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In this paper, we provide a sufficient condition under which the vector-fields solution of mean-field optimal control problems formulated on continuity equations are Lipschitz in space. Our approach involves a novel combination of mean-field approximation results for infinite-dimensional multi-agent optimal control problems, along with a careful extension of an existence result of locally optimal Lipschitz feedbacks. The latter is based on the reformulation of a coercivity estimate in the language of the differential calculus of Wasserstein spaces.

Introduction

The mathematical analysis of collective behaviours in large systems of interacting agents has received an increasing attention from several communities during the past decade. Multi-agent systems are ubiquitous in applications ranging from aggregation phenomena in biology [START_REF] Bertozzi | Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups[END_REF][START_REF] Camazine | Self-Organization in Biological Systems[END_REF] to the understanding of crowd motion [START_REF] Bellomo | On the Dynamics of Social Conflicts: Looking for the Black Swan[END_REF][START_REF] Cristiani | Multiscale Modeling of Pedestrian Dynamics[END_REF], animal flocks [START_REF] Ballerini | Interaction Ruling Animal Collective Behavior Depends on Topological Rather than Metric Distance: Evidence from a Field Study[END_REF][START_REF] Cucker | Emergent Behavior in Flocks[END_REF], swarms of autonomous vehicles [START_REF] Bullo | Distributed Control of Robotic Networks[END_REF] or traffic flows [START_REF] Francesco | Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit[END_REF]. While the first studies on multi-agent systems were formulated in a graph-theoretic framework (see e.g. [START_REF] Bullo | Distributed Control of Robotic Networks[END_REF] and references therein), several recent models have started to rely on continuous-time dynamical systems to describe this type of collective dynamics. In this context, a multi-agent system is usually described by a family of coupled differential equations of the form ẋi (t) = v N [x(t)](t, x i (t)), [START_REF] Achdou | On the System of Partial Differential Equations Arising in Mean Field type Control[END_REF] where x = (x 1 , . . . , x N ) denotes the state of all the agents and v N [•](•, •) is a non-local velocity field depending both on the running agent and on the whole state of the system (see e.g. [START_REF] Bellomo | Advances in Theory, Models, and Applications[END_REF][START_REF] Cucker | Emergent Behavior in Flocks[END_REF]). However general and useful, these models may not be the most powerful ones in order to capture the global features of a multi-agent system. Besides, their intrinsic dependence on the number N of agents makes most of the classical computational approaches practically intractable for large systems. One of the most natural ideas to circumvent this model limitation is to approximate the large system of coupled ODEs written in (1) by a single infinite-dimensional dynamics via a process called mean-field limit (see e.g. [START_REF] Vlasov | Many-Particle Theory and its Application to Plasma[END_REF]). In this setting, the agents are supposed to be indistinguishable, and the assembly of particles is described by means of its spatial density µ(•). The evolution through time of this global quantity is prescribed by a non-local continuity equation of the form

∂ t µ(t) + ∇ • (v[µ(t)](t, •)µ(t)) = 0. ( 2 
)
Such a macroscopic approach has been successfully used e.g. to model pedestrian dynamics and biological systems, as well as to transpose the study of classical patterns such as consensus or flocking formation to the mean-field setting. From a quite different standpoint, J.M. Lasry and P.L. Lions proposed in their seminal paper [START_REF] Lasry | Mean Field Games[END_REF] a model for the self-organisation of large systems of rational agents based on the optimisation of a selfish cost, which led to the development of the theory of mean-field games (see also [START_REF] Huang | Large Population Stochastic Dynamic Games : Closed-Loop McKean-Vlasov Systems and the Nash Certainty Equivalence Principle[END_REF]). Both facets of the literature have hugely benefited from the recent progresses made in the theory of optimal transportation, for which we point to the reader to the reference monographs [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF][START_REF] Villani | Optimal Transport : Old and New[END_REF].

More recently, the problem of controlling multi-agent systems so as to promote a desired behaviour or configuration became relevant in a growing number of applications. Motivated by implementability and efficiency issues, many contributions have therefore been aiming to generalise relevant notions of control theory to PDEs of the form (2) serving as mean-field approximations of the discrete system [START_REF] Achdou | On the System of Partial Differential Equations Arising in Mean Field type Control[END_REF]. The resulting class of controlled continuity equations are usually written as

∂ t µ(t) + ∇ • (v[µ(t)](t, •) + u(t, •))µ(t) = 0.
(3)

While a few results have been dealing with controllability issues [START_REF] Duprez | Approximate and Exact Controllability of the Continuity Equation with a Localized Vector Field[END_REF][START_REF] Duprez | Minimal Time Problem for Crowd Models with a Localized Vector Field[END_REF] or the explicit design of control laws [START_REF] Caponigro | Sparse Stabilization and Optimal Control of the Cucker-Smale Model[END_REF][START_REF] Caponigro | Sparse Stabilization and Control of Alignment Models[END_REF][START_REF] Piccoli | Control of the kinetic Cucker-Smale model[END_REF], the major part of the literature has been focusing on mean-field optimal control problems, with contributions ranging from existence results [START_REF] Fornasier | Mean-Field Optimal Control as Gamma-Limit of Finite Agent Controls[END_REF][START_REF] Fornasier | Mean-Field Sparse Optimal Control[END_REF][START_REF] Fornasier | Mean Field Optimal Control[END_REF] to first-order optimality conditions [START_REF] Bongini | Mean Field Pontryagin Maximum Principle[END_REF][START_REF] Bonnet | A Pontryagin Maximum Principle in Wasserstein Spaces for Constrained Optimal Control Problems[END_REF][START_REF] Bonnet | The Pontryagin Maximum Principle in the Wasserstein Space[END_REF][START_REF] Burger | Mean-Field Optimal Control and Optimality Conditions in the Space of Probability Measures[END_REF][START_REF] Cavagnari | Generalized Control Systems in the Space of Probability Measures. Set-Valued and Var[END_REF][START_REF] Cavagnari | Generalized Dynamic Programming Principle and Sparse Mean-Field Control Problems[END_REF][START_REF] Pogodaev | Optimal Control of Continuity Equations[END_REF] and numerical methods [START_REF] Achdou | On the System of Partial Differential Equations Arising in Mean Field type Control[END_REF][START_REF] Burger | Instantaneous Control of Interacting Particle Systems in the Mean-Field Limit[END_REF][START_REF] Pogodaev | Numerical Algorithm for Optimal Control of Continuity Equations[END_REF]. One of the distinctive features of continuity equations is that they require fairly restrictive regularity assumptions on the driving velocity fields to be classically well-posed. While (3) makes sense whenever the drift and control are measurable and satisfy some integrability bounds, the corresponding notion of so-called superposition solution (see Theorem 5 below) is fairly weak and of limited practical use. In [START_REF] Ambrosio | Transport Equation and Cauchy Problem for BV Vector Fields[END_REF][START_REF] Di Perna | Ordinary Differential Equations, Transport Theory and Sobolev Spaces[END_REF], a theory of well-posedness was developed for continuity equations with Sobolev and BV velocity fields . However powerful and general, this theory has not yet been generalised to non-local driving fields, and is inherently restricted to measures which are absolutely continuous with respect to the ambient Lebesgue measure. Up to now, the only identified setting in which a strong form of classical well-posedness holds (see Theorem 6 below) for arbitrary measures for (3) is that of Cauchy-Lipschitz regularity (see e.g. [START_REF] Ambrosio | Continuity Equations and ODE Flows with Non-Smooth Velocities[END_REF]Section 3] and [START_REF] Piccoli | Transport Equation with Nonlocal Velocity in Wasserstein Spaces : Convergence of Numerical Schemes[END_REF]). In this framework, (3) can be formulated indifferently on empirical or absolutely continuous measures, its solutions are unique, and stability estimates are available both with respect to the right-hand side of the equation and its initial datum. This latter fact is highly relevant to our purpose, since optimal control problems formulated on continuity equations are frequently studied in an "optimise-then-discretise" spirit. Indeed, the main desirable property of a control law designed for the kinetic model ( 3) is be to provide a strategy which can be in turn applied -either exactly or approximately -to finite-dimensional systems of the form (1). In the case in which the infinite-dimensional strategy is not strictly optimal for the discrete multi-agent system, one would also like to have access to quantitative error estimates between the true solution and the approximate one. From a numerical standpoint, Cauchy-Lipschitz regularity is also relevant to ensure the well-posedness of numerical methods such as semi-Lagrangian schemes (see e.g. [START_REF] Carlini | A Fully Discrete Semi-Lagrangian Scheme for a First Order Mean Field Game Problem[END_REF][START_REF] Chang | A Practical Difference Scheme for Fokker-Planck Equations[END_REF]), as well as to prevent the apparition of Lavrentievtype instabilities in the context of optimal control (see e.g. [START_REF] Lavrentiev | Sur Quelques Problèmes du Calcul des Variations[END_REF]). For all these reasons, a wide portion of the literature of mean-field control has been dealing with problems in which one imposes an a priori Lipschitz-inspace regularity on the admissible controls (see e.g. [START_REF] Bongini | Mean Field Pontryagin Maximum Principle[END_REF][START_REF] Bonnet | A Pontryagin Maximum Principle in Wasserstein Spaces for Constrained Optimal Control Problems[END_REF][START_REF] Bonnet | The Pontryagin Maximum Principle in the Wasserstein Space[END_REF][START_REF] Fornasier | Mean-Field Sparse Optimal Control[END_REF][START_REF] Fornasier | Mean Field Optimal Control[END_REF]), or at least some continuity assumptions on the driving fields (see [START_REF] Cavagnari | Generalized Control Systems in the Space of Probability Measures. Set-Valued and Var[END_REF][START_REF] Cavagnari | Generalized Dynamic Programming Principle and Sparse Mean-Field Control Problems[END_REF]). A natural question is then to ask whether this regularity property can hold intrinsically or not, and if yes under which assumptions. In this paper, we investigate this question in the setting of mean-field optimal control problems, formulated on controlled dynamics given by [START_REF] Ambrosio | Continuity Equations and ODE Flows with Non-Smooth Velocities[END_REF].

