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Abstract: This paper presents a single-shot technique for measuring CEP. The Temporal 
dispersion based One-shot Ultrafast Carrier envelope phase Analysis method (TOUCAN) is 
an arbitrary repetition rate single-shot CEP drift measurement technique based on dispersive 
Fourier transformations and has been experimentally tested at 100 kHz. TOUCAN was 
validated by a direct comparison of decimated data with an independent traditional CEP drift 
measurement technique. The impact of a temporal jitter on the CEP drift measurement is 
investigated and a new mitigation technique is shown to produce high accuracy jitter-free 
CEP drift extraction. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

High-field physics experiments e.g., attoscience, often require amplified few cycle laser 
pulses at the millijoule energy level [1]. The outcome of these experiments can drastically be 
altered by a change in the field amplitude and also by drifts or fluctuations of the carrier 
envelope phase (CEP) [1,2]. As a consequence, on top of the CEP stabilization scheme 
(passive or active), parallel single-shot CEP measurement and pulse tagging might become 
necessary. 

One of the most widespread CEP drift measurement method is based on f-to-2f self-
referential interferometry [3], where the CEP slip is measured by a heterodyne detection 
scheme. The single-shot version of a f-to-2f interferometer extracts the phase information by 
optical spectroscopic method [4,5] i.e. using angular dispersion to map the spectrum onto a 
spatial dimension. The detection of the spatially dispersed signal usually relies on a detector 
array, e.g., a charge-coupled device (CCD). The measurement rate of such device is limited 
by the delay between measurements, which is usually on the hundred microseconds scale. 
Single–shot CEP drift measurement and pulse tagging above 10 kHz is very challenging to 
achieve with current technology. Even when replacing the detector array with two 
photomultipliers, which in principle mitigates this limitation, the demonstrated fastest single-
shot detection was at 10 kHz [6]. 

In the last decade, Stereo-ATI, a new CEP detection technique has been developed, which 
encodes the phase in an electron spectrum of the above-threshold ionization (ATI) of a noble 
gas [7–9]. This method allows real time single-shot measurements of the CEP at high 
repetition rate and is independent of pulse energy to phase coupling inherent to f-to-2f type 
interferometric measurements. This coupling leads to spurious CEP noise measurement for a 
system which uses supercontinuum generation for spectral broadening [10]. Single-shot real 
time stereo-ATI CEP measurements on a 100 kHz repetition rate system have recently been 
demonstrated and it is claimed, based on the measurement time, that theoretical limit of the 
acquisition rate is 10 MHz [11]. However, this technique requires two time of flights tubes to 
be connected to the interaction chamber, under vacuum, resulting in a large expansive device. 
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Also few cycle pulses with at least 30 µJ energy are required for CEP retrieval [9], which 
makes this diagnostic method unsuitable for a significant proportion of current laser systems. 

A different approach for high repetition rate single-shot CEP measurement has been taken 
which is based on Dispersive Fourier Transform (DFT) [12–15]. The temporal dispersion 
based one-shot ultrafast carrier envelope phase analysis method (TOUCAN) allows single-
shot CEP drift extraction up to gigahertz repetition rates from f-to-2f spectral interference. 
The concept is demonstrated by recording the CEP drift of 4 cycles pulses at 3.2 µm from an 
OPCPA laser operating at 100 kHz. 

2. Concept 

Linear optical interferometry cannot provide information about the CEP so a nonlinear optical 
effect has to be employed [3]. In f-to-2f self-referential interferometry, a fraction of the laser 
pulse is frequency doubled while another fraction is spectrally broadened until the blue part 
reaches the doubled frequency (i.e. broadened over one octave). The interference signal is 
created by overlapping these two pulses in the temporal, spatial, and spectral domain. The one 
dimensional temporal evolution of the fundamental laser pulse is given by 

 ( ) ( ) ( )( )
ω 0

E t =A t exp -i ω t+φ⋅  (1) 

where A(t) is the temporal envelope of the pulse, 
0

ω  is the central angular frequency and φ 
stands for CEP. In the frequency domain the field reads: 

 ( ) ( ) ( )
ω ω

E ω = ω exp -iφA ⋅  (2) 

Under perfect conditions, the second harmonic (SH) pulse is centered at twice the frequency 
of the original. The resultant phase is twice that of the fundamental pulse and also shifted by 
an offset. The complex spectrum of the second harmonic electric field is expressed as: 

 ( ) ( ) ( )( )
2ω 2ω

E ω =A ω exp -i 2φ+π/2⋅  (3) 

The above equation describes a process, where dispersion is negligible. In reality material 
dispersion introduces different constant phase shift for the fundamental and SH pulses. The 
spectra of these pulses may overlap if the spectrum is either sufficiently broad or if it is 
broadened by supercontinuum generation. The overlapping region will exhibit a spectral 
interference pattern, where the fringe period depends on the relative delay between the 
fundamental and the SH pulse. The resulting signal as detected by an integrating device is 
described by: 

 
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
f-2f ω 2ω ω 2ω

ω 2ω ω 2ω D

I ω = E ω +E ω E ω +E ω

             =I ω +I ω +2 I ω I ω cos φ+φ ω Δt+π/2+

⋅

⋅ ⋅⋅
 (4) 

where the ΔφD is the phase difference between pulses introduced by the material dispersion. 
The third term in this equation creates a spectral intensity modulation where the phase of this 
pattern is in fact linearly related to φ. Thus extracting the phase of the spectral modulation 
provides the CEP value of the original pulse shifted by an unknown constant value. 

