Fergus Bolger
email: fergus_bolger@programmingresearch.com

C++ Language: Fit For Purpose in Embedded Systems

Keywords:

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

So you're an embedded developer. You know that C is the right language for the job, although sometimes those maintenance cycles can be, well, repetitive. You sometimes get that nagging feeling that you are coding like an automaton, repeatedly creating basic iterations over structures that are remarkably similar to ones from last week or last month.

You've heard the sales pitch for C++ as a powerful language but you also hear of horror stories about its large footprint, which makes it a no-go for embedded applications. Add to that its inherent complexity Does this have a familiar ring to it? The embedded development market covers a large range of application areas, including automotive, medical, defence & telecommunications. While C undoubtedly enjoys a good reputation as a strong and powerful language for embedded development, C++ does not have quite such a broad appeal. With today's capable and sophisticated C++ environments this is often an incorrect belief.

Why is C++ a viable alternative to C? As a language, it did of course grow from roots in C. Simply re-compiling a C project using a C++ compiler will yield more rigorous code type checking (there are some declaration and scope incompatibilities that you may have to overcome first). Once you embrace its core features, C++ offers a greater abstraction of data, which is an important objective for larger, more complex software systems. Object orientation (OO) takes this abstraction a step further, where you can replace global "worker" functions with class functionality. Of course, C++'s OO capabilities extend further than simple abstraction, and include principles for polymorphism, generic programming, and inheritance.

Templates are perhaps the biggest fear-factor against C++ usage, and most often quoted as the reason for large code-bloat experiences (and suppositions). But well-designed template code offers elegant means of handling a variety of data-types consistently. C++'s Standard Library is an advertisement for such generic programming styles.

Exceptions are added programmatically into many C software systems, and can be replaced, albeit at a cost, with a more elegant C++ exception-based solution. Often, the need for elegance in development only becomes apparent when requirements change. The speed with which well-crafted object-based designs can adapt in such circumstances can be put down, in part, to better abstraction and hiding of implementation.

Compiler performance

Comparing C and C++ compiler implementations can be odious. It is difficult to obtain scientific results from such apple versus orange comparisons. Anecdotal newsgroup discussions have reported space and performance efficiency losses of between 8 and 30% for C++ implementations.

Of course, for the exact same code using the same C library, identical binary code in expected. There is an important point in this. Often C and C++ compilers have shared development pedigrees, with just the front-end containing language unique elements. Therefore, when considering underlying performance, ignoring language implementation and feature differences, we can expect very similar performance.

Embedded C++ Initiative

Undoubtedly, there have been poor experiences of C++ performance in embedded applications. These show up in speed performance and particularly in executable and run time space needs. Concerns about this led to an interesting industry formation in 1997. A group of mainly Japanese embedded systems providers proposed a strictly limited language environment for the C++ language to cater for embedded requirements. The concept was to ban entire sections of the C++ language, mainly consisting of Exception Handling, Run-Time Type Information, Namespaces, Templates, Multiple Inheritance, and Virtual Functions.

There were two main elements to its justification. First was removal of language constructs that caused the dreaded "code bloat". Second was an objective to remove complexity from the C++ language, perhaps with the lower OO experience levels of embedded engineers in mind.

But, with respect to its authors, the approach to Embedded C++ seems fundamentally flawed. The hard-working members of the C++ language committee must have paled on hearing of the proposal to discard whole chunks of their well-engineered standard C++ language. Their collective response to this proposal was to begin an examination of the actual performance issues in the language and its most popular implementations (in terms of compiler and machine environments).

The result is a comprehensive report on the performance expectations of each of the major features of the complete C++ language. Within the report there is a section dealing with the performance and space (both static and run-time) efficiency for each feature. This article will include the report findings that are most apposite for the embedded community. Furthermore, I make a challenging proposition that C++ implementations can match C for equivalent application tasks using the key C++ language features that support OO programming, such as classes with member data and functions, hierarchies and virtual functions, multiple inheritance, and run-time type information (RTTI) at a small cost.