Remark 1 ("Optimise-then-discretise "for hyperbolic PDEs). Let it be noted that the problem of ensuring a correspondence between solutions of optimal control problems governed by hyperbolic partial differential equations and their discrete approximations is in general highly non-trivial. Indeed, it has been noticed as early as [START_REF] Glowinski | A Mixed Finite Element Formulation for the Boundary Controllability of the Wave Equation[END_REF] that discretizations of the Hibert Uniqueness Method introduced by J.L. Lions in [START_REF] Lions | Contrôlabilité Exacte, Stabilisation et Perturbation de Systèmes Distribués[END_REF] to perform the exact controllability of a wide class of partial differential equations could give rise to high frequency oscillations and diverge. We refer the reader to [START_REF] Ervedoza | Numerical Approximation of Exact Control for Waves[END_REF] and references therein for a modern treatment of this problem.

It is well-known that solutions of Wasserstein optimal control problems need not be regular in general. Indeed, there exists a vast literature devoted to the study of the regularity properties of solutions to Monge's optimal transport problem (see e.g. [START_REF] Phillipis | Regularity for Solutions of the Monge-Ampère Equation[END_REF][START_REF] Figalli | Hölder Continuity and Injectivity of Optimal Maps[END_REF] for some of the farthest-reaching contributions on this topics), mostly via PDE techniques. However, few of these results can be translated into regularity properties on the optimal tangent velocity field v * (•, •) solving the Benamou-Brenier problem

(P BB )            min v∈L 2 T 0 R d 1 2 |v(t, x)| 2 dµ(t)(x)dt s.t. ∂ t µ(t) + ∇ • (v(t, •)µ(t)) = 0, µ(0) = µ 0 and µ(T ) = µ 1 .
This tangent vector field should be -roughly speaking -as regular as the derivative of the optimal transport map. For the optimal control problem (P BB ), Caffarelli proved in [START_REF] Caffarelli | Some Regularity Properties of Solutions of Monge Ampère Equation[END_REF] that v(t, •) ∈ C k,α loc (R d , R d ) for some α ∈ (0, ᾱ) whenever µ 0 , µ 1 ∈ P ac (R d ) have densities with respect to the d-dimensional Lebesgue measure which have regularity at least

C k, ᾱ loc (R d , R d ) .
Another context in which the regularity of mean-field optimal controls has been (indirectly) investigated is that of mean-field games. Indeed, there is a large literature dedicated to the regularity of the value function (t, x) → V * (t, x) solving the backward Hamilton-Jacobi equation of the coupled mean-field games system

∂ t V (t, x) + H(t, x, D x V (t, x)) = f (t, x, µ(t)), V (T, x) = g T (x, µ(T )), ∂ t µ(t) -∇ • (∇ p H(t, x, D x V (t, x))µ(t)) = 0, µ(0) = µ 0 .
In the setting of potential mean-field games, the tangent velocity field v * (t, x) = -∇ p H(t, x, D x V * (t, x)) is the optimal control associated to a mean-field optimal control problem. Therefore, regularity properties of the optimal control can be recovered from that of the optimal value function, and are expected to have one order of differentiation fewer. We refer the reader e.g. to [START_REF] Cardaliaguet | Sobolev Regularity for the First Order Hamilton-Jacobi Equation[END_REF] for Sobolev regularity results and to [START_REF] Cardaliaguet | Hölder Continuity to Hamilton-Jacobi Equations with Super-Quadratic Growth in the Gradient and Unbounded Right-Hand Side[END_REF] for Hölder regularity properties.

In this paper, we investigate the intrinsic Lipschitz-in-space regularity of the solutions of general mean-field optimal control problems of the form (P)

           min u∈U T 0 L(t, µ(t)) + R d ψ(u(t, x))dµ(t)(x) dt + ϕ(µ(T )) s.t. ∂ t µ(t) + ∇ • ((v[µ(t)](t, •) + u(t, •))µ(t)) = 0, µ(0) = µ 0 ∈ P c (R d ).
The set of admissible controls for (P) is defined by

U = L 1 ([0, T ], L 1 (R d , U ; µ(t)))
where U ⊂ R d is a convex and compact set. Remark that since we do not impose any a priori regularity assumptions on the control vector fields u(•, •), there may not exist solutions to the non-local transport equation (3) driving problem (P). Moreover even if they do exist, these solution will not be classically well-posed and only defined in a weak sense (see Theorem 5 below).

The main contribution of this paper is the following existence result of intrinsically Lipschitz mean-field optimal controls for (P).

Theorem 1 (Existence of Lipschitz-in-space optimal controls for (P)).

Let µ 0 ∈ P c (R d ), (µ 0 N ) ⊂ P c (R d
) be a sequence of empirical measures narrowly converging towards µ 0 . Suppose that hypotheses (H) of Section 4 hold, and that the mean-field coercivity assumption (CO N ) described in Section 5 holds as well.

Then, there exists a mean-field optimal pair control-trajectory

(u * (•, •), µ * (•)) ∈ U × Lip([0, T ], P c (R d ))
for problem (P). Moreover, the optimal control map (t, x)

∈ [0, T ] × R d → u * (t, x) is L U -Lipschitz in space for L 1 -almost every t ∈ [0, T ],
where the uniform constant L U only depends on the data of the problem (P).

The proof of this result is built around two main ingredients. The first one is an existence result for meanfield optimal controls which was derived in [START_REF] Fornasier | Mean-Field Optimal Control as Gamma-Limit of Finite Agent Controls[END_REF] and recalled in Theorem 7 below. In the latter, it is proven under very general assumptions that there exist optimal solutions of problem (P) which can be recovered as Γ-limits in a suitable topology of sequences of solutions to the discrete problems

(P N )              min u(•)∈UN T 0 L N (t, x(t)) + 1 N N i=1 ψ(u i (t)) dt + ϕ N (x(T )) s.t. ẋi (t) = v N [x(t)](t, x i (t)) + u i (t), x i (0) = x 0 i ∈ R d .
Here,

U N = L ∞ ([0, T ], U N ), and the functionals (t, x, x) ∈ [0, T ] × R d × (R d ) N → v N [x](t, x), (t, x) ∈ [0, T ] × (R d ) N → L N (t, x) and x ∈ (R d ) N → ϕ(x) are discrete approximating sequences (see Definition 8 below) of v[•](•, •), L(•, •) and ϕ(•) respectively.
The second key component of our approach is a careful adaptation to the family of problems (P N ) of a methodology recently developed in [START_REF] Cibulka | Metrically Regular Differential Generalized Equations[END_REF][START_REF] Dontchev | On the Existence of Lipschitz Continuous Optimal Feedback Control[END_REF]. These contributions provide powerful metric regularity results (see Definition 11 below) for a large class of differential inclusions. This part relies crucially on the following uniform mean-field coercivity estimate (CO N ) for the sequence of problems (P N )

Hess x ϕ N [x * N (T )](y(T ), y(T )) - T 0 Hess x H N [t, x * N (t), r * N (t), u * N (t)](y(t), y(t))dt - T 0 Hess u H N [t, x * N (t), r * N (t), u * N (t)](w(t), w(t))dt ≥ ρ T T 0 |w(t)| 2 N dt, along optimal mean-field Pontryagin triples (u * N (•), x * N (•), r * N (•)) (see Proposition 6 below). In this context, Hess (•)[•](•, •)
denotes the discrete version of the intrinsic Wasserstein Hessian bilinear form (see e.g. [START_REF] Chow | A Partial Laplacian as an Infinitesimal Generator on the Wasserstein Space[END_REF][START_REF] Gigli | Second Order Analysis on (P 2 (M ), W 2 )[END_REF]), which construction is further detailed in Section 2. In essence, this uniform coercivity assumption allows us to inverse the maximisation condition stemming from an application of the Pontryagin Maximum Principle to (P N ), with a control on the Lipschitz constant of this inverse. The main subtlety lies in the fact that we need these estimates to be uniform with respect to N . Consequentially, we apply to (P N ) an adapted mean-field Pontryagin Maximum Principle -which is the discrete counterpart of the Wasserstein PMP studied in [START_REF] Bongini | Mean Field Pontryagin Maximum Principle[END_REF][START_REF] Bonnet | A Pontryagin Maximum Principle in Wasserstein Spaces for Constrained Optimal Control Problems[END_REF][START_REF] Bonnet | The Pontryagin Maximum Principle in the Wasserstein Space[END_REF] -, and express the coercivity condition in the language of Wasserstein calculus. From there on, the statement of Theorem 1 can then be recovered by standard limit arguments which can be found e.g. in [START_REF] Bongini | Mean Field Pontryagin Maximum Principle[END_REF][START_REF] Fornasier | Mean Field Optimal Control[END_REF].

Remark 2 (Comparison with related contributions in mean-field games). It was recently brought to our attention that a result similar to Theorem 1 above was derived in [START_REF] Gangbo | Existence of a Solution to an Equation Arising in the Theory of Mean Field Games[END_REF] for mean-field games, which are known to be linked in certain cases to optimal control problems in Wasserstein spaces (see [START_REF] Lasry | Mean Field Games[END_REF]). In [START_REF] Gangbo | Existence of a Solution to an Equation Arising in the Theory of Mean Field Games[END_REF], the authors show that the value function of a certain class of first-order mean-field games is continuously differentiable with Lipschitz derivative when the data are of class C 3 and the time horizon T is sufficiently small. These two requirement are very close to our standing assumptions. Indeed, we posit in hypotheses (H) of Section 4 that all our data are C 2,1 loc , and it is illustrated in Section 6 that our uniform coercivity estimate (CO N ) can be interpreted as a quantitative condition comparing the relative size of the time horizon T with other constants of the problem. We would also like to stress that our approach allows for a much wider class of dynamics and cost functionals.

