Denis Claraz 
email: denis.claraz@siemens.com
  
Dr Klaus Eppinger 
email: klaus.eppinger@siemens.com
  
Lutz Berentroth 
email: lutz.berentroth@siemens.com
  
Group Leader -Sv 
  
P Gs 
  
T P3 
  
  
  
  
  
  
Session 6A: Architectures Title : Reuse Strategy at Siemens VDO Automotive : The EMS 2 Powertrain Platform Architecture

Keywords: Aggregate implementation group Architecture, Platform, Reuse, Process, Generic, Configuration, Flexibility

A modern engine management system has to cope with a big amount of conflicting requirements, and should in parallel be sufficiently flexible to address the increasing wish of car manufacturers to differentiate from competitors.

In order to fulfill these requirements, new solutions have to be introduced, which are open enough to make allowance for future technology trends. A promising approach is the introduction of a modular architecture as a necessary means for the definition of a scalable and adaptable platform. Siemens VDO Automotive addressed this challenge with the introduction of the EMS 2 platform, and showed that standardization need not to be in contradiction with flexibility. Right from the early definition phase, specific focus was given to the car manufacturers' needs, i.e. to allow the integration of competitive customer owned functionalities and technologies. The development of concepts for modular architectures has been carried out in different domains and is largely documented. A constant challenge is the definition of efficient processes and the necessary adaptation of the 2 nd European Congress ERTS -2 -21 -22 -23 January 2004 __ __ organization, in order to take advantage of the dedicated platform. This applies to the introduction of a new platform within an existing organization, as well as for its maintenance. With the EMS 2 platform architecture Siemens VDO Automotive is prepared to support different types of business models, while taking full advantage of a platform's features.

Introduction

In the last ten years, the complexity of the Engine Management Systems (EMS) has drastically increased, motivated by stronger emissions regulations, lower fuel consumption, and improved drivability. In parallel to this technical evolution, prices are decreasing and time-to-market is getting shorter. As a result, in the last 15 years, the functionality of EMS has increased by an order of magnitude, while in the same time the ECU price has roughly been divided by a factor 3, and the time-tomarket by a factor 2

To answer to the market development, business model, organization and processes are evolving:

-Competitive developments and shared developments are made possible: EMS systems are controlled integrations of Siemens VDO and OEM functions, of object or C code developed by OEMs, tool-vendors, partners, or even competitors.

-To ensure a good reactivity and proximity to the customers, an international organization is needed, with development centers located in different countries, and continents.

-To allow investigations on new components or new strategies, parallel branches of the same project are managed, with independent releases and resynchronization points.

In addition to the process and business, the technical complexity of an EMS system is also increasing, due to:

-High number of controlled system components (pin-out with up to 150 Inputs/Outputs).

-High reaction speed needed by the control laws (more than 90 % of SW done at 10 ms or faster) -High coupling between the functions (i.e. phasing between injectors opening and spark advance) -High number of functions (700) integrated in one single ECU. To handle these tendencies, and to be prepared for the future, Siemens VDO has developed a strategy in 3 axes focusing on function reuse. The goal is to capitalize experience, avoid multiple developments, improve maturity of solutions, and shorten response time. Synchronized with the introduction of a new technology (32 bits), a new architecture has been developed, with new principles, in particular to ease the data flow control. In parallel to this architecture, a process and an organization have been set-up and implemented, to support this approach.

The EMS Architecture

Exchangeability and reuse of assets as e.g. SW or HW components are two of the key features expected from a platform approach. Basic mechanisms to support these features are encapsulation and therefore abstraction.

Two different approaches are applied within the EMS 2 platform, both of them adapted to local needs in order to maximize exchangeability and reuse. 

Layer architecture

Function partitioning

A "horizontal" abstraction or function partitioning, enables the encapsulation of control functionalities. In order to get independent functions and to master the data flow between modules, a standard partitioning is set-up, using the abstraction and encapsulation principles. Following a top-down system analysis, 19 groups have been defined

(fig. 4), which cover the complete functionality of the system. As these groups are too big to be reusable, they have been split into sub-sets, which are called "Aggregates".

