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Abstract: In this paper, we firstly study the security enhancement of three steganographic methods
by using a proposed chaotic system. The first method, namely the Enhanced Edge Adaptive Image
Steganography Based on LSB Matching Revisited (EEALSBMR), is present in the spatial domain.
The two other methods, the Enhanced Discrete Cosine Transform (EDCT) and Enhanced Discrete
Wavelet transform (EDWT), are present in the frequency domain. The chaotic system is extremely
robust and consists of a strong chaotic generator and a 2-D Cat map. Its main role is to secure the
content of a message in case a message is detected. Secondly, three blind steganalysis methods,
based on multi-resolution wavelet decomposition, are used to detect whether an embedded message
is hidden in the tested image (stego image) or not (cover image). The steganalysis approach is
based on the hypothesis that message-embedding schemes leave statistical evidence or structure
in images that can be exploited for detection. The simulation results show that the Support Vector
Machine (SVM) classifier and the Fisher Linear Discriminant (FLD) cannot distinguish between
cover and stego images if the message size is smaller than 20% in the EEALSBMR steganographic
method and if the message size is smaller than 15% in the EDCT steganographic method. However,
SVM and FLD can distinguish between cover and stego images with reasonable accuracy in the
EDWT steganographic method, irrespective of the message size.

Keywords: steganography; chaotic system; steganalysis; wavelet; feature vector; SVM; FLD

1. Introduction

Steganography is an increasingly important security domain; it aims to hide a message
(secret information) in digital cover media without causing perceptual degradation (in this study, we
use images as cover media). It should be noted that many steganographic methods have been proposed
in the spatial and frequency domains. In the spatial domain, pixels are directly used to hide secret
messages; these techniques are normally easy to implement and have a high capacity. However, they are
not generally robust against statistical attacks [1,2]. In the transform domain, coefficients of frequency
transforms, such as DCT (Discrete Cosine Transform), FFT (Fast Fourier Transform), and DWT (Discrete
Wavelet Transform), are used to hide secret data. Generally, these techniques are complex, but they are
more robust against steganalysis (to noise and to image processing).
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The main steganographic methods in the spatial domain [3–17] are LSB-based (Low Significant Bit).
Recently, entropy has also been extensively used to support data-hiding algorithms [18–20]. The LSB
methods entail replacing the least significant bit of pixels with a bit of the secret data. Among these
methods, the EALSBMR method [3] is an edge adaptive scheme with respect to the message size and
can embed data according to the difference between two consecutive pixels in the cover image. To the
best of our knowledge, we conclude that this method is the best (good PNSR, high embedding capacity,
and especially adaptive), but it suffers from low security in terms of message detection. For this reason,
we have enhanced its security.

Frequency domain steganography, as a watermarking domain [21–29], is widely based on the
DCT and DWT transforms. The DCT usually transforms an image representation into a frequency
representation by grouping pixels into 8 × 8 pixel blocks and transforming each block, using the
DCT transform, into 64 DCT coefficients. A message is then embedded into the DCT coefficients.
The Forward Discrete Wavelet Transform is, in general, suitable for identifying areas in the cover image
where a secret message can be effectively embedded due to excellent space-frequency localization
properties. In particular, these properties allow exploiting the masking effect of a human visual system
so that if a DWT coefficient is modified, it modifies only the region that corresponds to that coefficient.
The Haar wavelet is the simplest possible wavelet that can achieve the DWT.

However, the aforementioned steganographic methods are not secure in terms of message
detection. To protect the content of messages, chaos can be used. Indeed, chaotic sequences play an
important role in information hiding and in security domains, such as cryptography, steganography,
and watermarking, because of their properties such as sensitivity to initial conditions and parameters
of the system, ergodicity, uniformity, and pseudo-randomness. Steganography generally leaves traces
that can be detected in stego images. This can allow an adversary, using steganalysis techniques,
to divulge a hiding secret message. There are two types of opponents: passive and active. A passive
adversary only examines communication to detect whether communication contains hidden messages.
In this case, the content of the communication is not modified by the rival. An active adversary
can intentionally cause disruption, distortion, or destruction of communication, even in the absence
of evidence of secret communication. The main steganographic methods have been designed for
cases of passive adversary. In general, there are two kinds of steganalysis: specific and universal.
Specific steganalysis is designed to attack a specific steganography algorithm. This type of specific
steganalysis can generally produce more accurate results, but it fails to produce satisfactory results if the
inserted secret messages are in the form of a modified algorithm. Universal steganalysis, on the other
hand, can be regarded as a universal technique to detect various types of steganography. Moreover, it
can be used to detect new steganographic techniques where specific steganalysis does not yet exist.
In other words, universal steganalysis is an irreplaceable tool for detection if the integration algorithm
is unknown or secret.

In this paper, we first integrate an efficient chaotic system into the three steganographic methods
mentioned above to make them more secure. The chaotic system quasi-chaotically chooses pixel
positions in the cover image where the bits of the secret message will be embedded. Thus, the inserted
bits of the secret message becomes secure against message bits recovery attacks because their position
is unknown.

Second, we study and apply three universal steganalysis methods to the aforementioned
chaos-based steganographic methods. The first steganalysis method, developed by Farid [30], uses
higher-order statistics of high-frequency wavelet sub-bands and their prediction errors to form the
feature vectors. In the second steganalysis method, as formulated by Shi et al. [31], the statistical
moments of the characteristic functions of the prediction-error image, the test image, and their
wavelet sub-bands are selected as the feature vectors. The third steganalysis method, introduced by
Wang et al. [32], uses the features that are extracted from both the empirical probability density function
(PDF) moments and the normalized absolute characteristic function (CF). For the three steganalysis
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algorithms, we applied FLD analysis and the SVM method with the RBF kernel as classifiers between
cover images and stego images.

The paper has been organized as follows: In Section 2, we describe the proposed chaotic system.
In Section 3, we present the three enhanced steganographic algorithms. In Section 4, we illustrate
the experimental results and analyze the enhanced algorithms. In Section 5, we develop, in detail,
the steganalysis techniques for the previous algorithms. In Section 6, we report the results of the
steganalysis, and in the last section, we conclude our work.

2. Description of the Proposed Chaotic System

This system is made of a perturbed chaotic generator and a 2-D cat map. The chaotic generator
supplies the dynamic keys Kp for the process of provides the position of the new random pixel
(see Figure 1). The chaotic system allows inserting a message both in a secretive and uniform
manner [33–40].

Figure 1. Proposed chaotic generator.

The generator of discrete chaotic sequences exhibits orbits with very large lengths. It is based
on two connected non-linear digital IIR filters (cells). The discrete PWLCM and SKEW TENT maps
(non-linear functions) are used. A linear feedback shift register (m-LFSR) is then used to disturb each
cell (Figure 2). The disturbing technique is associated with the cascading technique, which allows
controlling and increasing the length of the orbits that are produced. The minimum orbit length of the
generator output is calculated using Equation (1):

omin = lcm
{

∆1 ×
(

2k1 − 1
)

, ∆2 ×
(

2k2 − 1
)}

(1)

In the above equation, lcm is the least common multiple, k1 = 23 and k2 = 21 are the degrees of the
LFSR’s primitive polynomials, and ∆1 and ∆2 are the lengths s1 and s2 of outputs cells, respectively,
without disturbance. The equations of the chaotic generators are formulated as follows:

si (n) = NLFi {ui (n− 1) , pi} , i = 1, 2

ui (n− 1) = mod
{

si (n− 1)× ci,1 + si (n− 2)× ci,2, 2N
}

, i = 1, 2

s (n) = s1 (n) + s2 (n)

(2)

The two previously mentioned functions, PWLCM map and Skew map, are defined according to
the following relations:

s1 (n) = NLF1 {u1 (n− 1) , p1}

=


⌊

2N × u1(n−1)
p1

⌋
i f 0 ≤ u1 (n− 1) < p1⌊

2N × 2N−u1(n−1)
2N−p1

⌋
i f p1 ≤ u1 (n− 1) < 2N−1

NLF1
[
2N − u1 (n− 1)

]
otherwise

(3)

s2 (n) = NLF2 [u2 (n− 2) , p2]

=


⌊

2N × u2(n−1)
p1

⌋
i f 0 ≤ u2 (n− 1) < p2⌊

2N × 2N−u2(n−1)
2N−p2

⌋
+ 1 i f p2 ≤ u2 (n− 1) < 2N

(4)
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The control parameter p1 is used for the PWLCM map and ranges from 1 to 2N−1 − 1, and p2

is the control parameter that is used for the Skew map and ranges from 1 to 2N − 1. N = 32 is the
word length used for simulations. The size of the secret key K, formed by all initial conditions and
parameters of the chaotic generator, is (6 × 32 + 5 × 32 + 31 + 23 +21) = 427 bits. It is large enough to
resist a brute-force attack.

Figure 2. Chaotic generator.

Description of the Cat Map Used

The permutation process is based on the modified Cat map and is calculated in a very efficient
manner using the equation below [37]:[

Mcn

Mln

]
= mod

{( 1 u
v 1+uv

)
×
( Ml

Mc

)
+

[
rl + rc

rc

]
,

[
M
M

]}
+

[
1
1

]
(5)
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In the above equation, (Ml , Mc) and (Mln, Mcn) are the original and permuted square matrices of
size (M, M), from which we calculate the Ind matrix as follows:

Ml =


1 1 . . 1
2 2 . . 2
. . .
. . .