Moreover, the proof strategy of [START_REF] Gangbo | Existence of a Solution to an Equation Arising in the Theory of Mean Field Games[END_REF] is fairly close to the one that we independently developed here, as it relies on the application of inverse function mappings to sequences of approximations by empirical measures, with a quantitative control on the Lipschitz constant of the inverse. Let it also be noted that the results of [START_REF] Gangbo | Existence of a Solution to an Equation Arising in the Theory of Mean Field Games[END_REF] have recently been extended in [START_REF] Mayorga | Short Time Solution to the Master Equation of a First Order Mean Field Game[END_REF] to a broader class of first-order mean-field games systems.

The structure of this article is the following. In Section 2, we recall several general prerequisites on measure theory and optimal transport. In Section 3, we review notions pertaining to finite-dimensional optimal control problems, with a particular emphasise on Lipschitz feedbacks. We proceed by exposing in Section 4 wellposedness results and concepts dealing with continuity equations and mean-field optimal control problems. In Section 5, we state precisely the coercivity assumption (CO N ) and prove our main result Theorem 1. We conclude by providing in Section 6 an analytical example in which our coercivity estimate is both necessary and sufficient for the existence of Lipschitz-in-space mean-field optimal controls.

Preliminaries

In this section, we introduce results and notations that we will use throughout the article. Section 2.1 presents known results of analysis in measure spaces and optimal transport, while Section 2.2 deals with first and second differential calculus in Wasserstein spaces. We introduce in Section 2.3 the notion of mean-field approximating sequence, along with a discretised counterpart of the Wasserstein calculus.

Analysis in measure spaces

In this section, we introduce some classical notations and results of analysis in measure spaces and optimal transport theory. For these topics, we refer the reader to [START_REF] Ambrosio | Functions of Bounded Variations and Free Discontinuity Problems[END_REF] and [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF][START_REF] Villani | Optimal Transport : Old and New[END_REF] respectively.

We denote by (M(R d , R m ), • T V ) the Banach space of m-dimensional vector-valued Borel measures defined on R d endowed with the total variation norm, defined by

ν T V := sup +∞ k=1 |ν(E k )| s.t. E k are disjoint Borel sets and +∞ k=1 E k = R d , for any ν ∈ M(R d , R m ).
It is known by Riesz's Theorem (see e.g. [START_REF] Ambrosio | Functions of Bounded Variations and Free Discontinuity Problems[END_REF]Theorem 1.54]) that M(R d , R m ) can be identified with the topological dual of the Banach space (C 0 0 (R d , R m ), • C 0 ), which is the completion of the space C 0 c (R d , R m ) of continuous and compactly supported functions. The latter is endowed with the duality bracket

ν, φ C 0 := m k=1 R d φ k (x)dν k (x), (4) 
defined for any ν ∈ M(R d , R m ) and φ ∈ C 0 c (R d , R m ). Given a positive Borel measure ν ∈ M(R d , R + ) and an element p ∈ [1, +∞], we denote respectively by L p (Ω, R m ; ν) and W 1,p (Ω, R m ; ν) the corresponding spaces of p-integrable and Sobolev functions. In the case where ν = L d is the standard d-dimensional Lebesgue measure, we simply denote these spaces by L p (Ω, R m ) and W 1,p (Ω, R m ).

We denote by P(R d ) ⊂ M(R d , R + ) the set of Borel probability measures and for p ≥ 1, we define P p (R d ) as the subset of P(R d ) of measures having finite p-th moment, i.e.

P p (R d ) = {µ ∈ P(R d ) s.t. R d |x| p dµ(x) < +∞}.
The support of a Borel measure ν ∈ M(R d , R m ) is defined as the closed set supp(ν) = {x ∈ R d s.t. ν(N ) = 0 for any neighbourhood N of x}. We denote by P c (R d ) ⊂ P(R d ) the subset of Borel probability measures with compact support. Definition 1 (Absolute continuity and Radon-Nikodym derivative). Let Ω ⊂ R m and U ⊂ R d be two Borel sets. Given a pair of measures (ν, µ) ∈ M(Ω, U ) × M(Ω, R + ), we say that ν is absolutely continuous with respect to µ -denoted by ν ≪ µ -, provided that |ν|(B) = 0 whenever µ(B) = 0 for any Borel set B ⊂ Ω.

Moreover, we have that ν ≪ µ if and only if there exists a Borel map u ∈ L 1 (Ω, U ; µ) such that ν = u(•)µ. This map is referred to as the Radon-Nikodym derivative of ν with respect to µ, and denoted by u(•) := dν dµ (•). We recall in the following definition the notions of pushforward of a Borel probability measure through a Borel map and of transport plan.

Definition 2 (Pushforward of a measure through a Borel map). Given a measure µ ∈ P(R d ) and a Borel map f :

R d → R d , the pushforward f # µ of µ through f (•) is defined as the Borel probability measure such that f # µ(B) = µ(f -1 (B)) for any Borel set B ⊂ R d .
Definition 3 (Transport plans). Let µ, ν ∈ P(R d ). We say that γ ∈ P(R 2d ) is a transport plan between µ and ν -denoted by γ ∈ Γ(µ, ν) -, provided that π 1 # γ = µ and π 2 # γ = ν, where π 1 , π 2 : R 2d → R d respectively denote the projection on the first and second component.

In 1942, the Russian mathematician Leonid Kantorovich introduced the optimal mass transportation problem in its modern mathematical formulation. Given two probability measures µ, ν ∈ P(R d ) and a cost function c : R 2d → R, one searches for a transport plan γ ∈ Γ(µ, ν) such that

R 2d c(x, y)dγ(x, y) = min γ R 2d c(x, y)dγ ′ (x, y) s.t. γ ′ ∈ Γ(µ, ν) .
This problem has been extensively studied in very broad contexts (see e.g. [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF][START_REF] Villani | Optimal Transport : Old and New[END_REF]), with high levels of generality on the underlying spaces and cost functions. In the particular case where c(x, y) = |x -y| p for some real number p ≥ 1, the optimal transport problem can be used to define a distance overt P p (R d ).

Definition 4 (Wasserstein distance and Wasserstein spaces). Given two measures µ, ν ∈ P p (R d ), the p-Wasserstein distance between µ and ν is defined by

W p (µ, ν) := min γ R 2d |x -y| p dγ(x, y) 1/p s.t. γ ∈ Γ(µ, ν) .
The set of plans γ ∈ Γ(µ, ν) achieving this optimal value is denoted by Γ o (µ, ν) and referred to as the set of optimal transport plans between µ and ν. The space (P p (R d ), W p ) of probability measures with finite momentum of order p endowed with the p-Wasserstein metric is called the Wasserstein space of order p.

We recall some of the interesting properties of these spaces in the following proposition (see e.g. [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF]Chapter 7] or [START_REF] Villani | Optimal Transport : Old and New[END_REF]Chapter 6]).

Proposition 1 (Elementary properties of the Wasserstein spaces). The Wasserstein spaces (P p (R d ), W p ) are separable metric spaces, and the distance W p metrizes the weak- * topology associated to the duality pairing (4):

W p (µ, µ n ) -→ n→+∞ 0 if and only if      µ n ⇀ * n→+∞ µ, R d |x| p dµ n (x) -→ n→+∞ R d |x| p dµ(x).
Given two measures µ, ν ∈ P(R d ), the Wasserstein distances are ordered, i.e. it holds that W p1 (µ, ν) ≤ W p2 (µ, ν) whenever p 1 ≤ p 2 . Moreover when p = 1, the following Kantorovich-Rubinstein duality formula holds

W 1 (µ, ν) = sup φ R d φ(x) d(µ -ν)(x) s.t. Lip(φ; R d ) ≤ 1 . ( 5 
)
We end this introductory paragraph by recalling in the following theorem the concept of disintegration of a family of vector-valued measures (see e.g. [4, Theorem 2.28]).

Theorem 2 (Disintegration). Let Ω 1 ⊂ R m1 , Ω 2 ⊂ R m2 and U ⊂ R d be Borel sets. Let ν ∈ M(Ω 1 × Ω 2 , U ) and π 1 : R m1 × R m2 → R m1 be the projection on the first factor. Defining the measure µ := π 1 # |ν| ∈ M(Ω 1 , R + ), there exists a µ-almost uniquely determined Borel family of measures {ν x } x∈Ω1 ⊂ M(Ω 2 , U ) such that Ω1×Ω2 f (x, y)dν(x, y) = Ω1 Ω2 f (x, y)dν x (y) dµ(x) (6) for any Borel map f ∈ L 1 (Ω 1 × Ω 2 , |ν|).
This construction is referred to as the disintegration of ν onto µ, and it is denoted by ν = Ω1 ν x dµ(x).

First and second order differential calculus over

(P 2 (R d ), W 2 )
In this section, we introduce key concepts related to first and second order differential calculus in the Wasserstein space (P 2 (R d ), W 2 ). We refer the reader to [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF] for an exhaustive treatment of the first-order theory, and to [START_REF] Gigli | Second Order Analysis on (P 2 (M ), W 2 )[END_REF] for the theoretical foundations of the second-order theory. We borrow the main working definitions dealing with Wasserstein Hessians from [27, Section 3]. Throughout this section, we denote by φ : P 2 (R d ) → R a lower-semicontinuous and proper functional with non-empty effective domain

D(φ) = {µ ∈ P 2 (R d ) s.t. φ(µ) < +∞}.
We start by introducing in the following definition the notions of classical subdifferential and superdifferential for functionals defined over (P 2 (R d ), W 2 ).