An aggregate making abstraction of a sensor typically delivers a physical and validated data. For an aggregate including actuator control, the structure looks similar, but inverse. In total, 65 aggregates are defined, with a high internal coherence, and low inter-coupling. A standardization of the architecture at aggregate level leads to a standardization of the interfaces, at the same level. These aggregates are the basis for reuse, and are themselves split into modules (fig. 5). The modules are then the smallest units managed in configuration.

A first characteristic of an aggregate is that it contains a complete functionality. For instance, an aggregate managing a sensor contains the acquisition, diagnosis, limp home, and the computation of derived values (i.e.

distance calculation out of vehicle speed acquisition), as well as the requests to the other strategies (i.e. spark advance correction, due to knock detection). This grouping is of particular interest as the different facets of the functionality are supposed to evolve consistently, with new requirements. In addition, this is a mean to group all the technical expertise on the functionality.

Each time a function is modified, enriched or added, the architecture work consists in defining to which aggregate and module it belongs, and to define the best implementation, with less impact. 

Interface standardization

Another characteristic of an aggregate is its interface description. Based on the encapsulation concept, a standard interface is defined, where all inputs and outputs are listed. Consumers and providers of the information are specified, as well as the required data types. In addition to the data flow, the control flow is also described in the interface: dynamic constraints between aggregates, connections to the operating system. Due to interactions between system components, aggregates cannot be executed sequentially and independently.

As aggregates have to be configurable to allow project adaptations, it may happen that the configuration of one aggregate depends on the configuration of another one. Consequently, there is a "configuration flow" between aggregates, in addition to the data and control flows, formalized in a third part of the interface (fig. 6). For instance, the VVT configuration impacts both the VVT aggregate, and the Camshaft/Crankshaft aggregate.

Here, the architecture work will consist in defining which information of the aggregate have to be exported, and try to limit this interface, in order to limit the coupling. Finally, the combination of all aggregate interfaces for the three facets, together with the partitioning, is fixing the overall EMS architecture.

Configuration for open systems

In order to increase reuse, we need at the same time standard and flexible solutions. Therefore, configuration becomes a key issue. So, each aggregate is split into a "generic fixed core", a "generic configurable" part, and a project-specific part (fig. 7). The two first parts are called "generic" because they are developed, maintained, and validated by a transverse team independent from the project, and they can be adapted to the project configuration, using standard mechanisms. The "generic fixed core" is strictly the same for all projects reusing the aggregate, and is totally independent of the system configuration. The "generic configurable" part can be adapted to the project, using standard mechanisms, but without modification. The third part can be modified by the project itself, but is still subject to restrictions. In particular the interfacing with the rest of the application stays under strict control.

Aggregate Internal Implementation

Data Flow

Static architecture

Control Flow

Dynamic architecture

Configuration Flow

Configurational architecture For instance, the camshaft/crankshaft aggregate is built out of 16 modules. 9 of them are strictly identical for all projects, 3 are depending on the type of sensors, and 4 have to be filled with project specific information. In parallel to the architecture principles, an aggregate dedicated process has been designed. Objective is to manage aggregates like internal products, or projects, with a defined quality level. This quality level will be linked to the level of validation, of documentation, of progress… In the following paragraphs, we will describe some principles of the process. Topics like risk management, configuration management, validation process are not described here, but have been subject to special adaptation for the aggregates.

Generic Fixed Core

Generic

Reuse granularity vs.

Development granularity

The first idea of the aggregate concept is that the reuse granularity is different than the development granularity. Reuse is based on consistent packages of pre-integrated and prevalidated modules. All the modules of an aggregate are maintained accordingly.

The project sees a release of the complete package, but does not see the intermediate releases of the modules, which were necessary during the development. The projects are not impacted by the changes of internal structure. The owner of the modules defines the valid combinations, not the user. The aggregates are split into the granularity best suited to their development and maintenance (i.e. splitting a module in two, in order to improve its testability, or portability is transparent for the project). This principle is applied for all involved disciplines: a complete specification is built out of specification aggregates; a complete SW is built out of SW aggregates, both of them formalized as "Aggregate Reference Lists". The architectural work, briefly described in the previous paragraph, takes here its real signification, as the split into aggregates and modules has to be suited to this concept.

