
vice versa a coding value can be used for the configuration of 1 up to n flashware modules.

A hardware release consists of n ECUs and a software release consists of flashware modules and corresponding
coding values. The relationship between software releases and hardware releases describes which software
release is executable on which hardware release. This is a relevant information for updating automotive software
without exchanging hardware. This means a remote update of a software release is only possible, if the new
software release is executable at the same hardware.

The discussed configuration model explicitly defines software and hardware releases and forms the basis for an
update management which is implemented in a prototype and discussed in the next section.

llllsummary <@llliprevious nextllip

2" European Congress ERTS -9- 21 - 22 - 23 January 2004

3.2.2 Prototype

We implemented a prototype which enables the download and installation of new software releases into cars to
maintain the car's software over its lifetime. The architecture of the prototype allows the transport of update
packages to the car over various media as shown in Figure 7: Transport may occur by wireless links such as GSM,
GPRS, UMTS, or DAB directly out of the infrastructure, by wired links in a workshop, by wireless links such as
Bluetooth or WLAN from a flashware access point (maybe also in a workshop), or via portable media such as CD-
ROM or USB memory stick. The main components at the vehicle side — the Flashware-Reprogramming-Controller
and the Installation-Configuration-Controller run within an OSGi-Service-Gateway (a compact component frame-
work). The Flashware-Reprogramming-Controller contains the (re)programming logic to install flashware modules
in ECUs connected to the various subnetworks and the Installation-Configuration-Controller is the vehicle side part
of the update management. This component is responsible for executing the update instructions of an downloaded
update package and for controlling the installation procedure. We present in [19] a comprehensive description of
those components and the architecture at the vehicle side.

simplified infrastructure

j GSM, GPRS, UMTS, DAB \ﬁ

Installation-

Management

L Configuration- Bluetooth, g Release / Update

5 [1 Controller W-LAN
Flashware- e j <’””””””>\L ﬂ:zz‘g:sre
L] Reprogramming- - " i point
L1 Controller | :

- = ~ R portable media
W @ CD-ROM, Memory-Stick @

L= =L

various possiblilities for the configuration encapsulated flash-
transportation of new software releases model ware modules

Figure 7: Main components of a software download architecture

The release management has to protocol which software release is installed in which vehicle and the update
management has to calculate the difference between a new software release which has been assigned to a vehicle
and the currently installed software release. An update package is generated consisting of flashware modules
encapsulated in container constructs. In our prototype we used OSGi bundles as container constructs. These
containers will be transferred to the vehicle, unpacked and the content — the flashware modules — will be installed
in the destination ECUs.

3.3 Outlook: Towards an efficient configuration selection

For explicit configuration selection of large or/and distributed systems hierarchies are typically introduced according
to section 2.1. If we consider distributed systems, the hierarchies are build by physical aspects. That means
runtime versions (e.g. flashware modules) are composed to subsystems (e.g. ECUs), these subsystems are
composed to larger subsystems (e.g. all ECUs connected to a vehicle sub-network). This cascading principle
continues until the complete system is assembled. By introducing such hierarchies the complexity of configuration
selection can be reduced significantly and each subsystem can be tested separately. This principle cannot be
assigned to configuration management of automotive software straightforwardly.

Configuration management of automotive software has to consider that customers can choose within each
production series from a large amount of optional equipment (the so-called features). Different features such as
radar-assisted cruise control, heated front seats, etc., lead to different software releases. Consider the following
example: When ordering a car, a customer has the option to equip the chosen vehicle with 0 up to 20 optional
equipment features such as radar-assisted cruise control, heated front seats, Keyless-Go (the car can be unlocked
without a key by carrying a chip card in the pocket and can be started by pressing a button), Teleaid (automatic call
for help when an accident happens), etc.. Therefore, our customer has 2% (more than one million) possibilities to

llllsummary <@llliprevious nextllip

2" European Congress ERTS -10 - 21 - 22 - 23 January 2004

order a new car of a given production series. This also implies that more than one million software releases have to
be defined, tested, and maintained.

In addition to variants which can be selected by the customer, there are further variants to consider, for example
country variants. In the case of country variants, the look and feel (e. g. for a navigation system) as well as the
hardware used can change dependent on the delivery market.

A customer selectable feature may require various Cls in different subsystems. As a consequence, for each
subsystem containing a Cl which is required for the feature, a variant has to be defined. If a lot of optional
equipment features require Cls located in different subsystems a lot of variants of each subsystem have to be
defined and tested. By this way the advantages of decomposing a system hierarchically into subsystems decrease
and it seems to be more suitable to define software releases for the individual features.

In future work, we will tackle the challenging question whether runtime versions of automotive software should be
decomposed into subsystems in a hierarchical manner or whether software releases for individual features should
be defined or whether a combination of both is most suitable.