Costs of Language Features

Let us first deal with the aspects of the C++ language that have no additional cost over their equivalent C functionality. Cost here refers to space or performance cost. We must also remind ourselves of the difference between user-defined types and objects of these types. Storage must be reserved for type information, as well as creating the exact space required to hold objects of each type.

C Features

Use of 'C' objects such as structures, pointers, and global functions will compile into the same size and incur no additional space or performance cost in use. In this way, to a large extent, compiling your C programs under a C++ compiler will only add safety and not incur additional cost.

Class Operation

The basic class feature, somewhat surprisingly, does not suffer any space or speed overhead compared with C's struct and global function equivalents. This is because non-virtual functions and static data members are stored with the class definition, rather than in objects of the class. Member function calls have one additional implicit pointer argument, required to point to the class object (* this). On the other hand, freestanding function calls need operational data passed to them explicitly, typically through an equivalent explicit pointer argument.

Static data and functions inside class types are equivalent to C global functions, and take no space in each class object, therefore resulting in no additional cost. Use of single inheritance class structures involves a compile-time offset into the derived portion of the object.

The C++ feature of function overloading, and its specialised use in operator overloading, is a compiled-in feature, in that the selection of the overloading function is made at compile time, and resolves in each case to a specific actual function. This is an elegant and zero-cost solution.

The built-in operators, new and delete, are equivalent to (and often implemented as) "malloc plus ctor(s)" and "free plus dtor(s)" respectively.

Default parameters are also a compiled-in feature, and will be equivalent to a fully qualified function call in 'C'. It should be noted that function overloading might offer a more efficient and elegant solution to the widespread use of default parameters.

Type Conversion Operators

C++ carries forward the C-style cast notation, but supports more secure and explicit conversions, through four new operators, which apply to different conversion situations. For three of these new-style cast operators (const_cast, static_cast, and reinterpret_cast) there is no performance implication. In fact, it is typical for a compiler to transform cast notation into one of these new type conversion operators when generating object code. Only dynamic_cast may involve additional overhead, if the required conversion requires Run-Time Type Information (RTTI) mechanisms such as cross casting in a class hierarchy, which we'll see later. It should be noted that as in C, a cast may create a temporary object of the desired type, so casting can have run-time implications.

Namespaces

Namespaces are a sometimes-maligned feature that in fact cause no additional space or time overhead. They only affect name lookup rules at compilation time. The principle advantage of namespaces is in providing a mechanism for partitioning names in large projects in order to avoid name clashes. As an aside, the using directive avoids the additional typing effort in using explicit namespace qualification by moving all unqualified identifiers into the current namespace. The use of namespaces does, however, add some complexity to the rules for name lookup.

The cost of construction in C++ (calling a sequence of constructors and destructors when creating or removing an object) need not cost anything. It often, and optimally, contains mandatory and necessary initialisation and finalisation of objects.

Virtual Functions

Virtual functions incur a well-defined cost, which is based on the underlying operation: indexing into an array of pointers to function. This is an implementation technique that is common in C code, but more elegantly expressed in the virtual function paradigm.

There are situations where use of virtual functions can result in "code bloat". If a class template that contains virtual functions is specialized on a variety of types, then each of these specializations holds duplicated member functions and their associated support structures including the virtual table. This will generally result in excessive object code, since current linker/optimizer technology is not sufficiently sophisticated to identify this circumstance.

To avoid this problem, you can move common code (not dependent on the instantiated type) out of the class template and into non-template helper functions, or alternatively move functionality from the template class into a non-template base class.

Function Inlining

In terms of achieving performance efficiency, function calls are to be avoided. C++'s inline feature provides the compiler with a hint for functions that could be inlined into their calling location. The compiler is not obliged to take this hint. Advanced optimisation techniques can identify and remove small and less complex function calls automatically without the code explicitly providing the inline hint. However, experience to date suggests that implicit inlining yields no consistent benefit, and the explicit inline keyword should be used.

Virtual Base Class (VBC)

In non-virtual inheritance, member function calls perform a simple constant adjustment. The essential difference with VBCs is that member functions need to perform lookup at run-time to discover which class function in the inheritance tree should be activated. This involves an additional overhead of approximately 15% over the nonvirtual case.