Definition 5 (Classical Wasserstein subdifferential and superdifferentials). Let µ ∈ D(φ). We say that a map

ξ ∈ L 2 (R d , R d ; µ) belongs to the classical subdifferential ∂ -φ(µ) of φ(•) at µ provided that φ(ν) -φ(µ) ≥ sup γ∈Γo(µ,ν) R 2d ξ(x), y -x dγ(x, y) + o(W 2 (µ, ν)), for all ν ∈ P 2 (R d ). Similarly, we say that a map ξ ∈ L 2 (R d , R d ; µ) belongs to the classical superdifferential ∂ + φ(µ) of φ(•) at µ if (-ξ) ∈ ∂ -(-φ)(µ).
Following [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF]Chapter 8], we define the analytical tangent space Tan µ P 2 (R d ) to the Wasserstein space P 2 (R d ) at some measure µ by

Tan µ P 2 (R d ) := ∇C ∞ c (R d ) L 2 (µ) = ∇ξ s.t. ξ ∈ C ∞ c (R d ) L 2 (µ) . ( 7 
)
In the next definition, we recall the notion of differentiable functional over P 2 (R d ).

Definition 6 (Differentiable functionals in (P

2 (R d ), W 2 )). A functional φ : P 2 (R d ) → R is said to be differentiable at some µ ∈ D(φ) if ∂ -φ(µ) ∩ ∂ + φ(µ) = ∅.
In this case, there exists a unique elements

∇ µ φ(µ) ∈ ∂ -φ(µ) ∩ ∂ + φ(µ) ∩ Tan µ P 2 (R d ), called the Wasserstein gradient of φ(•) at µ, which satisfies φ(ν) -φ(µ) = R 2d ∇ µ φ(µ)(x), y -x dγ(x, y) + o(W 2 (µ, ν)), ( 8 
)
for any ν ∈ P 2 (R d ) and γ ∈ Γ o (µ, ν).
From the characterization (8) of the Wasserstein gradient ∇ µ φ(µ), we can deduce the following chain rule along elements of Tan µ P 2 (R d ) (see [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF]Proposition 10.3.18]).

Proposition 2 (First-order chain rule). Suppose that φ(•) is differentiable at µ ∈ D(φ). Then for any ξ ∈ Tan

µ P 2 (R d ), the map s ∈ R → φ((Id + sξ) # µ) is differentiable at s = 0 with L ξ φ(µ) := d ds φ((Id + sξ) # µ) |s=0 = R d ∇ µ φ(µ)(x), ξ(x) dµ(x), ( 9 
)
where L ξ φ(µ) denotes the Lie derivative of φ(•) at µ in the direction ξ ∈ Tan µ P 2 (R d ).

In the sequel, we will also need a notion of second-order derivative for functionals defined over P 2 (R d ). We therefore introduce in the following definition the notion of Wasserstein Hessian bilinear form for a sufficiently regular functional φ(•).

Definition 7 (Hessian bilinear form in (P

2 (R d ), W 2 )). Suppose that φ(•) is differentiable at µ ∈ D(φ) and suppose that for any ξ ∈ ∇C ∞ c (R d ), the map L ξ φ : ν ∈ P 2 (R d ) → ∇ µ φ(ν), ξ L 2 (ν) ,
is differentiable at µ in the sense of Definition 6. Then, we define the partial Wasserstein Hessian of φ(•) at µ as the bilinear form

Hess φ[µ](ξ 1 , ξ 2 ) := L ξ2 (L ξ1 φ(µ)) -L Dξ1ξ2 φ(µ), ( 10 
)
for any ξ 1 , ξ 2 ∈ ∇C ∞ c (R d ). Moreover, if there exists a constant C µ > 0 such that Hess φ[µ](ξ 1 , ξ 2 ) ≤ C µ ξ 1 L 2 (µ) ξ 2 L 2 (µ) ,
we denote again by Hess φ[µ](•, •) its extension to Tan µ P 2 (R d ) × Tan µ P 2 (R d ) and we say that φ(•) is twice differentiable at µ.

We end this preparatory section by providing in the following proposition a condensed version of several statements of [START_REF] Chow | A Partial Laplacian as an Infinitesimal Generator on the Wasserstein Space[END_REF]Section 3]. This will allow us to derive an analytical and natural expression for the Hessian bilinear form, as well as a second-order differentiation formula for Wasserstein functionals.

Proposition 3 (Wasserstein Hessian and second-order expansion). Suppose that φ(•) is differentiable at µ ∈ D(φ) in the sense of Definition 6, and that the maps

y ∈ R d → ∇ µ φ(µ)(y) and ν ∈ P 2 (R d ) → ∇ µ φ(ν)(x)
are differentiable at x ∈ R d and µ ∈ D(φ) respectively. Then, φ(•) is twice differentiable in the sense of Definition 7, and its Wasserstein Hessian writes explicitly as 11)

Hess φ[µ](ξ 1 , ξ 2 ) = R d D x ∇ µ φ(µ)(x)ξ 1 (x), ξ 2 (x) dµ(x) + R 2d D 2 µ φ(µ)(x, y)ξ 1 (x), ξ 2 (y) dµ(x)dµ(y), (
for any ξ 1 , ξ 2 ∈ Tan µ P 2 (R d ).
Here, the map

D x ∇ µ φ(µ)(x) ∈ R d×d is the classical differential of ∇ µ φ(µ)(•) at x ∈ R d , while D 2 µ φ(µ)(x,
•) : R d → R d×d denotes the matrix-valued map which columns are the Wasserstein gradients of the components of ∇ µ φ(µ)(x) defined as in Definition 6. Moreover, one has that

d ds L ξ1 φ((Id + sξ 2 ) # µ) |s=0 = Hess φ[µ](ξ 1 , ξ 2 ) + L Dξ1ξ2 φ(µ), ( 12 
)
for any ξ 1 , ξ 2 ∈ ∇C ∞ c (R d ).

Mean-field adapted structures and discrete measures

In this section, we present several notions dealing with functionals defined over empirical measures, along with an adapted discrete version of the differential structure described in Section 2.2. We denote by

P N (R d ) = { 1 N N i=1 δ xi s.t. (x, . . . , x N ) ∈ (R d ) N } the set of N -empirical probability measures over R d .
It is a standard result in optimal transport theory (see e.g. [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF]Chapter 7]) that ∪ N P N (R d ) is a dense subset of P(R d ) with respect to the narrow topology. For any N ≥ 1, we denote by x = (x 1 , . . . , x N ) a given element of (R d ) N and by µ

[x] := 1 N N i=1 δ xi ∈ P N (R d ) its associated empirical measure. A map φ : (R d ) N → R m is said to be symmetric if φ • σ(•) = φ(•) for any d-blockwise permutation σ : (R d ) N → (R d ) N .
In the following definition, we introduce the notion of mean-field approximating sequence for a continuous functional φ(•) defined over P c (R d ).

Definition 8 (Mean-field approximating sequence). Given an integer n ≥ 1 and a set Ω ⊂ R n , we define the mean-field approximating sequence of a functional

F ∈ C 0 (Ω × P c (R d ), R m ) as the family of symmetric maps (F N (•, •)) ⊂ C 0 (Ω × (R d ) N , R m ) such that F (x, µ[x]) = F N (x, x) ( 13 
)
for any N ≥ 1 and (x, x) ∈ Ω × (R d ) N .
We introduce below the notion of C 2,1 loc -Wasserstein regularity which we will use throughout the article.

Definition 9 (C 2,1 loc -Wasserstein regularity). A functional φ : P c (R d ) → R m is said to be C 2,1 loc -Wasserstein regular if for any compact set K ⊂ R d , the map φ(•) is twice differentiable over P(K) in the sense of Definition 7 and such that φ(µ) + ∇ µ φ(µ)(•) C 0 (K) + D x ∇ µ φ(µ)(•) C 0 (K) + D 2 µ φ(µ)(•, •) C 0 (K×K) + Lip D x ∇ µ φ(•)(•); P(K) × K + Lip D 2 µ φ(•)(•, •); P(K) × K × K ≤ C K ( 14 
)
for all µ ∈ P(K), where C K > 0 is a constant depending on K.

In the sequel, we endow the vector space (R d ) N with the rescaled inner product •, • N , defined by

x, y N = 1 N N i=1 x i , y i , ( 15 
)
for any x, y ∈ (R d ) N , where •, • is the standard Euclidean inner product of R d . We denote by N , and remark that ((R d ) N , •, • N ) has the structure of a Hilbert space.

| • | N = •, • N the rescaled Euclidean norm induced by •, • N over (R d )
In the following proposition, we show that the Wasserstein differential structure described in Section 2.2 for functionals defined on measures induces a natural differential structure on the Hilbert space ((R d ) N , •, • N ).

Proposition 4 (Mean-field derivatives of symmetric maps). Let φ(•) be C 2,1 loc -Wasserstein regular with meanfield approximating sequence (φ

N (•)) ⊂ C 0 ((R d ) N ). Then one has that φ N ∈ C 2,1 loc ((R d ) N , R) for any N ≥ 1.