Defined process for Aggregate development

The aggregate is developed following a dedicated process, similar to a project process. A kick-off meeting is To reach this objective of 2 releases per year, the projects requirements have to be managed in a very pro-active way through regular projects meetings.

Dynamic reuse vs. Static reuse

To ensure that all projects will benefit from the latest improvements of the aggregate, a dynamic reuse is applied, instead of a copy-andpaste reuse. The projects follow the aggregate evolutions with the help of a dynamic link, but they do not copy-and-paste the solution in their own work space. This follow-up is of course not automatic, as the project may have external constraints (hot trip, calibration already done, SOP, …) incompatible with the update of an already running functionality. On this last point, a precise study is done, when introducing a new aggregate, or when upgrading an already existing aggregate release, to avoid unexpected impacts. This dynamic follow-up of the aggregate by the project needs a certain effort and discipline, whose benefit may not be seen easily. Nevertheless, the maturity of the aggregate increases with the number of projects reusing it: due to the different projects system configurations, the aggregate is validated on a wide basis.

A multi-facet package

As last aspect of the concept, the aggregate is made of different facets, corresponding to all the involved disciplines. This eases the reuse for the project : once a specification package has been identified, one SW modules package is also identified, one set of default calibration data, … are defined. Thus, reusing an aggregate does not mean only reusing a specification or a code, but also reusing calibration report, HW description and so on.

In addition, this eases the access to the information, and helps the different disciplines to share a common view on 

Organisation

In parallel to architecture and process adaptations, a consistent organization has been implemented, to support the reuse concept.

A long term investment

To develop and maintain the aggregates, generic teams ("Domains") are installed, apart from daily business.

Having a good knowledge and overview about the requirements of different projects, their challenge is to design reusable (and in practice reused) aggregates, keeping in mind other constraints like efficiency, quality standards, and functional correctness. A migration of the "old" module structure into the new aggregate structure has been done, with sometimes a complete re-design and re-coding of the solution. Of course, this migration had to be done in parallel to the running projects, and with as few perturbations as possible. Then, resources and priority management became critical issues (opposition between short-term-project and long-term-generic views), which needed involvement of the management. So, the aggregates have been introduced only step by step in the projects.

Consequently, the management has to communicate and explain the strategy to the complete organization, from management level to working level. This communication is of particular importance at the beginning of the migration, where the additional workload of the approach is more seen than its benefits. Such a task is complex due to the size of the organization and its multi-cultural dimension (country, plus discipline). But it is a key task, as a reuse strategy cannot address a single project, neither a single location, nor a single discipline, but the organization in its entirety.

A cultural change

For Domains, the architectural work becomes as important as the functionality itself, to reach the reuse objectives. Also, the application of a defined process, with formalized entries and outputs, with formalized communication with their customers becomes a key factor. Finally, the Domains become a kind of "function factory", with all quality, project management, and efficiency standards. In a next step, the gained experience will be used to optimize methods and tools necessary to handle major platform assets, and to review the concerned organisation in order to streamline the related processes. Therefore, the gained key learnings will also become a direct input to process optimizing activities like CMMI etc.

Further on, the experience will be used to extend the acquired know-how to other business fields, Domains and crafts. Here, an extensively discussed topic is the introduction of an automotive architecture standard within the Autosar consortium. The key learnings of EMS 2 will be presented for integration in this development. One topic from an EMS point of view is the seperation between engine specific functions, and those functions, in the past typically implemented on an EMS, but interesting for a vehicle architect. This separation is an important lever to increase reuse, e.g. between Diesel and Gasoline EMS.

Finally, introducing a new platform deals with pure change management. As it touches the way of working of everybody, including the related processes, the needed know-how, the interfaces within the organisation, the tools to be used and so on, the human factor should never be underestimated. From the communication of the strategy by the top management down to the consequent and anticipating application communicated by the concerned team leaders, motivation remains a key factor for success also for this type of development.