M M . . M

 ; Mc =


1 2 . . M
1 2 . . M
. . .
. . .
1 2 . . M


Ind = (Mln − 1) + (Mcn − 1)×M + 1

The dynamic key Kp is structured as follows:

Kp =
[
kp1 , kp2 , ..., kpr

]
kpi = {ui, vi, rli, rci} ; i = 1, 2, ..., r

In the above equations, 0 ≤ ui, vi, rli, rci ≤ M− 1 are the parameters of the Cat map and r is the
number of rounds.

3. Enhanced Steganographic Algorithms

In this section, we describe three enhanced steganographic algorithms by using an efficient
chaotic system.

3.1. Enhanced EALSBMR (EEALSBMR)

Below, we present the insertion procedure and the extraction procedure of the proposed
enhancement of the EALSBMR method (EEALSBMR) [41].

3.1.1. Insertion Procedure

The flow diagram of the embedding scheme can be found in Figure 3.

Figure 3. EEALSBMR insertion procedure.

The detailed embedding steps for this algorithm have been explained as follows:
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Step 1: Capacity estimation

• To estimate the insertion capacity, we arrange the cover image into a 1D vector V, and we
divide its content into non-overlapping embedding units (blocks) consisting of two
consecutive pixels (pi, pi+1). Following this, we calculate the difference between the
pixels of each block, and we increase by one the content of the vector-difference VD
of 31 elements t ∈ {1, 2, 3, ..., 31}, in which each element contains |EU (t)| number of
blocks where EU (t) is a set of pixel pairs whose absolute differences are greater than or
equal to t, as shown below:

EU (t) = {(pi, pi+1) || |pi − pi+1| ≥ t, ∀ (pi, pi+1) ∈ V} (6)

• For a given secret message M of size |M| bits, the threshold T used in the embedding
process is determined by the following expression and pseudo-code (Algorithm 1):

T = argmaxt {2 ∗ |EU (t)| ≥ |M|} (7)

Algorithm 1 Pseudo-code determining the value of the threshold T

1: procedure
2: number_ pixels = 0;
3: for t = 31:-1:1 do
4: number_ pixels = number_ pixels + VD(t);
5: if (2*number_ pixels > = |M|) then
6: T = t;
7: break;
8: end if;
9: end for;

10: end procedure

Step 2: Embedding process

• The embedding process is achieved as follows: we divide the cover image into two
sub-images; one includes the odd columns, and the other includes the even columns.

• Following this, the chaotic system chooses a pixel position (Ind) from the odd sub-image;
the second pixel position of the corresponding block must have the same Ind in the
even image. If a pair of pixel units (pi, pi+1) satisfies Equation (8), then a 2 bit-message
can be hidden (one bit by pixel); otherwise, the chaotic system chooses another Ind.

(|pi − pi+1| ≥ T, ∀ (pi, pi+1) ∈ V) (8)

• For each unit (pi, pi+1), we perform data-hiding based on the following four cases [42]:

Case 1: if LSB(pi) = mi and f (pi, pi+1) = mi+1 → (p
′
i, p

′
i+1) = (pi, pi+1)

Case 2: if LSB(pi) = mi and f (pi, pi+1) 6= mi+1 → (p
′
i, p

′
i+1) = (pi, pi+1 + r)

Case 3: if LSB(pi) 6= mi and f (pi − 1, pi+1) = mi+1 → (p
′
i, p

′
i+1) = (pi − 1, pi+1)

Case 4: if LSB(pi) 6= mi and f (pi − 1, pi+1) 6= mi+1 → (p
′
i, p

′
i+1) = (pi + 1, pi+1)
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In the above equations, mi and mi+1 are the ith and (i + 1)th secret bits of the message
to be embedded; r is a random value belonging to {−1, 1}, and (p

′
i, p

′
i+1) denotes the

pixel pair after data-hiding. The function f is defined as follows:

f (a, b) = LSB(
⌊ a

2

⌋
+ b) (9)

• Readjustment if necessary: After hiding, (p
′
i, p

′
i+1) may be out of range [0, 255] or the

new difference value
∣∣∣p′i − p

′
i+1

∣∣∣ may be less than the threshold T. In these cases, we

need to readjust p
′
i and p

′
i+1, and the new readjusted values, p”

i and p”
i+1, are calculated

as follows [3]:

( p”
i , p”

i+1) = argmin(e1,e2)

{∣∣∣e1 − p
′
i

∣∣∣+ ∣∣∣e2 − p
′
i+1

∣∣∣} (10)

with : {
e1 = p

′
i + 4k1

e2 = p
′
i+1 + 2k2

k1, k2 ∈ Z (11)

k1, k2 are two arbitrary numbers from Z; when:

0 ≤ e1, e1 ≤ 255 and |e1 − e2| ≥ T (12)

then :

p
′′
i = e1

p
′′
i+1 = e2

(13)

The sequence follows as such for each new block position.
• Finally, we embed the parameter T of the stego image into the first five pixels or the last

five pixels, for example.

3.1.2. Extraction Procedure

• Extract the parameter T from the stego image.
• Divide the stego image into two sub-images; one includes the odd columns, and the other includes

the even columns.
• Generate a pseudo-chaotic position (using the same secret key K), as done in the insertion

procedure, to obtain the same order of pixel unit position as the odd sub-image. The second pixel
block has the same Ind in the even image.

• Verify if
∣∣ps

i − ps
i+1

∣∣ ≥ T and then extract the two secret bits of M (mi, mi+1) as follows:

mi = LSB(ps
i ); mi+1 = f (ps

i , ps
i+1) (14)

with : ps
i = p

′
i or p”

i
Otherwise, the chaotic system chooses another pseudo-chaotic position. The sequence follows as
such for each unit position until all messages have been extracted.

• Example of insertion:
The cover image is this image of “peppers” as in Figure 4:
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Figure 4. “Peppers” as cover image.

The embedded message appears as follows in 40 × 40 pixels as shown in Figure 5:

Figure 5. “Bike” is as embedded message.

The corresponding sequence of the bits message has been given as follows:

M = 10001000100011001000110001100111001001111010010110

11101011000110101011101000000110100010110010...

The length of the binary message is 13,120 bits.

Capacity estimation produces the threshold T = 12

Suppose that the pseudo-chaotic positions of a block to embed the two bits message m1 = 1 and
m2 = 0 are (354, 375) and (354, 376) that correspond to the 141 and 129 gray values (see Figure 6).

Figure 6. Pseudo-chaotic block selection and its corresponding gray value.
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Hiding the message bits:
LSB(141) = 1 = m1 = 1

f (p1, p2) = LSB(
⌊ p1

2

⌋
+ p2) = LSB(70 + 129) = 1 6= m2

We are in Case 2:
LSB(pi) = mi; f (pi, pi+1) 6= mi+1

Therefore, the new pixel values are as follows:

(p
′
1, p

′
2) = (p1, p2 + r) = (141, 130) with r = 1

The difference between the new pixel values is:

d
′
=
∣∣∣p′1 − p

′
2

∣∣∣ = |141− 130| = 11 < T

Then we need to adjust the new pixel values:
We test the values −50 < k1 < 50 and −50 < k2 < 50 until we obtain the smallest difference
between the initial values p

′
1 and p

′
2 and the corresponding obtained values e1 and e2 by using

Equations (12) and (13). In our example, we find k1 = 0 and k2 = −1 and then: p”
1 = 141,

p”
2 = 128.

• Extraction of the bits message in the previous insertion example:
The extraction is performed using the following equation:

m1 = LSB(p”
1) = LSB(141) = 1

m2 = f (p”
1, p”

2) = LSB(

⌊
p”

1
2

⌋
+ p”

2)) = LSB(70 + 128) = LSB(198) = 0

3.2. Enhanced DCT Steganographic Method (EDCT)

The DCT transforms a signal or image from the spatial domain into the frequency domain [43,44].
A DCT expresses a sequence of finitely many data points in terms of a sum of cosine functions,
oscillating at different frequencies. The 2D DCT is calculated as follows:

DCTi,j = αiαj

M−1

∑
m=0

N−1

∑
n=0

Cmn cos
π(2m + 1)i

2M
cos

π(2n + 1)j
2N

(15)

where:

αi =


1√
M

i = 0√
2
M 0 ≤ i ≤ M− 1

αj =


1√
N

i = 0√
2
N 0 ≤ i ≤ N − 1

The block diagram of the proposed enhanced steganographic-based DCT transform has been
shown in Figure 7.
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Figure 7. Diagram of the enhanced steganographic-based DCT transform.

3.2.1. Insertion Procedure

The embedding process consists of the following steps:

• Read the cover image and the secret message.
• Convert the secret message into a 1-D binary vector.
• Divide the cover image into 8 × 8 blocks. Then apply the 2D DCT transformation to each block

(from left to right, top to bottom).
• Use the same chaotic system to generate a pseudo-chaotic Ind.
• Replace the LSB of each located DCT coefficient with the one bit of the secret message to hide.
• Apply the 2D Inverse DCT transform to produce the stego image.

3.2.2. Extraction Procedure

The extraction procedure consists of the following steps:

• Read the stego image.
• Divide the stego image into 8 × 8 blocks and then apply the 2D DCT to each block.
• Use the same chaotic system to generate pseudo-chaotic Ind.
• Extract the LSB of each pseudo-located coefficient.
• Construct the secret image.