Moreover, the following Taylor expansion holds

φ N (x + h) = φ N (x) + Grad φ N (x), h N + 1 2 Hess φ N [x](h, h) + o(|h| 2 N ), ( 16 
)
for any x, h ∈ (R d ) N , where we introduced the mean-field gradient Grad φ N (•) and mean-field Hessian

Hess φ N [•] of φ N (•), defined respectively by Grad φ N (x) := (∇ µ φ(µ[x])(x i )) 1≤i≤N , ( 17 
)
and

Hess φ N [x](h, h) := 1 N N i=1 D x ∇ µ φ(µ[x])(x i )h i , h i N + 1 N 2 N i,j=1 D 2 µ φ(µ[x])(x i , x j )h i , h j . ( 18 
)
For any compact set K ⊂ R d , there exists a constant C K > 0 such that for any N ≥ 1, one has that

φ N (•) C 2 (K N ) + Lip Hess φ N [•]; K N ≤ C K , ( 19 
)
where the C 2 -norm here is defined by

φ N (•) C 2 (K) = max x∈K φ N (x) + max x∈K |Grad φ N (x)| N + max x∈K sup |h|N ≤1 Hess φ N [x](h, h), ( 20 
)
for any set K ⊂ (R d ) N . Proof. Let x, h ∈ (R d ) N , ǫ = 1 4 min xi =xj |x i -x j | and ζ N (•) be defined by ζ N : x ∈ R d → x, h i if x ∈ B(x i , 2ǫ), 0 otherwise. Let η ∈ C ∞ c (R d
) be a symmetric mollifier centered at the origin and supported on the closure of B(0, ǫ). We define the tangent vector

ξ N ∈ ∇C ∞ c (R d ) ⊂ Tan µ[x] P 2 (R d ) at µ[x] by ξ N : x ∈ R d → ∇(η * ζ N )(x). ( 21 
)
Remark that by construction, one has

ξ N (x i ) = h i , D x ξ N (x i ) = 0, ( 22 
) so that in particular µ[x + sh] = (Id + sξ N ) # µ[x] for any s ∈ R. By assumption, the map φ(•) is differentiable at µ[x] ∈ P c (R d ).
We can therefore apply the first-order chain rule derived in Proposition 2 along tangent vectors to recover that

lim s→0 φ(µ[x + sh]) -φ(µ[x]) s = L ξN φ(µ[x]) = R d ∇ µ φ(µ[x])(x), ξ N (x) dµ[x](x).
We can further obtain by recalling the definition of the symmetric maps φ N (•) given in [START_REF] Brézis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF] that

lim s→0 φ N (x + sh) -φ N (x) s = φ ′ N (x; h) = 1 N N i=1 ∇ µ φ(µ[x])(x i ), h i , ( 23 
)
where we used [START_REF] Cardaliaguet | Hölder Continuity to Hamilton-Jacobi Equations with Super-Quadratic Growth in the Gradient and Unbounded Right-Hand Side[END_REF] along with the fact that µ 23) is a linear form and that it is continuous with respect to the rescaled Euclidean metric | • | N . Whence, the map φ N (•) is Fréchet differentiable at x, and by Riesz's Theorem (see e.g. [13, Theorem 5.5]), its differential can be represented in the Hilbert space ((R d ) N , •, • N ) by the the so-called mean-field gradient Grad φ [START_REF] Cardaliaguet | Sobolev Regularity for the First Order Hamilton-Jacobi Equation[END_REF]. Since the map φ(•) is twice differentiable in the sense of Definition 7, we can use the the second-order differentiation formula [START_REF] Bonnet | The Pontryagin Maximum Principle in the Wasserstein Space[END_REF] to obtain that

[x] = 1 N N i=1 δ xi . It is straightforward to check that the directional derivative h → φ ′ N (x; h) of φ N (•) defined in (
N (x) := (∇ µ φ(µ[x])(x i )) 1≤i≤N . Consider now two elements h 1 , h 2 ∈ (R d ) N and the corresponding tangent vectors ξ 1 N , ξ 2 N ∈ ∇C ∞ c (R d ) built as in
lim s→0 L ξ 1 N φ((Id + sξ 2 N ) # µ[x]) -L ξ 1 N φ(µ[x]) s =Hess φ[µ[x]](ξ 1 N , ξ 2 N ) + L Dξ 1 N ξ 2 N φ(µ[x]). ( 24 
)
Recall now that by [START_REF] Cardaliaguet | Sobolev Regularity for the First Order Hamilton-Jacobi Equation[END_REF], it holds that Dξ 1

N (x) = 0 for µ[x]-almost every x ∈ R d , so that L Dξ 1 N ξ 2 N φ(µ[x]) = 0.
Furthermore by definition of the symmetric maps φ N (•) along with that of their mean-field gradients Grad φ N (•), equation ( 24) can be equivalently rewritten as

lim s→0 Grad φ N (x + sh 2 ) -Grad φ N (x), h 1 N s = 1 N N i=1 D x ∇ µ φ(µ[x])(x i )h 1 i , h 2 i + 1 N 2 N i,j=1 D 2 µ φ(µ[x])(x i , x j )h 1 i , h 2 j ,
where we used the analytical expression [START_REF] Bonnet | A Pontryagin Maximum Principle in Wasserstein Spaces for Constrained Optimal Control Problems[END_REF] of the Wasserstein Hessian. We accordingly introduce the meanfield Hessian of φ N (•) at x, defined by

Hess φ N [x](h 1 , h 2 ) = 1 N N i=1 D x ∇ µ φ(µ[x])(x i )h 1 i , h 2 i + 1 N 2 N i,j=1 D 2 µ φ(µ[x])(x i , x j )h 1 i , h 2 j . ( 25 
)
It is again possible to verify that Hess φ N [x](•, •) defines a continuous bilinear form with respect to the rescaled metric

| • | N , so that the map φ N (•) is twice Fréchet differentiable over (R d ) N .
The Taylor expansion formula ( 16) can be derived directly by expanding φ N (x + h) using the classical Taylor theorem in (R d ) N along with ( 23) and [START_REF] Cavagnari | Generalized Dynamic Programming Principle and Sparse Mean-Field Control Problems[END_REF]. Defining the C 2 -norm of a functional φ N (•) as in [START_REF] Caponigro | Sparse Stabilization and Control of Alignment Models[END_REF], it follows directly from the uniform bounds [START_REF] Bullo | Distributed Control of Robotic Networks[END_REF] stemming from the C 2,1 loc -Wasserstein regularity of φ(•) that for any compact set K ⊂ R d , there exists a constant C K > 0 such that

φ N (•) C 2 (K N ) + Lip Hess φ N [•]; K N ≤ C K .
This ends the proof of Proposition 4. 

Hess φ N [x](h 1 , h 2 ) = Hess φ N (x)h 1 , h 2 N . ( 26 
)
for any x, h 1 , h 2 ∈ (R d ) N , where Hess φ N (x) is a matrix. In this case, its components are given explicitly by

(Hess φ N (x)) i,j = D 2 µ φ(µ[x])(x i , x j ), (Hess φ N (x)) i,i = N D x ∇ µ φ(µ[x])(x i ) + D 2 µ φ(µ[x])(x i , x j )
, for any pair of indices i, j ∈ {1, . . . , N } such that i = j.

Locally optimal Lipschitz feedbacks in optimal control

In this section, we start by recalling some classical facts about finite dimensional optimal control problems. We then describe in Theorem 3 a result proven in [START_REF] Dontchev | On the Existence of Lipschitz Continuous Optimal Feedback Control[END_REF], which provides sufficient conditions for the existence of locally optimal Lipschitz feedbacks in a neighbourhood of an optimal trajectory. This result is based on general metric regularity properties explored recently in [START_REF] Cibulka | Metrically Regular Differential Generalized Equations[END_REF] for dynamical differential inclusions. Throughout this section, we will study the finite-dimensional optimal control problem

(P oc )            min u(•)∈U T 0 l(t, x(t)) + ψ(u(t)) dt + g(x(T )) s.t. ẋ(t) = f (t, x(t)) + u(t), x(0) = x 0 ∈ R d ,
under the following structural assumptions.

Hypotheses (H oc ).

The set of admissible controls is

U = L ∞ ([0, T ], U ) where U ⊂ R d is a compact and convex set. 2. The control cost u → ψ(u) is C 2,1
loc -regular and strictly convex.

3. The map (t, x) → f (t, x) is Lipschitz with respect to t ∈ [0, T ], sublinear and C 2,1 loc -regular with respect to x ∈ R d . [START_REF] Ambrosio | Functions of Bounded Variations and Free Discontinuity Problems[END_REF]. The running cost (t, x) → l(t, x) is Lipschitz with respect to t ∈ [0, T ] and C 2,1 loc -regular with respect to x ∈ R d . Similarly, the final cost x → g(x) is C 2,1 loc -regular. As a direct consequence of our regularity hypotheses and of the compactness of the set of admissible control values U , we have the following lemma.

Lemma 1 (Uniform compactness of admissible trajectories)

. There exists a compact set K ⊂ R d such that any admissible curve x(•) for (P oc ) associated with a control map u(•)

∈ U satisfies x(•) ∈ Lip([0, T ], K).
This follows directly from Grönwall's Lemma. From now on, we fix such a compact set K ⊂ R d .

Proposition 5 (Existence of solutions for problem (P oc )). Under hypotheses (H oc ), there exists an optimal pair control-trajectory

(u * (•), x * (•)) ∈ U × Lip([0, T ], K) for problem (P oc ).
This result is standard under our working hypotheses and can be found e.g. in [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Theorem 23.11]. We can further define the Hamiltonian associated to (P oc ) by

H : (t, x, p, u) ∈ [0, T ] × (R d ) 3 → p, f (t, x) + u -l(t, x) + ψ(u) .
Let (u * (•), x * (•)) be an optimal pair control-trajectory for (P oc ). By the Pontryagin Maximum Principle (see e.g. [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Theorem 22.2]), there exists a curve p

* (•) ∈ Lip([0, T ], R d ) such that the couple (x * (•), p * (•)) is a solution of the forward-backward Hamiltonian system ẋ * (t) = ∇ p H(t, x * (t), p * (t), u * (t)), x * (0) = x 0 , ṗ * (t) = -∇ x H(t, x * (t), p * (t), u * (t)), p * (T ) = -∇g(x * (T )). (27) 
Moreover, the Pontryagin maximisation condition

H(t, x * (t), p * (t), u * (t)) = max v∈U [H(t, x * (t), p * (t), v)] , (28) 
holds along this extremal pair for L 1 -almost every t ∈ [0, T ]. Such a collection of optimal state, costate and control (x * (•), p * (•), u * (•)) is called an optimal Pontryagin triple for (P oc ). Let it be noted that since the problem (P oc ) is unconstrained, there are no abnormal curves stemming from the maximum principle. Remark now that, as a by-product of the local Lipschitz regularity of f (•, •), l(•, •) and g(•), there exists a compact set K ′ ⊂ R d such that any covector p(•) associated with an admissible pair (u(•), x(•)) via ( 27) satisfies p ∈ Lip([0, T ], K ′ ). We henceforth denote by K = [0, T ] × K × K ′ × U the uniform compact set containing the admissible times, states, costates and controls for (P oc ). Moreover, we denote by L K the Lipschitz constant over K of the maps f ( •, •), l(•, •), ψ(•) andH(•, •, •, •) and of their derivatives with respect to the variables (x, u) up to the second order.