  Fig. 0 : Evolution trends of EMS

Fig

  Fig. 0 : The EMS layered architecture

Fig

  Fig. 0 : The EMS 2 Partitioning

Fig

  Fig. 0 : Aggregate = a complete interface

  Fig. 0 : Configuration of an aggregate

  Fig. 0 : Reuse granularity vs. Development granularity

Fig

  Fig. 0 : A dedicated process

Fig

  Fig. 0 : A multi-facet package

Hardware Abstraction Functional Mapping Representation of Real world Component Abstraction Control Strategy HW Componen Hardware ECU Connector Real world Librarie s OSEK OS

  

							A "vertical" structure leading
		EMS2 Standard Interface	to a multi-layered architecture is
	i. Process Process Combust Combust Engine -Gasoline Torque Exhaust Gas Gas Air Exhaust Engine -Gasoline or Vehi Vehicle Motion Drive Drive Electric Electric Vehicle Powertrain Vehicle Motion Powert Powertrain Management Powertrain Management	Chassis Chassis	Manager Manager System System Transverse Functions	used as basis for systematical abstraction of engine/car, sensors/actuators, successively
	States (Gasoline) Engine Torque Ignition Air	Position & Speed Fuel Engine	n Transmissio Transmission	interior interior Body & Body &	ECU Function ECU Functions Basic Basic	ECU connector (pin-out), ECU-
	Engine Engine Position & Speed States	Ignition Fuel (Gasolin e)	Engine Engine Cooling & & Cooling		Electric Electric Power Power	Commun Communi i-cation -cation	HW, and finally microcontroller. It
							allows e.g. to exchange the used
							microcontroller with a limited
							impact on the upper SW layers, or
							to exchange a sensor without
	impacting the control strategy. This HW dependent SW within the EMS 2 system is called
	"Infrastructure". The other part of the SW is HW independent, includes e.g. control strategies, and is partitioned in
	so called "aggregates".					

Libraries Infrastructure (HW dependent) IO Drivers

  

-10 -21 -22 -23 January 2004

__ __

The projects have the objective to reuse solutions on-the-shelf (aggregates), rather than develop them specifically.

Step by step, the function expertise is capitalized in the Domains, and the projects become specialists of integration and customer relations. They give their inputs to the aggregate developments in a pro-active way. A team-work is initiated between these teams, and release planning and contents are negotiated together.

In summary, the generic aggregates should be considered as a common patrimony, for which any user is coresponsible, and participates to the maturity, as well as the owner himself.

Platform Group role

To support the reuse process, and to switch from an individual-initiative reuse to a managed and controlled reuse, a

Platform Group is created. This group, center of architecture competence, helps the Domains to create and maintain reusable aggregates. It also helps the Projects to configure their system and select the right aggregates, thanks to its portfolio expertise,.

This group has also a major role for the planning and control of the dynamic reuse. It synchronizes the Domains deliveries with the projects milestones, plans and supports the introduction of new aggregates within a project. It also ensures the compatibility of the available aggregates together, knows about the current issues, and masters the current portfolio. The Platform Group finally is the owner of the architecture rules and concepts, and is involved in all process improvements actions. 

EMS 2 Implementation Status

The EMS2 reuse strategy at Siemens VDO is not only a concept, or an experimentation done on an advanced project, but a reality implemented step by step on the currently running industrial projects.

What is on the shelf…?

After a definition of the necessary concepts of process and architecture, the migration phase into the aggregate standard has started. The first pilot aggregate was developed, and introduced in June 2000 on a first project. In December '03, 40 aggregates have been migrated, covering standard functions. This represents 10 groups fully migrated, and 2 to be finished soon. This basis constitutes the EMS2 platform, used for any new 32 bits project.

… and what is really used ?

In parallel to the migration of aggregates, projects have started their integration. Of course, this integration has been done smoothly, not to endanger the customer deliveries. Also, and as shown in fig. 14, this integration has been limited by the level of integration of customer provided functionalities, or third party SW (object code).

From a turn-key project to a high-end specific project, the number of used aggregates can be very different.

Today, any new 32 bit Powertrain project started is build-up with an aggregate structure.

Of course, depending mainly on the system configuration, some parts of the project may be developed specifically, not reusing generic solutions. But for a turn-key project, a complete aggregate structure is used, leading to high reuse levels. In fig. 154, the part "generic conf" means the adaptable parts of the aggregate, knowing that these parts are also under architecture control.