3.3. Enhanced DWT Steganographic Method (EDWT)

The embedded secret image in the lower frequency sub-band (A) is generally more robust than
the other sub-bands, but it significantly decreases the visual quality of the image, as normally, most
of the image energy is stored in this sub-band. In contrast, the edges and textures of the image and
the human eye are not generally sensitive to changes in the high-frequency sub-band (D); this allows
secret information to be embedded without being perceived by the human eye. However, the sub-band
(D) is not robust against active attacks (filtering, compression, etc.). The compromise adopted by many
DWT-based algorithms to achieve accepted performance of imperceptibility and robustness enables
embedding the secret image in the middle-frequency sub-bands (H) or (V). In the block diagram of
the proposed steganographic EDWT method shown in Figure 8, we embed the secret image in the
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sub-band (H) of the cover image (the size of the secret message must, at most, be equal to the size of
the sub-band (H) of the cover image).

Figure 8. Diagram of the EDWT algorithm.

3.3.1. Insertion Procedure

The embedding process consists of the following steps:

• Read the cover image and the secret image.
• Transform the cover image into one level of decomposition using Haar Wavelet.
• Permute the secret image in a pseudo-chaotic manner.
• Fuse the DWT coefficients (H) of the cover image and the permuted secret image PSI as

follows [45]:
X
′
= αX + β× PSI

α + β = 1; α� β
(16)

In the above equations, X
′

is the modified DWT coefficient (H); X is the original DWT coefficient
(H). α and β are the embedding strength factors; they are chosen such that the resulting stego
image has a large PSNR. In our experiments, we tested some values of β, and the best value was
found to be approximately 0.01.

• Apply Inverse Discrete Wavelet Transform (IDWT) to produce the stego image in the
spatial domain.

3.3.2. Extraction Procedure

The extraction procedure involves the following steps:

• Read the stego image.
• Transform the stego image into one level of decomposition using Haar Wavelet.
• Apply inverse fusion transform to extract the permuted secret image as follows:

PSI = (X
′ − αX)/β (17)

The extraction procedure is not blind, as we need the cover image to extract the permuted
secret message.

• Apply the inverse permutation procedure using the same chaotic system to obtain the secret image.
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4. Experimental Results and Analysis

In the experiments, we first create the stego images by using the implemented steganographic
methods that were applied on the standard gray level cover images “Lena”, “Peppers”, “Baboon” in
512 × 512 pixels and using “Boat” as a secret message with different sizes (embedding rates, ranging
from 5% to 40%). The six criteria used to evaluate the qualities of the stego images have been listed
as follows: Peak Signal-to-Noise Ratio (PSNR) [46], Image Fidelity (IF), structural similarity (SSIM),
the entropy (E), the redundancy (R), and the image redundancy (IR). They can be represented by the
following equations:

PSNR = 10× log10(
Max p2

c (i, j)
1

M×N (∑M−1
i=0 ∑N−1

j=0 [pc(i, j)− ps(i, j)]2)
) (18)

IF = 1−
∑M−1

i=0 ∑N−1
j=0 [pc(i, j)]2)

(∑M−1
i=0 ∑N−1

j=0 [pc(i, j)− ps(i, j)]2)
(19)

SSIM =
(2µcµs − 1)(2covcs + c2)

(µ2
c + µ2

s + c1)(σ2
c + σ2

s + c2)
(20)

In the above equations, pc(i, j) and ps(i, j) are the pixel value of the ith row and jth column of the
cover and stego image; M and N are the width and height of the considered cover image.

µc, µs are the average of the cover and stego images; σ2
c , σ2

s are the variance of the cover and stego
images; µcs is the co-variance of the cover-stego; c1 = (k1L)2, c2 = (k2L)2 are two variables that are
used to stabilize the division with a weak denominator; L is the dynamic range of the pixel values,
and k1, k2 are two much smaller constants compared to 1. We considered k1 = k2 = 0.05.

The higher the PSNR, IF, and SSIM, the better the quality of the stego image. PSNR values
falling below 40 dB indicate a fairly low quality. Therefore, a high-quality stego should strive to be
above 40 dB.

Additionally, we used three other parameters to estimate the qualities of the stego images.
These parameters have been listed as follows:

- The Entropy E, given by the following relation:

E = −
2L−1

∑
0

p(Pi)log2(p(Pi)) (21)

L is already defined. p(Pi) is the probability of the pixel value Pi.
- The Redundancy R is usually represented by the following formula:

R =
Emax − E

E
(22)

Here, Emax = 8. However, this relationship is problematic because the value of the minimal
entropy is not known. For that, Tasnime [47] proposed using the following relationship, which
seems to be more precise:

IR =
∑L

i=1
∣∣Ri − Ropt

∣∣
Ropt(2L − 1) + (S− Ropt)

(23)

Called Image Redundancy (IR) with:

• S being the size of the image under test;
• Ri being the number of occurrences of each pixel value;
• Ropt being the optimal number of occurrences that each pixel value should have to get a

non-redundant image.
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In the following section, we present and compare the performance of the three implemented
steganographic methods.

4.1. Enhanced EALSBMR

The results obtained from the parameters PSNR, IF, and SSIM for the algorithm have been
presented in Table 1; their values indicate the high quality of the stego images, even with a high
embedding rate of 40%. We observe that the PSNR, IF, and SSIM values decrease, as expected, when
the size of the secret message increases.

Table 1. PSNR, IF, and SSIM values for the EEALSBMR method.

Embedding Rate Cover Image PSNR IF SSIM

Baboon 68.3810 0.9999 0.9999
Lena 68.1847 0.9999 0.99995%

Peppers 67.7160 0.9999 0.9999

Baboon 65.5986 0.9999 0.9999
Lena 65.2821 0.9999 0.999910%

Peppers 64.7763 0.9999 0.9999

Baboon 62.3551 0.9999 0.9999
Lena 62.3559 0.9999 0.999620%

Peppers 61.7066 0.9999 0.9995

Baboon 60.6902 0.9998 0.9999
Lena 60.5630 0.9998 0.999030%

Peppers 59.9585 0.9998 0.9992

Baboon 59.4245 0.9997 0.9999
Lena 59.2608 0.9997 0.998540%

Peppers 58.6662 0.9997 0.9988

In Figure 9a–c, we show the “Baboon” cover image and the corresponding stego images for 5%
and 40% embedding rates, respectively. The visual quality obtained from the “Baboon” stego images
is very high because visually, it is impossible to discriminate between the cover and stego images.

(a) (b) (c)

Figure 9. (a) Cover image, (b) Stego image with embedding rate of 5%, (c) Stego image with embedding
rate of 40%.

Just to fix the ideas, using the Lina image as the cover, and to obtain approximately identical
capacity, we globally compared the obtained PSNR of the EEALSBMP method with that obtained by
the following methods: [4–6,17]. We observed that only the method proposed by Borislav et al. [17]
produces a better PSNR than the EEALSBMP method. However, this method cannot be adapted.
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4.2. Enhanced DCT Steganographic Method

The results obtained from this method, as presented in Table 2, indicate the high quality of the
stego images, even with a high embedding rate. Additionally, even the visual quality obtained is very
high, as shown in Figure 10.

Table 2. PSNR, IF, and SSIM values for the EDCT method.

Embedding Rate Cover Image PSNR IF SSIM

Baboon 71.2372 0.9999 0.9999
Lena 71.1769 0.9999 0.99995%

Peppers 70.4866 0.9999 0.9999

Baboon 64.8846 0.9999 0.9999
Lena 64.9487 0.9999 0.999810%

Peppers 64.1426 0.9999 0.9998

Baboon 59.6895 0.9997 0.9999
Lena 59.6225 0.9997 0.999220%

Peppers 58.9535 0.9997 0.9993

Baboon 57.4212 0.9995 0.9998
Lena 57.3421 0.9995 0.998930%

Peppers 56.7406 0.9995 0.9988

Baboon 56.3421 0.9994 0.9997
Lena 56.2265 0.79994 0.998740%

Peppers 55.4876 0.9994 0.9985

(a) (b) (c)

Figure 10. (a) Cover image, (b) Stego image with embedding rate of 5%, (c) Stego image with
embedding rate of 40%.

4.3. Enhanced DWT Steganographic Method

Table 3 presents the results obtained from the EDWT algorithm, which indicate that the
steganographic algorithm exhibits good performance. Furthermore, no visual trace can be found in
the resulting stego images, as shown in Figure 11a–c.
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Table 3. PSNR, IF, and SSIM values for EDWT method.

Embedding Rate Cover Image PSNR IF SSIM

Baboon 59.1876 0.9999 0.9999
Lena 58.7673 0.9997 0.99995%

Peppers 58.1699 0.9997 0.9999

Baboon 56.2224 0.9997 0.9999
Lena 55.8085 0.9994 0.999910%

Peppers 55.2086 0.9993 0.9999

Baboon 53.3463 0.9988 0.9999
Lena 52.8205 0.9988 0.999920%

Peppers 52.2269 0.9987 0.9999

Baboon 52.0465 0.9984 0.9999
Lena 51.6471 0.9984 0.999930%

Peppers 51.0509 0.9983 0.9999

Baboon 51.3450 0.9982 0.9999
Lena 50.9536 0.9981 0.999940%

Peppers 50.3417 0.9980 0.9999

(a) (b) (c)

Figure 11. (a) Cover image, (b) Stego image with embedding rate of 5%, (c) Stego image with
embedding rate of 40%.