We now present the central and somewhat less standard assumption which allows for the construction of locally optimal feedbacks around the graph of x * (•).

Definition 10 (Uniform coercivity estimate). We say that a Pontryagin triple (x * (•), p * (•), u * (•)) for (P oc ) satisfies the uniform coercivity estimate with constant ρ > 0 if the following inequality holds

∇ 2 x g(x * (T ))y(T ), y(T ) - T 0 ∇ 2 x H(t, x * (t), p * (t), u * (t))y(t), y(t) dt - T 0 ∇ 2 u H(t, x * (t), p * (t), u * (t))w(t), w(t) dt ≥ ρ T 0 |w(t)| 2 dt ( 29 
)
for any pair of maps (y(•),

w(•)) ∈ W 1,2 ([0, T ], R d )×L 2 ([0, T ], R d ) solution of the linearised control-state equation ẏ(t) = D x f (t, x * (t))y(t) + w(t), y(0) = 0, u * (t) + w(t) ∈ U for L 1 -almost every t ∈ [0, T ]. ( 30 
)
As we shall see later on, the uniform coercivity estimate (29) can be interpreted as a strong positivedefiniteness condition for the linearisation of (P oc ) in a neighbourhood of (x * (•), p * (•), u * (•)). We can now state main result of this section which can be found in [START_REF] Dontchev | On the Existence of Lipschitz Continuous Optimal Feedback Control[END_REF]Theorem 5.2].

Theorem 3 (Existence of locally optimal feedbacks for (P oc )). Let (x * (•), p * (•), u * (•)) ∈ Lip([0, T ], K) × Lip([0, T ], K ′ ) × U be an optimal Pontryagin triple for problem (P oc ). Suppose that (H oc ) hold and that (x * (•), p * (•), u * (•)) satisfies the uniform coercivity estimate (29)- [START_REF] Cristiani | Multiscale Modeling of Pedestrian Dynamics[END_REF] with constant ρ > 0.

Then, there exist constants ǫ, η > 0, an open subset N ⊂ [0, T ] × R d and a locally optimal feedback ū(•, •) ∈ Lip(N , R d ) which Lipschitz constant depends only on ρ and L K , such that

(i) ū(•, x * (•)) = u * (•). (ii) Graph(x * (•)) + {0} × B(0, ǫ) ⊂ N .
(iii) For every (τ, ξ) ∈ N , the equation

ẋ(t) = f (t, x(t)) + ū(t, x(t)), x(τ ) = ξ, ( 31 
)
has a unique solution x(τ,ξ) (•) such that Graph(x (τ,ξ) (•)) ⊂ N . (iv) The map û(τ,ξ) : t ∈ [τ, T ] → ū(t, x(τ,ξ) (t)) is such that T τ l t, x(τ,ξ) (t), û(τ,ξ) (t) dt + g(x (τ,ξ) (T )) ≤ T τ l t, x(t), u(t) dt + g(x(T )) among all the admissible open-loop pairs (u(•), x(•)) ∈ U × Lip([τ, T ], R d ) for (P oc ) such that u(•) - û(τ,ξ) (•) L ∞ ([τ,T ]) ≤ η.
To better illustrate our subsequent use of Theorem 3 in the proof of our main result Theorem 1, we provide here an overview of the strategy used to prove it in [START_REF] Dontchev | On the Existence of Lipschitz Continuous Optimal Feedback Control[END_REF], which is based on the earlier work [START_REF] Cibulka | Metrically Regular Differential Generalized Equations[END_REF]. We start our heuristic exposition by recalling the concept of strong metric regularity for a set-valued map.

Definition 11 (Strong metric regularity). Let Y, Z be two Banach spaces. A set-valued map G : Y ⇒ Z is said to be strongly metrically regular at y

* ∈ Y for z * ∈ Z if z * ∈ F (y * ) and if there exists a, b > 0 and κ ≥ 0 such that G -1 : B(z * , b) → B(y * , a)
is single-valued and κ-Lipschitz.

We now fix a time τ ∈ [0, T ). In ( 27)-( 28), we wrote the Pontryagin maximum principle for (P oc ). Since v ∈ U → H(t, x * (t), p * (t), v) is differentiable, we can reformulate the maximisation condition [START_REF] Cibulka | Metrically Regular Differential Generalized Equations[END_REF] as

∇ u H(t, x * (t), p * (t), u * (t)) ∈ N U (u * (t)),
for L 1 -almost every t ∈ [0, T ], where N U (v) denotes the normal cone of convex analysis to U at v. Then, any optimal Pontryagin triple (x * (•), p * (•), u * (•)) can be seen as a solution of the differential generalised inclusion

0 ∈ F τ x(•), p(•), u(•) + G τ x(•), p(•), u(•) , ( 32 
)
where the maps F τ : Y τ → Z τ and G τ : Y τ ⇒ Z τ are defined by

F τ (x(•), p(•), u(•)) =       ẋ(•) -f (•, x(•)) -u(•) x(τ ) -x * (τ ) ṗ(t) + ∇ x H(•, x(•), p(•), u(•)) p(T ) + ∇g(x(T )) -∇ u H(•, x(•), p(•), u(•))       , and G τ (x(•), p(•), u(•)) = (0, 0, 0, 0, N ∞ U (u(•))) ⊤ .
Here, we introduced the two Banach spaces

Y τ = W 1,∞ ([τ, T ], R d ) × W 1,∞ ([τ, T ], R d ) × L ∞ ([τ, T ], U ), Z τ = L ∞ ([τ, T ], R d ) × R d × L ∞ ([τ, T ], R d ) × R d × L ∞ ([τ, T ], R d ).
and

N ∞ U (u(•)) = {v ∈ L ∞ ([0, T ], U ) s.t. v(t) ∈ N U (u(t)) for L 1 -a.e. t ∈ [0, T ]}.
In [START_REF] Dontchev | On the Existence of Lipschitz Continuous Optimal Feedback Control[END_REF], it is proven that Theorem 3 can be derived as as a consequence of the strong metric regularity of F τ (•) + G τ (•) at the restriction to [τ, T ] of the Pontryagin triple (x * (•), p * (•), u * (•)) for 0, uniformly with respect to τ . A standard strategy for proving metric regularity of mappings of the form of F (•) + G(•) where F (•) is Fréchet-differentiable is to apply the Robinson's inverse function theorem (see e.g. [37, Theorem 5F.5]).

Theorem 4 (Robinson's inverse function theorem). Let y * ∈ Y and z * ∈ G(y * ). Suppose that F : Y → Z is Fréchet differentiable at y * . Then, the set-valued map y ∈ Y → F (y) + G(y) is strongly metrically regular at y * for F (y * ) + z * if and only if the partially linearised mapping y → F (y * ) + DF (y * )(yy * ) + G(y) is strongly metrically regular at y * for F (y * ) + z * .

The strong metric regularity of (32) can therefore be equivalently derived from that of its partial linearisation involving the Fréchet differential of F τ (•). Notice that since in our problem the control and state are decoupled, there are no crossed derivatives in (x, u). Now, the key point is to remark that the partially linearised generalized differential inclusion

0 ∈ DF τ x * (•), p * (•), u * (•) y(•), q(•), w(•) + G τ y(•), q(•), w(•)
can be equivalently seen as the Pontryagin maximum principle for the LQ problem

(P Lin )            min w(•)∈Uτ T τ 1 2 A(t)y(t), y(t) + 1 2 B(t)w(t), w(t) dt + 1 2 C(T )y(T ), y(T ) s.t. ẏ(t) = D x f (t, x * (t))y(t) + w(t), y(τ ) = 0.
Here, the set of admissible controls is defined by

U τ = {v ∈ L 2 ([τ, T ], U ) s.t. u * (t) + v(t) ∈ U for L 1 -almost every t ∈ [τ, T ]}
and the cost functionals by

A(t) = -∇ 2 x H(t, x * (t), p * (t), u * (t)), B(t) = -∇ 2 u H(t, x * (t), p * (t), u * (t)), C(T ) = ∇ 2 x g(x * (T )).
The coercivity estimate ( 29)-( 30) is still valid on [τ, T ] up to choosing w(•) ≡ 0 on [0, τ ], and it is indeed a second-order strict positive-definiteness condition for the linearised problem (P Lin ). In [START_REF] Cibulka | Metrically Regular Differential Generalized Equations[END_REF], it was proven that by applying Robinson's inverse function theorem, one can recover the strong metric regularity of (32) uniformly with respect to τ , which was in turn used in [START_REF] Dontchev | On the Existence of Lipschitz Continuous Optimal Feedback Control[END_REF] to prove Theorem 3.

Non-local transport equations and mean-field optimal control

In this section, we recall some results concerning continuity equations and optimal control problems in Wasserstein spaces written in the general form (P)

           min u∈U T 0 L(t, µ(t)) + R d ψ(u(t, x))dµ(t)(x) dt + ϕ(µ(T )) s.t. ∂ t µ(t) + ∇ • ((v[µ(t)](t, •) + u(t, •))µ(t)) = 0, µ(0) = µ 0 .
We make the following working assumption on the data of problem (P).