However, simulating the feature of virtual calls through another feature carries costs as well. The alternative technique of implementing an interface class that is passed around the constituent class itself requires an indirection in its access, with the attendant costs and overhead.

Run-Time Type Information (RTTI)

RTTI is used to interrogate the type of an object and also part of the infrastructure of the dynamic_cast feature. As an indication of its expense in performance terms, consider the method of application of dynamic_cast. First find the virtual table (vtable) of the object, then find the most derived object of which this is part, then use that object's type_info data to perform the required adjustments to the this pointer.

Exception Handling

C++'s exception handling feature requires type information at run time, and partly overlaps and extends the RTTI structure. When considering manual coding alternatives to exception handling, consideration must be given to coding style, complete coverage of error handling routines, thread-safety, run-time system overheads, and overheads from handling errors. Considering the cost, run-time overhead, and code maintenance overheads of this makes exception-handling a reasonable alternative.

Templates

Templates are one of the most denounced features of C++ in terms of space costs. Code bloat arises when class and function templates generate a new set of code and data for each instantiation with different parameters. Tests conducted on multiple instantiations of the same specialization versus many different specializations indicate quite varied performance results, suggesting that compilers have some way to go to meet optimization goals in this area.

By enabling certain features, in particular partial specializations, compilers can allow library vendors to implement optimizations to overcome this problem.

The developer can deploy a technique to avoid multiple specializations by routing all instantiation requests through a common class template, for instance by using a common class-template for a single specialization based on void *.

C++ Coding Implementation

While this analysis might make you more comfortable with C++ as a development language, it does not by itself help you to create good, reliable, and above all high-performance, C++ code. There is much advice on optimization matters in the C++ language, including preference for initialization over assignment, avoidance of unwanted conversions, avoidance of temporary object creation (in parameter passing, function return, and expressions), and judicious use of inline. Beyond such language-based optimizations are recommendation on correct usage of C++'s excellent library.

However, let's get back to our C developer mindset. Often, the presumption is made that developing in C++ takes a vastly different approach than traditional C development. If we examine two typical C implementation techniques, we may come to a different conclusion.

Polymorphism in C

With a record that needs to store data of different types, the definition might look like this: error("Not fun"); break; } But this looks very much like the polymorphism concept. The member kind corresponds to a class vtable pointer, and code sections in the switch-statement correspond to a set of virtual functions. The polymorphism alternative is more elegant and maintenance-friendly, considering the proliferation of such switch statements when using this record. There is the further benefit that no data padding is required to fit the largest type, as has to happen in the union situation.

 Then any code that operates on this record must check what kind of data it represents:

	struct Record {
	int kind;
	union {
	int isFun;
	double noFun;
	};
	};
	switch (r.kind) {
	case 1:
	use_int(r.isFun);
	break;
	case 2:
	use_dbl(r.noFun);
	break;
	default:

-22 -23 January 2004 Session 5B: Objects-Oriented Languages and Models

-22 -23 January 2004

Acknowledgements

This presentation is partly based on the Technical Report on C++ Performance, 03-0012/ N1430, from the C++ standards committee. It is available at http://std.dkuug.dk/jtc1/sc22/ wg21/docs/papers/2003/ n1430.pdf.

Code bloat in C

In a typical C project, you will often see iteration code such as: for (int i=0; i <

The C++ library targets this type of repetitive code by putting rich iteration functionality into its set of container classes. It offers a more maintainable, compact, and most probably faster implementation than can usually be achieved with a hand-coded alternative.

Summary

So perhaps this does not convince you to consider an alternative to C. C++ is not a language to adopt lightly. C++ projects need to be well-engineered and well-managed, with continuity of development personnel. Of course, the same can be said for C development. But, based on our experiences, C++ repays you in spades when you adopt its higher level of abstraction, in terms of maintainability and responsiveness to changed requirements. In the more exacting requirements of embedded development, these research results show that, with a little care and attention, C++ has much to offer.