4.4. Performance Comparison of the Three Steganographic Methods

Tables 1–3 of PSNR, IF, and SSIM of the three methods show that the EEALSBMR and EDCT
methods, in comparison with the EDWT method, ensure better quality of the stego images at different
embedding rates. There is approximately a 10-dB difference in PSNRs at a 5% embedding rate and a 5
to 8 dB difference in PSNRs at a 40% embedding rate.

4.5. Performance Using Parameters E, R and IR

The results obtained from parameters E, R, and IR for the three algorithms on the stego images
with different embedding rates have been presented in Tables 4–6. As we can see, these values, given
in Table 7, are too close to the values obtained over the original images. This is consistent with the
previous results obtained from the parameters PSNR, IF, and SSIM regarding the high quality of the
stego images.
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Table 4. E, R, and IR for the EEALSBMR method.

Embedding Rate Cover Image E R IR

Baboon 7.3586 0.0802 0.3805
Lena 7.4455 0.0693 0.32615%

Peppers 7.5715 0.0536 0.2975

Baboon 7.3586 0.0802 0.3805
Lena 7.4456 0.0693 0.326110%

Peppers 7.5715 0.0535 0.2976

Baboon 7.3585 0.0802 0.3805
Lena 7.4457 0.0693 0.326120%

Peppers 7.5717 0.0535 0.2977

Baboon 7.3584 0.0802 0.3805
Lena 7.4457 0.0693 0.326130%

Peppers 7.5718 0.0535 0.2975

Baboon 7.3578 0.0803 0.3806
Lena 7.4454 0,0693 0.326040%

Peppers 7.5722 0.0535 0.2973

Table 5. E, R, and IR values for the EDCT method.

Embedding Rate Cover Image E R IR

Baboon 7.3585 0.0802 0.3804
Lena 7.4456 0.0693 0.32615%

Peppers 7.5716 0.0536 0.2976

Baboon 7.3585 0.0802 0.3805
Lena 7.4456 0.0693 0.326210%

Peppers 7.5717 0.0535 0.2976

Baboon 7.3585 0.0802 0.3804
Lena 7.4457 0.0693 0.326320%

Peppers 7.5725 0.0534 0.2973

Baboon 7.3584 0.0802 0.3802
Lena 7.4459 0.0693 0.326130%

Peppers 7.5730 0.0534 0.2969

Baboon 7.3578 0.0803 0.3806
Lena 7.4462 0,0692 0.325740%

Peppers 7.5734 0.0533 0.2973

Table 6. E, R, and IR values for EDWT method.

Embedding Rate Cover Image E R IR

Baboon 7.3581 0.0802 0.3805
Lena 7.4455 0.0693 0.32615%

Peppers 7.5715 0.0536 0.2975

Baboon 7.3580 0.0802 0.3806
Lena 7.4456 0.0693 0.326110%

Peppers 7.5717 0.0535 0.2974

Baboon 7.3580 0.0802 0.3806
Lena 7.4456 0.0693 0.326120%

Peppers 7.5718 0.0535 0.2975

Baboon 7.3580 0.0802 0.3805
Lena 7.4456 0.0693 0.326130%

Peppers 7.5718 0.0535 0.2974

Baboon 7.3580 0.0803 0.3806
Lena 7.4457 0,0693 0.326140%

Peppers 7.5721 0.0533 0.2973
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Table 7. E, R, and IR values for the cover images.

Cover Image E R IR

Baboon 7.3585 0.0802 0.3805

Lena 7.4455 0.0693 0.3261

Peppers 7.5715 0.0536 0.2976

5. Universal Steganalysis

A good steganographic method should be imperceptible not only to human vision systems but
also to computer analysis. Steganalysis is the art and science that detects whether a given image
has a message hidden in it [1,48]. The extensive range of natural images and the wide range of
data embedding algorithms make steganalysis a difficult task. In this work, we consider universal
steganalysis to be based on statistical analysis.

Universal (blind) steganalysis attempts to detect hidden information without any knowledge
about the steganographic algorithm. The idea is to extract the features of cover images and the features
of stego images and then use them as the feature vectors that are used by a supervised classifier (SVM,
FLD, neural networks. . . ) to distinguish whether the image under test is a stego image. This procedure
is illustrated in Figure 12. The left side of the flowchart displays the different steps of the learning
process while the right side illustrates the different steps of the testing process.

Figure 12. Flowchart of the blind steganalysis process.

5.1. Multi-Resolution Wavelet Decomposition

The DWT, which uses a sub-bands coding algorithm, is found to quickly compute the Wavelet
Transform. Furthermore, it is easy to implement and reduces the computation time and the number
of resources required. The DWT analyses the signal at different frequency bands with different
resolutions by decomposing the signal into a coarse approximation and into detailed information.
The decomposition of the signal into different frequencies is achieved by applying separable low-pass
ĝ(n) and high-pass ĥ(n) filters along the image axes. The DWT computes the approximation
coefficients matrix A and details coefficients matrices H, V, and D (horizontal, vertical, and diagonal,
respectively) of the input matrix X, as illustrated in Figure 13.



Entropy 2019, 21, 748 18 of 36

Figure 13. Multi-resolution wavelet decomposition.

5.2. Feature Vector Extraction

As the amount of image data is enormous, it is not feasible to directly use the complete image data
for analysis. Therefore, for steganalysis, it is useful to extract a certain amount of useful data features
that represent the image instead of the image itself. The addition of a message to a cover image may
not affect the visual appearance of the image, but it will affect some statistics. The features required
for steganalysis should be able to detect these minor statistical disorders that are created during the
data-hiding process.

Three feature-extraction techniques are used in this paper to detect the presence of a secret
message; these methods calculate the statistical properties of the images by employing multi-resolution
wavelet decomposition.

5.2.1. Method 1: Feature Vectors Extracted from the Empirical Moments of the PDF-Based
Multi-Resolution Coefficients and Their Prediction Error

The multi-resolution wavelet decomposition employed here is based on separable quadrature
mirror filters (QMFs). This decomposition splits the frequency space into multiple scales and
orientations. This is accomplished by applying separable low-pass and high-pass filters along the
image axes, generating a vertical, horizontal, diagonal, and low-pass sub-band. The horizontal, vertical,
and diagonal sub-bands at scale m = 1, 2, ..., n are denoted as Hm , Vm and Dm.

In our work, the first set of features is extracted from the statistics over coefficients Sm (x,y) of
each sub-band and for levels (scales) m = 1 and n = 3. These characteristics represent the following:
mean µ, variance σ2, skewness ξ, and kurtosis κ. They can be represented as follows:

µ =
1

Nx Ny
∑
x,y

Sm(x, y)

σ2 =
1

Nx Ny
∑
x,y

(Sm(x, y)− µ)2

ξ =
1

Nx Nyσ3 ∑
x,y

(Sm(x, y)− µ)3

κ =
1

Nx Nyσ4 ∑
x,y

(Sm(x, y)− µ)4 − 3

(24)

From Equation (24), we can build the first feature vector Zs of Nm × Nbd × n = 4 × 3 × 3 = 36
elements, where Nm, Nbd, and n are the number of moments, sub-bands, and scales. The feature vector
Zs is represented as follows:

Zs = [Z1, Z2, Z3]
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where:
Z1 = [µH1 , µV1 , µD1 |σH1 , σV1 , σD1 |ξH1 , ξV1 , ξD1 |κH1 , κV1 , κD1 ]

Z2 = [µH2 , µV2 , µD2 |σH2 , σV2 , σD2 |ξH2 , ξV2 , ξD2 |κH2 , κV2 , κD2 ]

Z3 = [µH3 , µV3 , µD3 |σH3 , σV3 , σD3 |ξH3 , ξV3 , ξD3 |κH3 , κV3 , κD3 ]

The second set of statistics is based on the prediction errors of coefficients Sm(x, y) of an optimal
linear predictor. The sub-band coefficients are correlated with their spatial, orientation, and scale
neighbors. Several prediction techniques of coefficients Sp

Hm
(x, y), Sp

Vm
(x, y), and Sp

Dm
(x, y) (m = 1, 2, 3)

may be used. In this work, we used a linear predictor, specifically the one proposed by Farid in [30],
as shown below:

Sp
Hm

(x, y) = w1SHm(x− 1, y) + w2SHm(x + 1, y) + w3SHm(x, y− 1)+

w4SHm(x, y + 1) + w5SHm+1(
x
2

,
y
2
) + w6SDm(x, y)+

w7SDm+1(
x
2

,
y
2
)

(25)

Sp
Vm

(x, y) = w1SVm(x− 1, y) + w2SVm(x + 1, y) + w3SVm(x, y− 1)+

w4SVm(x, y + 1) + w5SVm+1(
x
2

,
y
2
) + w6SDm(x, y)+

w7SDm+1(
x
2

,
y
2
)

(26)

Sp
Dm

(x, y) = w1SDm(x− 1, y) + w2SDm(x + 1, y) + w3SDm(x, y− 1)+

w4SDm(x, y + 1) + w5SDm+1(
x
2

,
y
2
) + w6SHm(x, y)+

w7SVm+1(
x
2

,
y
2
)

(27)

For more clarity, in Figure 14, we provide the block diagram for the prediction of coefficient Sp
V1
(x, y).

Figure 14. Block diagram for the prediction of coefficient Sp
V1
(x, y).