Hypotheses (H).

(H1)

The set of control values U ⊂ R d is a convex and compact set containing a neighbourhood of the origin.

(H2) The control cost v → ψ(v) ∈ [0, +∞] is radial, C 2,1
loc -regular, strictly convex, and such that ψ(0) = 0.

(H3) The non-local velocity field

(t, x, µ) → v[µ](t, x) ∈ R d is Lipschitz with respect to t ∈ [0, T ] and continuous in the product | • | × W 2 -topology with respect to (x, µ) ∈ R d × P c (R d ). For all times t ∈ [0, T ], it is such that |v[µ](t, x)| ≤ M 1 + |x| + R d |y|dµ(y) ,
for a given constant M > 0 and any

(x, µ) ∈ R d × P c (R d ). It further satisfies the Cauchy-Lipschitz properties |v[µ](t, x) -v[µ](t, y)| ≤ L K 1 |x -y|, v[µ](t, •) -v[ν](t, •) C 0 (K,R d ) ≤ L K 2 W 2 (µ, ν
), on any compact set K ⊂ R d and for any pairs x, y ∈ K and µ, ν ∈ P(K).

(H4) The map v[•](t, x) is C 2,1
loc -Wasserstein regular in the sense of Definition 9, uniformly with respect to (t, x) ∈ [0, T ] × K where K ⊂ R d is compact.

(H5) The running cost (t, µ) → L(t, µ) is Lipschitz with respect to t ∈ [0, T ] and C 2,1 loc -Wasserstein regular with respect to µ ∈ P c (R d ) in the sense of Definition 9.

(H6) The final cost

µ → ϕ(µ) is C 2,1
loc -Wasserstein regular in the sense of Definition 9.

Let it be noted that the strong requirements of C 2,1 loc -Wasserstein regularity on the functionals involved in the problem are not classical, since the well-posedness results e.g. of [START_REF] Piccoli | Transport Equation with Nonlocal Velocity in Wasserstein Spaces : Convergence of Numerical Schemes[END_REF] are proven under mere Lipschitz regularity in the measure variables.

We present in Section 4.1 two classical well-posedness results for continuity equations formulated in Wasserstein spaces. We further state in Section 4.2 a powerful existence result of so-called mean-field optimal controls for an adequate variant of problem (P). The latter is a reformulation of the main result of [START_REF] Fornasier | Mean-Field Optimal Control as Gamma-Limit of Finite Agent Controls[END_REF], which was derived under more general assumptions than our working hypotheses (H).

Non-local transport equations in R d

Given a positive constant T > 0, we denote by λ = 1 T L 1 [0,T ] the normalized Lebesgue measure on [0, T ]. For any p ≥ 1, a narrowly continuous curve of measures µ(•) in P p (R d ) can be uniquely lifted to a measure μ ∈ P p ([0, T ] × R d ) through the disintegration formula μ = [0,T ] µ(t)dλ(t) introduced in Theorem 2. We say that a narrowly continuous curve of measure t → µ(t) ∈ P p (R d ) solves a continuity equation with initial condition µ 0 ∈ P p (R d ) associated to the Borel velocity field w

∈ L p ([0, T ] × R d , R d ; μ) provided that ∂ t µ(t) + ∇ • (w(t, •)µ(t)) = 0, µ(0) = µ 0 . ( 33 
)
This equation has to be understood in duality against smooth and compactly supported functions, namely

T 0 R d ∂ t ξ(t, x) + ∇ x ξ(t, x), w(t, x) dµ(t)(x)dt = 0 (34) for any ξ ∈ C ∞ c ([0, T ] × R d ).
We state in the following theorem a general existence result for solutions of continuity equations of the form (33) under mere L p -integrability of the driving velocity field. We refer the reader to the seminal papers [START_REF] Ambrosio | Transport Equation and Cauchy Problem for BV Vector Fields[END_REF][START_REF] Di Perna | Ordinary Differential Equations, Transport Theory and Sobolev Spaces[END_REF] as well as to [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF]Chapter 8].

Theorem 5 (Superposition principle). Let µ(•)

∈ C 0 ([0, T ], P p (R d )) and w(•, •) ∈ L p ([0, T ] × R d , R d ;

μ) be a Borel vector field satisfying the integrability bound

T 0 R d |w(t, x)| 1 + |x| dµ(t)(x)dt < +∞.
Then, µ(•) is a solution of (33) associated to v(•, •) if and only if there exists a probability measure

η ∈ P(R d × C 0 ([0, T ], R d ))
such that the following holds.

(i) η is concentrated on the set of pairs (x, γ(•)) ∈ R d × AC([0, T ], R d ) such that γ(t) = w(t, γ(t)) for L 1 - almost every t ∈ [0, T ] and γ(0) = x.
(ii) It holds that µ(t) = (e t ) # η where for all times t ∈ [0, T ] we introduced the evaluation map e t : (x,

γ(•)) ∈ R d × AC([0, T ], R d ) → γ(t) ∈ R d .
Taking in particular p = 1 and a non-local velocity field of the form w : (t, x) → v[µ(t)](t, x) + dν dμ (t, x), we recover a notion of solution for the Cauchy problem on which problem (P) is formulated. In Theorem 6 below, we state another existence result derived in [START_REF] Piccoli | Transport Equation with Nonlocal Velocity in Wasserstein Spaces : Convergence of Numerical Schemes[END_REF] and concerned with classical well-posedness for non-local transport equations under stronger regularity assumptions.

Theorem 6 (Well-posedness of transport equation). Let µ

∈ P c (R d ) → v[µ](•, •) ∈ L 1 ([0, T ], C 0 (R d , R d ))
be a non-local Borel velocity field satisfying hypothesis (H3). Then, there exists a unique solution µ(•) ∈ Lip([0, T ], P c (R d )) of [START_REF] Phillipis | Regularity for Solutions of the Monge-Ampère Equation[END_REF] driven by the non-local vector field v[•](•, •). Furthermore, there exist constants

R T , L T > 0 such that supp(µ(t)) ⊂ B(0, R T ), W 1 (µ(t), µ(s)) ≤ L T |t -s|, for all times s, t ∈ [0, T ].

Existence of mean-field optimal controls for problem (P)

In this section, we show how problem (P) can be reformulated so as to encompass both the measure theoretic formulation and its sequence of approximating problems. We subsequently recall a powerful existence result derived in [START_REF] Fornasier | Mean-Field Optimal Control as Gamma-Limit of Finite Agent Controls[END_REF] for general multi-agent optimal control problems formulated in Wasserstein spaces. Let us start by fixing an integer N ≥ 1, an initial datum x 0 N ∈ (R d ) N and the associated discrete measure µ 0 N = µ[x 0 N ] as defined in Section 2.3. As already sketched in the introduction, we will naturally consider the family of discrete problems

(P N )              min u(•)∈UN T 0 L N (t, x(t)) + 1 N N i=1 ψ(u i (t)) dt + ϕ N (x(T )) s.t. ẋi (t) = v N [x(t)](t, x i (t)) + u i (t), x i (0) = x 0 i , where U N = L ∞ ([0, T ], U N )
, and where we introduced the mean-field approximating functionals

v N [x](•, •) = v[µ[x]](•, •), L N (•, x) = L(t, µ[x]), ϕ N (x) = ϕ(µ[x]),
in the sense of Definition 8. It can be checked that as a consequence of hypotheses (H) displayed in Section 5, the problems (P N ) satisfy the set of hypotheses (H oc ) of Section 3. We can moreover deduce the following lemma directly from Proposition 5.

Lemma 2 (Existence of solutions for (P N )). Under hypotheses (H), there exist optimal control-trajectory pairs

(u * N (•), x * N (•)) ∈ U N × Lip([0, T ], (R d ) N
) solution of (P N ) for all N ≥ 1. We proceed by recasting problem (P) into a framework which also encompasses the sequence of problems (P N ). Let us consider a narrowly continuous curve of measures µ(

•) ∈ C 0 ([0, T ], P 1 (R d )) and its canonical lift μ ∈ P 1 ([0, T ] × R d ). Recall that by Definition 1, a vector-valued measure ν ∈ M([0, T ] × R d , U
) is absolutely continuous with respect to μ if and only if there exists a map u(•,

•) ∈ L 1 ([0, T ]× R d , U ; μ) such that ν = u(•, •)μ.
Moreover the absolute continuity of ν with respect to μ implies the existence of a λ-almost unique measurable family of measures {ν(t)} t∈[0,T ] such that ν = [0,T ] ν(t)dλ(t) in the sense of disintegration for vector-valued measures recalled in Theorem 2. Bearing this in mind, problem (P) can be relaxed as

(P meas )            min ν∈U T 0 L(t, µ(t)) + Ψ(ν(t)|µ(t)) dt + ϕ(µ(T )) s.t. ∂ t µ(t) + ∇ • (v[µ(t)](t, •)µ(t) + ν(t)) = 0, µ(0) = µ 0 .
where we denote the set of generalized measure controls by U = M([0, T ] × R d , U ) and where the map

σ ∈ M(R d , U ) → Ψ(σ|µ) ∈ [0, +∞] is defined by Ψ(σ|µ) =      R d ψ dσ dµ (x) dµ(x) if σ ≪ µ, + ∞ otherwise. ( 35 
)
This type of relaxation appears frequently in variational problems involving integral functional on measures. Indeed, functionals of the form of Ψ(•|μ) as defined in [START_REF] Di Perna | Ordinary Differential Equations, Transport Theory and Sobolev Spaces[END_REF] possess a wide range of useful features, such as weak- * lower-semicontinuity, while also imposing an absolute continuity property on their argument. We refer the reader to [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF]Section 9.4] for a detailed account on their properties. Consider now an optimal pair control-trajectory (u

* N (•), x * N (•)) ∈ U N × Lip([0, T ], (R d ) N
) for (P N ). One can canonically associate to any such solution the discrete control-trajectory measure pairs (ν

* N , µ * N (•)) ∈ U × Lip([0, T ], P N (R d )) defined by µ * N (•) = 1 N N i=1 δ x * i (•) , ν * N = [0,T ] 1 N N i=1 u * i (t)δ x * i (t) dλ(t). ( 36 
)
In the following theorem, we state a condensed version of the main result of [START_REF] Fornasier | Mean-Field Optimal Control as Gamma-Limit of Finite Agent Controls[END_REF], which shows that this relaxation allows to prove the convergence of the discrete problems (P N ) towards (P). This convergence result has to be understood both in terms of mean-field limit of the functional describing the dynamics and of Γconvergence of the corresponding minimizers.