Conventional techniques would read the spectrum with an optical spectrometer with a 
limiting reading frequency of 1 or 10 kHz. The TOUCAN technique, which is based on 
dispersive Fourier transform, can reach higher data acquisition rate, because there is no 
dependence on an optical spectrometer. The DFT itself is performed by propagating the laser 
through a dispersive optical element with very high group delay dispersion (GDD). When the 
laser pulse enters a dispersive medium, different frequency components travel at different 
phase velocities, accumulating different time delays. Consequently, the pulse duration is 
stretched by orders of magnitude above its original value. The resulting temporal shape will 
only be the function of the original spectral shape and the dispersion. Dispersion can be 
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considered as a transform, where each spectral component is mapped to the temporal domain. 
The relation between optical frequency and the corresponding time delay can be expressed in 
the far-field approximation [13] as: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0

2 3

0 0 0 0

T ω =GD ω +GDD ω ω-ω +

1 1
           + TOD ω ω-ω + FOD ω ω-ω +...

2 6

⋅

⋅ ⋅ ⋅ ⋅
 (5) 

where ω is the angular frequency, ω0 is the central angular frequency, T is accumulated time 
delay of the laser pulse traveling through the medium. The phase derivatives present in the 
equation are abbreviated as GD: group delay (first order), GDD: group delay dispersion 
(second order), TOD third order dispersion, FOD fourth order dispersion, etc…The effect of 
the third and even higher order dispersion can be neglected, if its effect is marginal compared 
to the effect of the first order GD and the second order GDD. Thus, the frequency-time 
mapping becomes linear in frequency as: 

 ( ) ( ) ( ) ( )
0 0 0

T ω =GD ω +GDD ω ω-ω⋅  (6) 

Consequently, the spectral and temporal shape become congruent and by dispersing the 
output signal of an f-to-2f interferometer, the spectral interference pattern is mapped to the 
temporal domain. The stretched pulse duration can reach hundreds of nanoseconds, which 
allows for reading the temporal modulation with a relatively slow photodetector. The 
produced electric signal can then be digitized by an analog-to-digital (A/D) converter with a 
bandwidth at least twice the modulation frequency. The CEP drift can be extracted from the 
phase of the digital waveform, provided the dispersion is fully characterized. 

3. Experimental setup 

The concept has been demonstrated on a high-repetition rate system producing CEP stable 
few-cycle pulses equipped with a conventional f-to-2f measurement device for comparison 
and validation. The experimental setup comprises a commercial state-of-the-art mid-infrared 
(MIR) laser system operated at ELI-ALPS [16] and the MIR laser setup is shown in Fig. 1(a). 
The system produces passively CEP stabilized 150 µJ, 4 optical-cycle (42 fs) pulses centered 
at 3.2 µm at a repetition rate of 100 kHz. This OPCPA system uses a Dazzler (Fastlite) [17] to 
accurately shape the spectral amplitude and control the phase, including the CEP. Therefore, 
the CEP of the output pulses can be set to an arbitrary value in a very simple way. A sampled 
portion of the compressed output is sent to a commercial CEP measurement device based on a 
f-to-2f interferometer and a conventional grating spectrometer (Fringeezz from Fastlite) [18]. 
This device is able to record single shot CEP values at an under sampled repetition rate of 10 
kHz, that is one pulse out of 10 on the 100 kHz laser system, and it is used for calibration and 
cross-checking purposes. 

Another fraction of the laser output is steered towards the TOUCAN setup. The 
experimental arrangement of this single-shot CEP drift measurement device is shown in Fig. 
1(b). The device consists of a f-to-2f interferometer and a DFT measuring system. Dispersion 
is achieved in the current case by propagation in a dispersion compensation fiber (DCF, FSC-
DCM-014D, OFS/Lucent). The spectral modulations originating from the f-to-2f 
interferometer (described in the concept section) are mapped into the temporal domain and 
detected by an InGaAs photodiode (DET01CFC, Thorlabs). The temporal waveform is then 
digitized and recorded with a 600 MHz oscilloscope (RTO2004, R&S). The oscilloscope was 
operated in segmented memory mode (ultra segmentation) in order to record every waveform 
at the full repetition rate of 100 kHz [19]. 
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dispersion based on interferometric techniques [20]. An ideal dispersion measurement 
technique would propagate a frequency comb in the fiber and detect on the oscilloscope the 
delays between each successive frequency line. Such a comb was not available, so the 
modulated spectrum from the f-to-2f, mimicking a periodic spectral etalon, was used. 