The parameters wi (scalar weighting values) of the error prediction coefficients of each sub-band
for a given level m are adjusted to minimize the prediction error by minimizing the quadratic error
function, as shown below:

E(w) = [Sm −Qw]2 (28)
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The columns of the matrix Q contain the neighboring coefficient magnitudes, as specified in
Equations (25)–(27). The quadratic error function is minimized analytically as follows:

dE(w)

dw
= 2QT(Sm −Qw) = 0 (29)

Then, we obtain:
wopt = (QtQ)−1QtSm (30)

For the optimal predictor, we use the log error given by the following equation to predict error
coefficients of each sub-band for a given level m:

ε
p
m = log2 Sm − log2(|Qwopt|) (31)

By using Equation (31), additional statistics are collected, namely the mean, variance, skewness,
and kurtosis (see Equation (24)). The feature vector Zp

ε is similar to Zs; it is represented as follows:

Zp
ε = [Zp

1ε, Zp
2ε, Zp

3ε]

where:
Zp

1ε = [µ
p
εH1

, µ
p
εV1

, µ
p
εD1
|σp

εH1
, σ

p
εV1

, σ
p
εD1
|ξ p

εH1
, ξ

p
εV1

, ξ
p
εD1
|κp

εH1
, κ

p
εV1

, κ
p
εD1

]

Zp
2ε = [µ

p
εH2

, µ
p
εV2

, µ
p
εD2
|σp

εH2
, σ

p
εV2

, σ
p
εD2
|ξ p

εH2
, ξ

p
εV2

, ξ
p
εD2
|κp

εH2
, κ

p
εV2

, κ
p
εD2

]

Zp
3ε = [µ

p
εH3

, µ
p
εV3

, µ
p
εD3
|σp

εH3
, σ

p
εV3

, σ
p
εD3
|ξ p

εH3
, ξ

p
εV3

, ξ
p
εD3
|κp

εH3
, κ

p
εV3

, κ
p
εD3

]

Finally, the feature vector that will be used for the learning classifier is represented by Z = [Zs|Zp
ε ].

It contains 72 components.

5.2.2. Method 2: Feature Vectors Extracted from Empirical Moments of CF-Based Multi-Resolution

The first set of feature vectors Zs is extracted based on the CF and the wavelet decomposition,
as proposed by Shi et al. [31]. The statistical moments of the characteristic function φ(k) of order n =

1 to 3 are represented for each sub-band (Am, Hm, Vm, Dm) at different levels m = 1, 2, and 3 of the
wavelet decomposition as follows:

Mn
Sm

=
∑

N
2

k=1 |φ(k)| × kn

∑
N
2

k=1 |φ(k)|
(32)

φ(k) =
N

∑
i=1

h(i) exp
{

j2πik
K

}
1 ≤ k ≤ K (33)

is a component of the characteristic function at frequency k, calculated from the histogram of the
sub-band Sm, and N is the total number of points of the histogram. Equation (32) allows us to build the
first feature vector Zm of size 12 × 3 = 36 components and 3 moments of the initial image. The feature
vectors Zm have been listed as follows:

Zs = [M1
I , M2

I , M3
I |M1

A1
, M2

A1
, M3

A1
|M1

H1
, M2

H1
, M3

H1
|M1

V1
, M2

V1
, M3

V1

|M1
D1

, M2
D1

, M3
D1
|M1

A2
, M2

A2
, M3

A2
|M1

H2
, M2

H2
, M3

H2
|M1

V2
, M2

V2
, M3

V2

|M1
D2

, M2
D2

, M3
D2
|M1

A3
, M2

A3
, M3

A3
|M1

H3
, M2

H3
, M3

H3
|M1

V3
, M2

V3
, M3

V3

|M1
D3

, M2
D3

, M3
D3
]

In the above equation, M1
I , M2

I , M3
I are the moments of the initial image.
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The second category of features is calculated from the moments of prediction-error image and its
wavelet decomposition.

Prediction-error image:
In steganalysis, we only care about the distortion caused by data-hiding. This type of distortion

may be rather weak and, hence, covered by other types of noises, including those caused due to the
peculiar feature of the image itself. To make the steganalysis more effective, it is necessary to keep the
noise of the dissimulation and eliminate most of the other noises. For this purpose, we calculate the
moments of characteristic functions of order n = 1, 3 of the predicted error image and of its wavelet
decomposition at the various levels m = 1, 2, and 3 (see Equation (32)). The prediction-error image
is obtained by subtracting the predicted image (in which each predicted pixel grayscale value in the
cover image uses its neighboring pixels’ grayscale values (see Equation (34))) from the cover image.
Such features make the steganalysis more efficient because the hidden data is usually unrelated to the
cover media. The prediction pixel is expressed as follows:

x̂ =


max(a, b) c ≤ min(a, b)
min(a, b) c ≥ max(a, b)

a + b− c otherwise
(34)

In the above equation, a, b, c are the context of the pixel x under consideration; x̂ is the prediction
value of x. The location of a, b, c can be illustrated as in Figure 15.

Figure 15. Prediction context of a pixel x.

The feature vector Zp
ε is represented as follows:

Zp
ε = [Mp1

ε1 , Mp2
ε1 , Mp3

ε1 |M1
A1

, M2
A1

, M3
A1
|M1

H1
, M2

H1
, M3

H1
|M1

V1
, M2

V1
, M3

V1

|M1
D1

, M2
D1

, M3
D1
|M1

A2
, M2

A2
, M3

A2
|M1

H2
, M2

H2
, M3

H2
|M1

V2
, M2

V2
, M3

V2

|M1
D2

, M2
D2

, M3
D2
|M1

A3
, M2

A3
, M3

A3
|M1

H3
, M2

H3
, M3

H3
|M1

V3
, M2

V3
, M3

V3

|M1
D3

, M2
D3

, M3
D3
]

In the above equation, M1
A1

, M2
A1

, M3
A1

are the 1st, 2nd , and 3rd order moments of the
corresponding CFs, from the sub-band A1 of the 1st level decomposition on the error image.

Finally, the feature vector that will be used for learning classification is Z = [Zs|Zp
ε ], containing

78 components.

5.2.3. Method 3: Feature Vector Extracted from Empirical Moments Based on the FC and the PDF of
Image Prediction Error and Its Different Sub-Bands of the Multi-Resolution Decomposition

The first characteristic vector Zs combines two types of normalized moments: moments based
on the function density of probability and moments based on the characteristic function of various
sub-bands of the multi-resolution decomposition at three levels of the gray image. We use the
expression of Wang and Moulin [32] to calculate the moments of order n = 1 to 6 of the initial
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image and its sub-band (Am, Hm, Vm, Dm) of the three-level (m = 1 to 3) wavelet decomposition,
as shown below:

Mn
Sm

=
∑

N
2

k=1 |φ(k)| × sinn(πk
K )

∑
N
2

k=1 |φ(k)|
(35)

φ(k) =
N

∑
i=1

h(i) exp
{

j2πik
K

}
1 ≤ k ≤ K (36)

is a component of the characteristic function at frequency k, estimated from the histogram.
Equation (35) already allows having a feature vector of 6 × 1 + 6 × (4 × 3) = 78 components.
Also, to improve the performance of the learning system, we calculate the moments of the sub-bands
A
′
2, H

′
2, V

′
2, D

′
2 obtained from the decomposition of the diagonal sub-band D1. Therefore, the total size

of the vector Zs is 78 + (6 × 4) = 102 components.

Zs = [Mi
I |Mi

A1
|Mi

H1
|Mi

V1
|Mi

D1
|Mi

A2
|Mi

H2
|Mi

V2
|Mi

D2
|Mi

A3
|Mi

H3
|Mi

V3
|Mi

D3

|Mi
A′2
|Mi

H′2
|Mi

V′2
|Mi

D′2
], i = 1, 2, ..., 6

For example, Mi
I = [M1

I , M2
I , M3

I , M4
I , M5

I , M6
I ] are the first six order moments of the

original image.
The second category of characteristics consists of the first six moments of the prediction

error, which is ε
p
m = log2 Sm − log2(|Qwopt|) of coefficients of each sub-band for a given level m,

as shown below:

mn
ε

p
m
=

1
N

N

∑
i=1

(ε
p
m)

n n = 1, 2...., 6 (37)

The vector of the second category is defined by Zp
ε , as shown below:

Zp
ε = [mi

εHm
|mi

εVm
|mi

εDm
]

for each
m = {1, 2, 3} ; i = 1, 2, ..., 6

The size of Zp
ε is 3 x 6 x 3 = 54 components.

Finally, the feature vector to be used for classification by learning is Z = [Zs|Zp
ε ]. It has

156 components.

5.3. Classification

The last stage of the learning and test process of the universal steganalysis is classification
(see Figure 12). Its objective is to group the images into two classes, class of the cover images and class
of the stego images, according to their feature vectors. We adopt the Fisher linear discriminator (FLD)
and the support vector machine (SVM) for training and testing.

5.3.1. FLD Classifier

Below, we reformulate the FLD classifier for our application and apply it to two classes.
Let Z = {Z1, Z2, ..., ZN} be a set of feature vectors, each with nd dimensions. Among these vectors, N1

vectors are Zc feature vectors labeled 1, indicating cover images. N2 vectors are Zs labeled 2, indicating
stego images, with N = N1 + N2. We want to form all projection values (Zp) =

{
Zp1 , Zp2 , ..., ZpN

}
of

dimension N through linear combinations of feature vectors Zp as follows:

Zp = WtZ (38)

In the above equation, W is an orientation vector of dimension nd.
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In our study, the feature vector Z is projected into a space of two classes. This projection tends to
maximize the distance between the projected class means (Mcp, Msp) while minimizing projected class
scatters Scp, Ssp.