4 Summary

In this paper, we discussed configuration management with respect to configuration selection, configuration
verification and configuration update. Explicit configuration selection reduces the number of configurations used in
the cars due to the limited number of releases. Configuration verification uses either explicit or implicit dependen-
cies between runtime versions, where implicit dependencies are specified by interfaces or contracts. Configuration
verification is required if the number of configuration items is very high or a configuration update is performed
during the lifecycle of a vehicle. If configuration selection is performed explicitly it is sufficient to execute a
configuration verification during configuration selection. Moreover, configuration update profits from an explicit
configuration selection - it can be performed efficiently by calculating the difference of the currently installed and
the new software release. Update packages containing update instructions and runtime versions to be installed are
generated automatically in order to be loaded into the car. These update packages will be installed by executing
the associated update instructions. An OSGi-based prototype implementing such an efficient configuration update
for automotive software has been discussed. Software and hardware releases are defined in a configuration model
and update packages consisting of OSGi-bundles are generated automatically. OSGi-bundles are loaded into the
car and the flashware modules encapsulated in the bundles are installed in the destination ECUs.

5 Acknowledgement

We would like to thank the master students Ralf Lohrmann, Qinghua Cheng and Volker Kugler for valuable
discussions as well as our colleagues from Mercedes-Benz PKW Development and the Center for Diagnosis and
Flash Technologies and in particular Prof. Dr. Wolfgang Rosenstiel of the University Tubingen and Prof. Dr.
Joachim Goll of the University of Applied Science Esslingen.

6 Contact

Cornelia Heinisch: Cornelia.Heinisch@stz-softwaretechnik.de
Volker Feil: Volker.Feil@daimlerchrysler.com

Martin Simons: Martin.Simons@daimlerchrysler.com

llllsummary <@llliprevious nextllip

2" European Congress ERTS -11 - 21 — 22 - 23 January 2004

mailto:Cornelia.Heinisch@stz-softwaretechnik.de
mailto:Volker.Feil@daimlerchrysler.com
mailto:Simons@daimlerchrysler.com

7 References

[11 M. J. Rochkind, “The Source Code Control System”, IEEE Trans. Software Eng., vol. 1, no. 4, pp. 364-370,
1975

[2] S.I. Feldmann, “Make — A Program for Maintaining Computer Programs”, Software Practice and Experience
9, 255-265, 1979

[3] W.F. Tichy, “RCS A System for Version Control”, Software — Practice and Experience, 1991

[4] B. Berliner, “CVS IlI: Parallelizing Software Development”’, Proceedings of the USENIX Winter Technical
Conference, 1990

[5] B. A. White, “Software Configuration Management Strategies and Rational ClearCase”, Addison-Wesley,
ISBN: 0-201-60478-7, 2000

[6] A. P. Dahlqgvist, U. Asklund, I. Crnkovic u. a. “Product Data Management and Software Configuration
Management — Similarities and Differences”, Association of Swedish Engineering Industries, 2001

[71 K. Frihauf, A. Zeller, “Software Configuration Management: State of the Art, State of the Practice”, 9th
International Symposium System Configuration Management, Toulouse, France, 1999

[8] S. A. MacKay, “The State of the Art in Concurrent, Distributed Configuration Management’, Software
Configuration Management: Selected Papers SCM-4 and SCM-5, Seattle, WA, April, J. Estublier ed., LNCS
(1005), Springer-Verlag, pp. 180-194, 1995

[9] L. Bendix, A. Dattalo, F. Vitali, “Software Configuration Management in Software and Hypermedia
Engineering: A Survey”, "Handbook of Software Engineering and Knowledge Engineering", page 523 — 548,
2001

[10] J. Estublier, “Software Configuration Management: A Roadmap”, ICSE — Future of SE Track, 2000
[11] http://www.omg.org

[12] http://www.osgi.org

[13] B. Meyer, “Object-Oriented Software Construction”, Second Edition, Prentice Hall, 1997

[14] N. Tran, C. Mingins, D. Abramson, “Managed Assertions for Component Contracts”, IDPT June 2003

[15] A. Beugnard, J Jézéquel, N. Plouzeau, D. Watkins, “Making Component Contracts Aware”, IEEE Computer,
July 1999

[16] A. Hoek, D. Heimbigner, A. L. Wolf, “Versioned Software Architecture”, ISAW3, pages 73 — 76, 1998

[17] X. Chen: “Extending RMI to support dynamic reconfiguration of distributed systems”, Proceedings of the 22™
International Conference on Distributed Computing Systems, ICDCS 2002, Vienna, Austria, 2002

[18] J. Kramer, J. Magee: “The evolving philosophers problem: Dynamic change management”, IEEE Transactions
on Software Engineering, vol. 16, no. 11, pp. 1293-1306, 1990

[19] C. Heinisch, M. Simons, “Loading flashware from external interfaces such as CD-ROM or W-LAN and
programming ECUs by an on-board SW-component”’, SAE World Conference, March 2004

llllsummary <@llliprevious nextllip

2" European Congress ERTS -12 - 21 - 22 - 23 January 2004