The ~100 ns temporal waveform was measured with the photodiode and oscilloscope. The 
spectral measurements were made using a high resolution optical spectrum analyzer (AQ6375 
B, Yokogawa). Both measurements were low-pass filtered during processing to remove the 
high frequency noise. The modulation, as predicted by the preliminary calculation, is 
resolvable with the photodiode and the A/D converter of the oscilloscope. The fiber adds a 
positive chirp to the signal so the temporal waveform is reversed when compared to the 
spectrum, if plotted as a function of wavelength. Superposition is thus visualized with the 
time axis reversed (Fig. 3.). An excellent overlap is obtained when the frequency dependent 
time delay function (Eq. (5).) is fully retrieved. 

 

Fig. 3. f-2-2f interference pattern used to determine the dispersion of the fiber. Superimposed 
are the temporal waveform recorded with a photodiode and digitalized by the oscilloscope 
plotted with a reversed time axis and the spectrum recorded with an optical spectrum analyzer. 

The different dispersion orders of the equation are determined by fitting the dispersed 
spectral signal over the whole temporal signal according to Eq. (5) using an iterative 
algorithm, shown in Fig. 4. In the first step, the dispersion parameters are given initial values 
and the resultant temporal profile is calculated. The difference between the measured and the 
calculated temporal signals are used as a fitting error, which is subsequently minimized via 
the iteration process. The most intense peaks have the highest weight in the fitting process, 
making local difference smaller for the main peaks when compared to the side peaks. The 
comparative measurement of the interference pattern was done for 13 data sets with different 
CEP values. 
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is found as decimating a data set is not equivalent to low-pass filtering the data [23]. After 
decimation, high-frequency noise contributions are aliased into the lower frequency region, 
which means that the overall noise level does not change significantly. The measurements 
with the conventional technique gives a smaller CEP noise standard deviation than the 
TOUCAN method. The reported uncertainty of the Fringeezz measurement originate from the 
spectral resolution of the grating spectrometer, provided by the manufacturer. The uncertainty 
of the TOUCAN method originates from the temporal resolution of the recorded waveforms 
and partly on time jitter affecting the measurement. The measurement resolution is set by the 
time resolution of the oscilloscope. The frequency to time mapping is not perfectly linear so 
the CEP resolution differs at different time in the waveform. For instance, the CEP resolution 
ranges from 33 to 43 mrad along the recorded waveform and is 38 mrad at the center where 
the CEP value is extracted. Multiple data points are used for the CEP extraction so this value 
should only be considered as an upper bound for the uncertainty. The standard deviation of 
the time jitter is 126 ps, which translates to an additional 48 mrad CEP noise. The combined 
random error can be calculated by taking the root sum of squares of these two uncertainties, 
which is also displayed in Table 1. 

Table 1. Measured CEP noise by different methods 

Fringeezz 
TOUCAN 
decimated 

TOUCAN 100 
kHz 

341 ± 5 mrad 351 ± 52 mrad 350 ± 52 mrad 

 
The validation of TOUCAN with the Fringeezz measurements is not straightforward as 

data set is being compared with another undersampled data set. The CEP standard deviation 
calculated on both data sets can be identical although the data may be uncorrelated i.e., the 
measured Fringeezz 10 kHz data set is shifted in time by several pulses compared to the 
decimated set. In this case, a correlation evaluation should identify the corresponding 10 kHz 
data sets. However, the correlation coefficient is insufficient to warrant the correct calibration 
of the device because multiplying one of the data set by an arbitrary small number would still 
produce almost the same correlation value. Then, in order to certify the CEP calibration, a 
linear fitting was performed on the scatter plot of the corresponding data sets (Fig. 7.). The 
slope indicates the relative magnification of the measured CEP between the two measurement 
techniques. A slope of 1 would be a high correlation (all points scattered along a narrow line) 
would confirm a proper calibration, which was the case in almost all experiments. 
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currently working on dedicated electronics able to extract the CEP on the fly at the full 
repetition rate. 

The TOUCAN experimental setup designed for this 100 kHz experiment is suitable 
without modifications for measurements at a repetition rate up to 10 MHz. The method can be 
possibly applied at even higher repetition rates with less dispersive fibers and faster scopes, 
with limitations imposed by the photodiode response time; the bandwidth of the dedicated 
DAQ hardware and analog data acquisition and recording times. For this reason, the prospect 
of MHz or even GHz single-shot CEP drift detection with the TOUCAN technique warrants 
further investigations. Also, many other laser systems produce few cycle pulses directly from 
an OPCPA or via postcompression however in the near IR spectral range (800 nm to 1030 
nm) with some of them operated at repetition rates in excess of 100 kHz. Further 
investigations are being carried out to transfer this concept to the single shot measurement of 
the CEP noise to this spectral range. In fact, many CEP sensitive experiments may require an 
actual pulse tagging if the laser system CEP noise cannot be reduced sufficiently. 

The energy needed for the CEP detection with the TOUCAN method was 2.5 µJ 
minimum with the current setup. This can be significantly lowered as f-to-2f interferometers 
with specialized optics require only nJ energies, and avalanche photodetectors sensitive at the 
telecom wavelength are readily available. With further development the energy requirements 
can be decreased orders of magnitude below that of the single-shot stereo-ATI phase meter. 
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