• Learning process
The learning process involves optimizing the following expression:

J(W) =
|Mcp −Msp|2

Scp + Ssp
(39)

where:
Mcp =

1
N1

∑
Zp∈Zcp

Zp =
1

N1
∑

Z∈Zc

WtZ = Wt Mc (40)

is the mean feature vector of cover class after projection, and

Mc =
1

N1
∑

Z∈Zc

Z (41)

is the mean feature vector of cover class of dimension nd.
The mean feature vector of stego class after projection is represented as follows:

Msp =
1

N2
∑

Zp∈Zsp

Zp =
1

N2
∑

Z∈Zs

WtZ = Wt Ms (42)

where:
Ms =

1
N2

∑
Z∈Zs

Z (43)

is the mean feature vector of a stego class of dimension nd.
The scatter matrix of the cover class after projection has been shown as follows:

Scp = ∑
Zp∈Zcp

(Zp −Mcp)
2 = ∑

Z∈Zc

(WtZ−Wt Mc)
2 = ∑

Z∈Zc

Wt(Z−Mc)(Z−Mc)
tW = WtScW

(44)
where:

Sc = (Z−Mc)(Z−Mc)
t (45)

is the scatter matrix (of dimension nd× nd) of a cover class.
The scatter matrix of the projected samples of a stego class has been shown as follows:

Ssp = ∑
Zp∈Zsp

(Zp −Msp)
2 = ∑

Z∈Zs

(WtZ−Wt Ms)
2 = ∑

Z∈Zs

Wt(Z−Ms)(Z−Ms)
tW = WtSsW

(46)
where:

Ss = (Z−Ms)(Z−Ms)
t (47)

is a scatter matrix (of dimension nd × nd) for the samples in the original feature space of a
stego class.
The within-class scatter matrix after projection is defined as follows:

Scp + Ssp = Wt(Sc + Ss)W = WtSwW (48)

where:
Sw = Sc + Ss (49)
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The difference between the projected means is expressed as follows:

(Mcp −Msp)
2 = (Wt Mc −Wt Ms)

2 = Wt(Mc −Ms)(Mc −Ms)
tW = WtSBW (50)

where:
SB = (Mc −Ms)(Mc −Ms)

t (51)

We can finally express the Fisher criterion (Equation (39)) in terms of SB and SW as follows:

J(W) =
WtSBW
WtSwW

(52)

The solution of Equation (52) is given by [49].

Wopt = S−1
w (Mc −Ms) (53)

• Testing process
The testing process (classification step) is conducted as follows:
Let Z be the matrix containing the feature vectors of covers and stegos.
The projection of Z on the orientation vector Wopt gives all projected values Zp.

Zp(j) =
9

∑
i=1

Wopt(i)× Z(i, j) + bj = 1, 2, ..., N (54)

b is a threshold of discrimination between both classes, and it can be fixed to a value that is
halfway between both averages projected on the cover and stego.

b = 0.5× (Mcp + Msp) (55)

with:

Mcp = Wt
opt ×Mc

Msp = Wt
opt ×Ms

In the above equations, Wt
opt is the transposed of Wopt.

The result Zp(j), j = 1, ..., N determines the cover or stego class of every test image.
Indeed, if Zp(j) ≥ 0, then the image under test is cover; otherwise, it is stego.

5.3.2. SVM Classifier

According to numerous recent studies, the SVM classification method is better than the other
data classification algorithms in terms of classification accuracy [50]. SVM performs classification by
creating a hyper-plan that separates the data into two categories in the most optimal way.

Let (Zi, yi)(1≤i≤N) be a set of training examples, each example Zi ∈ Rnd, nd being the dimension of
the input space; it belongs to a class labeled as yi ∈ {−1, 1}. SVM classification constructs a hyper-plan
WTZ + b = 0, which best separates the data through a minimizing process, as shown below:

1
2
‖w‖2 + C

N

∑
i=1

ζi

subject to : yi(wZi + b) ≥ 1− ζi

(56)

Variables ζi are called slack variables, and they measure the error made at point (Zi, yi).
Parameter C can be viewed as a way to control overfitting.
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ζi ≥ 0 and C > 0 is the trade-off between regularization and constraint violation.
Problems related to quadratic optimization are a well-known class of mathematical programming

problems, and many (rather intricate) algorithms exist to aid in solving them. Solutions involve
constructing a dual problem where a Lagrange multiplier αi is associated with every constraint in the
primary problem, as shown below:

L(α) = ∑
i

αi −
1
2 ∑

i
∑

j
αiαjyiyjZT

i Zj

subject to : ∑
i

αiyi = 0

0 ≤ αiyi ≤ C

(57)

αi or Lagrange multipliers are also known as support values.
The linear classifier presented previously is very limited. In most case, classes not only overlap,

but the genuine separation functions are non-linear hyper-surfaces. The motivation for such an
extension is that an SVM that can create a non-linear decision hyper-surface will be able to non-linearly
classify separable data.

The idea is that the input space can always be mapped on to a higher dimensional feature space
where the training set is separable.

The linear classifier relies on the dot product between vectors K(Zi, Zj) = ZT
i Zj. If every data

point is mapped on to a high-dimensional space via some transformation Φ : Z → ϕ(Z), the dot
product becomes:K(Zi, Zj) = ϕ(Zi)

T ϕ(Zj). Then in the dual formulation, we maximize the following:

L(α) =
N

∑
i=1

αi −
1
2 ∑

i
∑

j
αiαjyiyjK(Zi, Zj)

subject to : ∑
i

αiyi = 0

0 ≤ αiyi ≤ C

(58)

Subsequently, the decision function turns into the following:

f (x) = sgn(
m

∑
i=n

αiyiK(Zi, Z) + b) (59)

It should be noted that the dual formulation only requires access to the kernel function and not the
features Φ(.), allowing one to solve the formulation in very high-dimensional feature spaces efficiently.
This is also called the kernel trick.

There are many kernel functions in SVM. Therefore, determining how to select a good kernel
function is also a research issue. However, for general purposes, there are some popular kernel
functions [50,51], which have been listed as follows:

• Linear Kernel:
K(Zi, Zj) = ZT

i Zj (60)

• Polynomial Kernel:
K(Zi, Zj) = (γZT

i Zj + r)d γ > 0 (61)

• RBF Kernel:
K(Zi, Zj) = exp(−γ

∥∥Zi − Zj
∥∥2
) γ > 0 (62)

• Sigmoid Kernel:
K(Zi, Zj) = tanh(γZT

i Zj + r) (63)
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Here, γ, r, and d are kernel parameters.
In our work, we used the RBF kernel function.

6. Experimental Results of Steganalysis

In this section, we present some experimental results that were obtained from the studied
steganalysis system that was applied to the enhanced steganographic methods in the spatial and
frequency domain. For this purpose, the image dataset UCID [52,53] is used, which includes 1338
uncompressed color images, and all the images were converted to grayscale before conducting
the experiments.

In our experiments, we first created the stego images using the following steganographic
methods: Enhanced EALSBMR (EEALSBMR), Enhanced DCT steganography (EDCT), and Enhanced
DWT steganography (EDWT). We used these methods with different embedding rates of 5%,
10%, and 20%. Following this, we extracted the image features using the three feature-extraction
techniques described above (Farid, Shi, and Moulin techniques) for both the cover and stego images.
Finally, we employed the classifiers FLD and SVM to classify the images as either containing a hidden
message or not. The evaluation of the classification (binary classification) and the steganalysis (also
indirectly the efficiency of insertion methods) is performed by calculating the following parameters:
sensibility, specificity, and precision of the confusion matrix and the Kappa coefficient (see Table 8 and
Equation (64))

Kappa =
P0 − Pa

1− Pa
(64)

with:
P0 = TP + TN; Pa = (TP + FP)× (TP + FN) + (FN + TN)× (FP + TN) (65)

In the above equation, P0 is the total agreement probability (related to the accuracy), and Pa is the
agreement probability that arises out of chance.

Here is one possible interpretation of Kappa values:

• Poor agreement = Less than 0.20
• Fair agreement = 0.20 to 0.40
• Moderate agreement = 0.40 to 0.60
• Good agreement = 0.60 to 0.80
• Very good agreement = 0.80 to 1.00

Table 8. Confusion matrix.

H0: Stego Image H1: Cover Image

Test
outcome

Test
outcome
positive

True Positive
TP

False Positive
FP

Positive predictive
value (PPV),
or Precision
Pr = TP

TP+FP

Test
outcome
negative

False Negative
FN

True Negative
TN

Negative predictive
value (NPV)

NPV = TN
TN+FN

True positive rate (TPR),
or, Sensitivity (Se),

Se = TP
TP+FN

True negative
rate (TNR),

or Specificity(Sp),
Sp = TN

TN+FP

Accuracy (Ac),
Ac = TP+TN

TP+FN+FP+TN

6.1. Classification Results Applied to the Steganographic Method EEALSBMR

In Tables 9–14, we present the classification results (steganalysis) based on the classifiers FLD and
SVM and the features of Farid, Shi, and Moulin for the EEALSBMR insertion method with different
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insertion rates of 5%, 10%, and 20%. The results show that steganalysis is not effective for all insertion
rates. Indeed, the values Se, Sp, and Pr vary around 50%, so these values are not informative values
and do not give any idea about the nature of the data. The value of the Kappa coefficient (lower
than 0.2) confirms these results. The EEALSBMR steganographic method is robust against statistical
steganalysis techniques.

Table 9. FLD classification evaluation of EEALSBMR algorithm using Farid features.

5% H0: Stego Images H1: Cover Images

H0 0.2744 0.2714 Pr = 0.5027
H1 0.2256 0.2286 NPV = 0.5033

Se = 0.5487 Sp = 0.4572 Ex = 0.5030
Kappa = 0.0060

10% H0: Stego Images H1: Cover Images

H0 0.2690 0.2645 Pr = 0.5042
H1 0.2310 0.2355 NPV = 0.5048

Se = 0.5380 Sp = 0.4710 Ex = 0.5045
Kappa = 0.0090

20% H0: Stego Images H1: Cover Images

H0 0.2745 0.2459 Pr = 0.5275
H1 0.2255 0.2541 NPV = 0.5298

Se = 0.5490 Sp = 0.5082 Ex = 0.5286
Kappa = 0.0572

Table 10. FLD classification evaluation of EEALSBMR algorithm using Shi features.

5% H0: Stego Images H1: Cover Images

H0 0.2612 0.2405 Pr = 0.5207
H1 0.2387 0.2595 NPV = 0.5208

Se = 0.5225 Sp = 0.5190 Ex = 0.5208
Kappa = 0.0415

10% H0: Stego Images H1: Cover Images

H0 0.2504 0.2448 Pr = 0.5057
H1 0.2496 0.2552 NPV = 0.5056

Se = 0.5008 Sp = 0.5105 Ex = 0.5056
Kappa = 0.0112

20% H0: Stego Images H1: Cover Images

H0 0.3191 0.1946 Pr = 0.6212
H1 0.1809 0.3054 NPV = 0.6280

Se = 0.6382 Sp = 0.6108 Ex = 0.6245
Kappa = 0.2490
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Table 11. FLD classification evaluation of EEALSBMR algorithm using Moulin features.

5% H0: Stego Images H1: Cover Images

H0 0.2489 0.2476 Pr = 0.5013
H1 0.2511 0.2524 NPV = 0.5012

Se = 0.4977 Sp = 0.5048 Ex = 0.5012
Kappa = 0.0025

10% H0: Stego Images H1: Cover Images

H0 0.2559 0.2299 Pr = 0.5268
H1 0.2441 0.2701 NPV = 0.5253

Se = 0.5117 Sp = 0.5403 Ex = 0.5260
Kappa = 0.0520

20% H0: Stego Images H1: Cover Images

H0 0.2990 0.1985 Pr = 0.6010
H1 0.2010 0.3015 NPV = 0.6000

Se = 0.5980 Sp = 0.6030 Ex = 0.6005
Kappa = 0.2010

Table 12. SVM classification evaluation of EEALSBMR algorithm using Farid features.

5% H0: Stego Images H1: Cover Images

H0 0.3438 0.3431 Pr = 0.5005
H1 0.1562 0.1569 NPV = 0.5011

Se = 0.6876 Sp = 0.3137 Ac = 0.6870
Kappa = 0.0013

10% H0: Stego Images H1: Cover Images

H0 0.4006 0.3977 Pr = 0.5018
H1 0.0994 0.1023 NPV = 0.5071

Se = 0.8011 Sp = 0.2046 Ac = 0.5029
Kappa = 0.0057

20% H0: Stego Images H1: Cover Images

H0 0.3251 0.3199 Pr = 0.5041
H1 0.1749 0.1801 NPV = 0.5074

Se = 0.6503 Sp = 0.3602 Ac = 0.5052
Kappa = 0.0105

Table 13. SVM classification evaluation of EEALSBMR algorithm using Shi features.

5% H0: Stego Images H1: Cover Images

H0 0.2220 0.2188 Pr = 0.5037
H1 0.2780 0.2812 NPV = 0.5029

Se = 0.4440 Sp = 0.5625 Ac = 0.5032
Kappa = 0.0065

10% H0: Stego Images H1: Cover Images

H0 0.2189 0.2161 Pr = 0.5032
H1 0.2811 0.2839 NPV = 0.5024

Se = 0.4377 Sp = 0.5678 Ac = 0.5028
Kappa = 0.0055

20% H0: Stego Images H1: Cover Images

H0 0.2282 0.1999 Pr = 0.5330
H1 0.2718 0.3001 NPV = 0.5247

Se = 0.4564 Sp = 0.6002 Ac = 0.5283
Kappa = 0.0566
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Table 14. SVM classification evaluation of EEALSBMR algorithm using Moulin features.

5% H0: Stego Images H1: Cover Images

H0 0.2275 0.2264 Pr = 0.5013
H1 0.2725 0.2736 NPV = 0.5010

Se = 0.4550 Sp = 0.5472 Ac = 0.5011
Kappa = 0.0023

10% H0: Stego Images H1: Cover Images

H0 0.2412 0.2380 Pr = 0.5034
H1 0.2588 0.2620 NPV = 0.5031

Se = 0.4825 Sp = 0.5240 Ac = 0.5032
Kappa = 0.0065

20% H0: Stego Images H1: Cover Images

H0 0.2922 0.2684 Pr = 0.5212
H1 0.2078 0.2316 NPV = 0.5271

Se = 0.5844 Sp = 0.4632 Ac = 0.5238
Kappa = 0.0476

6.2. Classification Results Applied to the Steganographic Method EDCT

The classification results (steganalysis) provided in Tables 15–20 for the EDCT insertion method
show that with the FLD classifier, when the insertion rate is equal to or higher than 20%, steganalysis
is very effective with Shi features and Moulin features, but it is less effective with Farid features.
With the SVM classifier, except in the case of Shi features, when an insertion rate of 20% is applied,
the results obtained are quite similar to those obtained from the EEALSBMR algorithm and, therefore,
steganalysis is not effective. It should be noted that the FLD classifier is more effective for a feature
vector of a high dimension than the SVM classifier.

Table 15. FLD classification evaluation of EDCT algorithm using Farid features.

5% H0: Stego Images H1: Cover Images

H0 0.2524 0.2454 Pr = 0.5070
H1 0.2476 0.2546 NPV = 0.5069

Se = 0.5048 Sp = 0.5091 Ac = 0.5070
Kappa = 0.0139

10% H0: Stego Images H1: Cover Images

H0 0.2617 0.2238 Pr = 0.5390
H1 0.2383 0.2762 NPV = 0.5368

Se = 0.5234 Sp = 0.5524 Ac = 0.5379
Kappa = 0.0758

20% H0: Stego Images H1: Cover Images

H0 0.3104 0.1719 Pr = 0.6436
H1 0.1896 0.3281 NPV = 0.6337

Se = 0.6208 Sp = 0.6562 Ac = 0.6385
Kappa = 0.2770
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Table 16. FLD classification evaluation of EDCT algorithm using Shi features.

5% H0: Stego Images H1: Cover Images

H0 0.2548 0.2343 Pr = 0.5209
H1 0.2452 0.2657 NPV = 0.5200

Se = 0.5095 Sp = 0.5314 Ac = 0.5205
Kappa = 0.0410

10% H0: Stego Images H1: Cover Images

H0 0.3242 0.1893 Pr = 0.6313
H1 0.1758 0.3107 NPV = 0.6386

Se = 0.6484 Sp = 0.6213 Ac = 0.6349
Kappa = 0.2697

20% H0: Stego Images H1: Cover Images

H0 0.4409 0.0635 Pr = 0.8741
H1 0.0591 0.4365 NPV = 0.8807

Se = 0.8817 Sp = 0.8730 Ac = 0.8773
Kappa = 0.7547

Table 17. FLD classification evaluation of EDCT algorithm using Moulin features.

5% H0: Stego Images H1: Cover Images

H0 0.2611 0.2499 Pr = 0.5110
H1 0.2389 0.2501 NPV = 0.5115

Se = 0.5223 Sp = 0.5002 Ac = 0.5112
Kappa = 0.0225

10% H0: Stego Images H1: Cover Images

H0 0.2780 0.2136 Pr = 0.5655
H1 0.2220 0.2864 NPV = 0.5633

Se = 0.5560 Sp = 0.5728 Ac = 0.5644
Kappa = 0.1288

20% H0: Stego Images H1: Cover Images

H0 0.3739 0.1243 Pr = 0.7505
H1 0.1261 0.3757 NPV = 0.7487

Se = 0.7478 Sp = 0.7514 Ac = 0.7496
Kappa = 0.4992

Table 18. SVM classification evaluation of EDCT algorithm using Farid features.

5% H0: Stego Images H1: Cover Images

H0 0.0653 0.0591 Pr = 0.5249
H1 0.4347 0.4409 NPV = 0.5035

Se = 0.1307 Sp = 0.8817 Ac = 0.5062
Kappa = 0.0124

10% H0: Stego Images H1: Cover Images

H0 0.0848 0.0644 Pr = 0.5683
H1 0.4152 0.4356 NPV = 0.5120

Se = 0.1695 Sp = 0.8712 Ac = 0.5204
Kappa = 0.0408

20% H0: Stego Images H1: Cover Images

H0 0.1734 0.0843 Pr = 0.6729
H1 0.3266 0.4157 NPV = 0.5600

Se = 0.3469 Sp = 0.8314 Ac = 0.5891
Kappa = 0.1783
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Table 19. SVM classification evaluation of EDCT algorithm using Shi features.

5% H0: Stego Images H1: Cover Images

H0 0.3156 0.3138 Pr = 0.5014
H1 0.1844 0.1862 NPV = 0.5024

Se = 0.6312 Sp = 0.3724 Ac = 0.5018
Kappa = 0.0036

10% H0: Stego Images H1: Cover Images

H0 0.3572 0.3266 Pr = 0.5224
H1 0.1428 0.1734 NPV = 0.5485

Se = 0.7145 Sp = 0.3469 Ac = 0.5307
Kappa = 0.0613

20% H0: Stego Images H1: Cover Images

H0 0.4217 0.2220 Pr = 0.6551
H1 0.0783 0.2780 NPV = 0.7803

Se = 0.8434 Sp = 0.5560 Ac = 0.6997
Kappa = 0.3994

Table 20. SVM classification evaluation of EDCT algorithm using Moulin features.

5% H0: Stego Images H1: Cover Images

H0 0.3053 0.3020 Pr = 0.5027
H1 0.1947 0.1980 NPV = 0.5042

Se = 0.6107 Sp = 0.3960 Ac = 0.5033
Kappa = 0.0067

10% H0: Stego Images H1: Cover Images

H0 0.3021 0.2924 Pr = 0.5082
H1 0.1979 0.2076 NPV = 0.5120

Se = 0.6042 Sp = 0.4152 Ac = 0.5097
Kappa = 0.0194

20% H0: Stego Images H1: Cover Images

H0 0.3264 0.2427 Pr = 0.5736
H1 0.1736 0.2573 NPV = 0.5971

Se = 0.6528 Sp = 0.5147 Ac = 0.5837
Kappa = 0.1674

6.3. Classification Results Applied to the Steganographic Method EDWT

With respect to the EDWT method, the results are provided in Tables 21–26. These results obtained
with the classifiers FLD and SVM indicate that the values of the parameters Se, Sp, Pr, Ac, and Kappa
are high for all insertion rates and feature vectors (Farid, Shi, and Moulin). These results can easily
inform us about the presence of hidden information; therefore, steganalysis can be concluded to be
very effective. As a result, the insertion method is not robust. It should be noted that steganalysis
is very effective here because both the steganagraphic method and feature vectors are based on
multi-resolution wavelet decomposition.
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Table 21. FLD classification evaluation of EDWT algorithm using Farid features.

5% H0: Stego Images H1: Cover Images

H0 0.4786 0.0150 Pr = 0.9695
H1 0.0214 0.4850 NPV = 0.9577

Se = 0.9571 Sp = 0.9699 Ac = 0.9635
Kappa = 0.9270

10% H0: Stego Images H1: Cover Images

H0 0.4941 0.0056 Pr = 0.9888
H1 0.0059 0.4944 NPV = 0.9882

Se = 0.9882 Sp = 0.9888 Ac = 0.9885
Kappa = 0.9770

20% H0: Stego Images H1: Cover Images

H0 0.4993 0.0005 Pr = 0.9990
H1 0.0007 0.4995 NPV = 0.9987

Se = 0.9987 Sp = 0.9990 Ac = 0.9989
Kappa = 0.9977

Table 22. FLD classification evaluation of EDWT algorithm using Shi features.

5% H0: Stego Images H1: Cover Images

H0 0.4048 0.0470 Pr = 0.8961
H1 0.0952 0.4530 NPV = 0.8263

Se = 0.8095 Sp = 0.9061 Ac = 0.8578
Kappa = 0.7156

10% H0: Stego Images H1: Cover Images

H0 0.4536 0.0311 Pr = 0.9358
H1 0.0464 0.4689 NPV = 0.9100

Se = 0.9072 Sp = 0.9377 Ac = 0.9225
Kappa = 0.8450

20% H0: Stego Images H1: Cover Images

H0 0.4753 0.0232 Pr = 0.9534
H1 0.0247 0.4768 NPV = 0.9508

Se = 0.9507 Sp = 0.9535 Ac = 0.9521
Kappa = 0.9042

Table 23. FLD classification evaluation of EDWT algorithm using Moulin features.

5% H0: Stego Images H1: Cover Images

H0 0.3946 0.0650 Pr = 0.8587
H1 0.1054 0.4350 NPV = 0.8049

Se = 0.7891 Sp = 0.8701 Ac = 0.8296
Kappa = 0.6592

10% H0: Stego Images H1: Cover Images

H0 0.4394 0.0387 Pr = 0.9191
H1 0.0606 0.4613 NPV = 0.8839

Se = 0.8789 Sp = 0.9227 Ac = 0.9008
Kappa = 0.8015

20% H0: Stego Images H1: Cover Images

H0 0.4603 0.0321 Pr = 0.9348
H1 0.0397 0.4679 NPV = 0.9218

Se = 0.9206 Sp = 0.9358 Ac = 0.9282
Kappa = 0.8564
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Table 24. SVM classification evaluation of EDWT algorithm using Farid features.

5% H0: Stego Images H1: Cover Images

H0 0.4770 0.0230 Pr = 0.9541
H1 0.0230 0.4770 NPV = 0.9541

Se = 0.9541 Sp = 0.9541 Ac = 0.9541
Kappa = 0.9082

10% H0: Stego Images H1: Cover Images

H0 0.4893 0.0058 Pr = 0.9883
H1 0.0107 0.4942 NPV = 0.9789

Se = 0.9787 Sp = 0.9884 Ac = 0.9835
Kappa = 0.9670

20% H0: Stego Images H1: Cover Images

H0 0.4984 0.0084 Pr = 0.9835
H1 0.0016 0.4916 NPV = 0.9967

Se = 0.9968 Sp = 0.9832 Ac = 0.9900
Kappa = 0.9800

Table 25. SVM classification evaluation of EDWT algorithm using Shi features.

5% H0: Stego Images H1: Cover Images

H0 0.3366 0.1658 Pr = 0.6700
H1 0.1634 0.3342 NPV = 0.6716

Se = 0.6731 Sp = 0.6684 Ac = 0.6708
Kappa = 0.3415

10% H0: Stego Images H1: Cover Images

H0 0.4107 0.1371 Pr = 0.7497
H1 0.0893 0.3629 NPV = 0.8024

Se = 0.8213 Sp = 0.7257 Ac = 0.7735
Kappa = 0.5470

20% H0: Stego Images H1: Cover Images

H0 0.4605 0.1175 Pr = 0.7967
H1 0.0395 0.3825 NPV = 0.9063

Se = 0.9210 Sp = 0.7650 Ac = 0.8430
Kappa = 0.6859

Table 26. SVM classification evaluation of EDWT algorithm using Moulin features.

5% H0: Stego Images H1: Cover Images

H0 0.3707 0.1108 Pr = 0.7699
H1 0.1293 0.3892 NPV = 0.7506

Se = 0.7413 Sp = 0.7785 Ac = 0.7599
Kappa = 0.5198

10% H0: Stego Images H1: Cover Images

H0 0.4332 0.0725 Pr = 0.8567
H1 0.0668 0.4275 NPV = 0.8649

Se = 0.8665 Sp = 0.8550 Ac = 0.8608
Kappa = 0.7215

20% H0: Stego Images H1: Cover Images

H0 0.4672 0.0724 Pr = 0.8659
H1 0.0668 0.4276 NPV = 0.9288

Se = 0.9345 Sp = 0.8552 Ac = 0.8949
Kappa = 0.7897
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6.4. Discussion

The enhanced adaptive LSB methods of steganography in the spatial domain (EEALSBMR) and
frequency domain (EDCT and EDWT) provide stego images with a good visual quality up to an
embedding rate of 40%: the PSNR is over 50 dB, and the distortion is not visible to the naked eye.
Security of the message contents, in case detected by an opponent, is ensured by using the chaotic
system. On the other hand, we applied a universal steganalysis method that can work well with all
known and unknown steganography algorithms. Universal steganalysis methods exploit the changes
in certain inherent features of the cover images when a message is embedded. The accuracy of the
classification (discrimination between two classes: cover and stego) of the system greatly relies on
several factors, such as the choice of the right characteristic vectors, the classifier, and its parameters.

7. Conclusions

In this work, we first improved the structure and security of three steganagraphic methods that
are studied in the spatial and frequency domain by integrating them with a robust proposed chaotic
system. Following this, we built a statistical steganalysis system to evaluate the robustness of the three
enhanced steganographic methods. In this system, we selected three different feature vectors, namely
higher-order statistics of high-frequency wavelet sub-bands and their prediction errors, statistical
moments of the characteristic functions of the prediction-error image, the test image, and their wavelet
sub-bands, and both empirical PDF moments and the normalized absolute CF. After this, we applied
two types of classifiers, namely FLD and SVM, with the RBF kernel.

Extensive experimental work has demonstrated that the proposed steganalysis system based on
the multi-dimensional feature vectors can detect hidden messages using the EDWT steganographic
method, irrespective of the message size. However, it cannot distinguish between cover and stego
images using the EEALSBMR steganographic and EDCT methods if the message size is smaller than
20% and 15%, respectively.
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