Theorem 7 (Existence of mean-field optimal controls for (P)).Let µ 0 ∈ P c (R d ), (µ 0 N ) ⊂ P c (R d ) be a sequence of empirical measures associated with (x 0 N ) ⊂ (R d ) N such that W 1 (µ 0 N , µ 0 ) → 0, and assume that hypotheses (H) hold. For any N ≥ 1, denote by

(u * N (•), x * N (•)) ∈ U N × Lip([0, T ], (R d ) N
) an optimal pair control-trajectory for (P N ) and by

(ν * N , µ * N (•)) ∈ U × Lip([0, T ], P N (R d ))
the corresponding pair of measure control-trajectory defined as in [START_REF] Dontchev | On the Existence of Lipschitz Continuous Optimal Feedback Control[END_REF].

Then, there exists a pair

(ν * , µ * (•)) ∈ U × Lip([0, T ], P c (R d )) such that ν * N ⇀ * N →+∞ ν * and sup t∈[0,T ] W 1 (µ * N (t), µ * (t)) -→ N →+∞ 0,
along a suitable subsequence. Moreover, the classical pair control-trajectory

dν * dμ * (•, •), µ * (•) ∈ L ∞ ([0, T ] × R d , U ; μ) × Lip([0, T ], P c (R d )),
is optimal for problem (P) and solves [START_REF] Phillipis | Regularity for Solutions of the Monge-Ampère Equation[END_REF] in the superposition sense.

Coercivity estimate and proof of Theorem 1

In this section, we prove the main result of this article stated in Theorem 1. We suppose that hypotheses (H) of Section 4 hold, along with the following additional mean-field coercivity assumption.

Hypotheses ((CO N )).

There exists a constant ρ T > 0 such that for every mean-field optimal Pontryagin triple

(x * N (•), r * N (•), u * N (•)
) in the sense of Proposition 6 below, the following coercivity estimate

Hess ϕ N [x * N (T )](y(T ), y(T )) - T 0 Hess x H N [t, x * N (t), r * N (t), u * N (t)](y(t), y(t))dt - T 0 Hess u H N [t, x * N (t), r * N (t), u * N (t)](w(t), w(t))dt ≥ ρ T T 0 |w(t)| 2 N dt, holds along any solution pair (w(•), y(•)) ∈ L 2 ([0, T ], (R d ) N ) × W 1,2 ([0, T ], (R d ) N ) of the linearised control-state equations ẏi (t) = D x v N [x * (t)](t, x * i (t))y i (t) + 1 N N j=1 D x j v N [x * (t)](t, x * i (t))y j (t) + w i (t), y i (0) = 0 and u * N (t) + w(t) ∈ U N for L 1 -almost every t ∈ [0, T ].
Our argument is split into three steps. In Step 1, we write a Pontryagin Maximum Principle adapted to the mean-field structure of the problem (P N ). We proceed by building in Step 2 a sequence of Lipschitz-in-space optimal control maps for the discrete problems (P N ) by combining Theorem 3 and (OCP N ). We then show in Step 3 that this sequence of control maps is compact in a suitable weak topology preserving its regularity in space, and that its limit points coincide with the mean-field optimal control introduced in Theorem 7.

Step 1 : Solutions of (P N ) and mean-field Pontryagin maximum principle In this first step, we characterise and derive uniform estimates on the optimal pairs (u * N (•), x * N (•)) for (P N ). Our analysis is based on the finite-dimensional Pontryagin maximum principle applied to (R d ) N ,rewritten as a Hamiltonian flow with respect to the rescaled mean-field inner product •, • N .

Proposition 6 (Characterization of the solutions of (P

N )). Let N ≥ 1 and (u * N (•), x * N (•)) ∈ L ∞ ([0, T ], U N ) × Lip([0, T ], (R d ) N
)) be an optimal pair control-trajectory for (P N ). Then, there exists a rescaled covector r *

N (•) ∈ Lip([0, T ], (R d ) N ) such that (x * N (•), r * N (•), u * N (•)) satisfies the mean-field Pontryagin Maximum Principle        ẋ * N (t) = Grad r H N (t, x * N (t), r * N (t), u * N (t)), x * N (0) = x 0 N , ṙ * N (t) = -Grad x H N (t, x * N (t), r * N (t), u * N (t)), r * N (T ) = -Grad x ϕ N (x * N (T )), u * N (t) ∈ argmax v∈U N H N (t, x * N (t), r * N (t), v) for L 1 -almost every t ∈ [0, T ], (37) 
where the mean-field Hamiltonian H N (•, •, •, •) of the system is defined by

H N (t, x, r, u) = 1 N N i=1 r i , v N [x](t, x i ) + u i -ψ(u i ) -L N (t, x) (38) 
for all (t, x, r, u)

∈ [0, T ] × (R d ) N × (R d ) N × U N .
Furthermore, there exists uniform constants R T , L T > 0 which are independent from N , such that

Graph (x * (•), r * (•)) ⊂ [0, T ] × B(0, R T ) 2N , Lip (x * (•), r * (•)) ; [0, T ] ≤ L T . ( 39 
)
Proof. By an application of the standard PMP to (P N ) (see for instance [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Theorem 22.2]), there exists a family of costate variables

{p * i (•)} N i=1 = p * (•) ∈ Lip([0, T ], (R d ) N ) such that        ẋ * i (t) = ∇ pi H N (t, x * (t), p * (t), u * (t)), x * i (0) = x 0 i , ṗ * i (t) = -∇ xi H N (t, x * (t), p * (t), u * (t)), p * i (T ) = -∇ xi ϕ N (x * (T )), u * i (t) ∈ argmax v∈U p * i (t), v -1 N ψ(v) . (40) 
Here, the classical Hamiltonian H N (•, •, •, •) of the system is defined by

H N (t, x, p, u) = N i=1 p i , v N [x](t, x i ) + u i - 1 N N i=1 ψ(u i ) -L N (t, x), for every (t, x, p, u) ∈ [0, T ] × (R d ) N × (R d ) N × U N . By introducing the variables r * i (•) = N p * i (•), it holds that ẋ * i (t) = N ∇ ri H N (t, x * (t), r * (t), u * (t)) = Grad ri H N (t, x * (t), r * (t), u * (t)), (41) 
as well as

ṙ * i (t) = -N ∇ xi H N (t, x * (t), r * (t), u * (t)) = -Grad xi H N (t, x * (t), r * (t), u * (t)), (42) 
and

r * i (T ) = -N ∇ xi ϕ(x * (T )) = -Grad xi ϕ(x * (T )), (43) 
as a consequence of Proposition 4. Moreover, it can be seen easily from the maximisation condition in ( 40)

that u * i (t) ∈ argmax [ r * i (t), v -ψ(v)].
Merging this condition with ( 41), ( 42) and ( 43), we recover the desired claim that (x * (•), r * (•), u * (•)) satisfies the mean-field Pontryagin Maximum Principle (37) associated to the mean-field Hamiltonian

H N (•, •, •, •) for all times t ∈ [0, T ].
In the spirit of [START_REF] Bongini | Mean Field Pontryagin Maximum Principle[END_REF][START_REF] Piccoli | Control of the kinetic Cucker-Smale model[END_REF], we introduce the discrete L ∞ -radius function

X N : t ∈ [0, T ] → max i∈{1,...,N } |x * i (t)|.
By Danskin's Theorem (see e.g. [START_REF] Danskin | The Theory of Max-Min and its Application to Weapons Allocation Problems, volume 5 of Ökonometrie und Unternehmensforschung Econometrics and Operations Research[END_REF]), the map X N (•) is differentiable L 1 -almost everywhere and it holds that 

X N (t)X ′ N (t) = d dt 1 2 X 2 N (t) ≤ x * I(t) (t), ẋ * I(t) (t) ≤ |x * I(t) (t)| M 1 + |x * I(t) (t)| + |x * N (t)| N + L U by ( 
(t)| N ≤ X N (t), we recover X ′ N (t) ≤ L U + M (1 + 2X N (t)
) so that by Grönwall Lemma, there exists a constant R 1 T > 0 depending on supp(µ 0 ), T , M and L U such that sup

t∈[0,T ] |x * i (t)| ≤ R 1 T , (44) 
for all i ∈ {1, . . . , N }. Plugging this bound into (41), we recover the existence of a constant

L 1 T > 0 such that Lip(x * i (•); [0, T ]) ≤ L 1 T , (45) 
for all i ∈ {1, . . . , N }.

We now prove a similar estimate on the costate variable (r * N (•)). By invoking the C 2,1 loc -MF regularity assumptions of (H4)-(H6) as well as the uniform bound ( 44)-( 45), we can derive by Grönwall Lemma that sup

t∈[0,T ] |r * i (t)| ≤ C ′ T + |Grad xi ϕ N (x * N (T ))| e C ′ T ( 46 
)
for all i ∈ {1, . . . , N }, where C ′ > 0 is a given uniform constant, independent from N . By hypothesis (H6), we know that ϕ N (•) is locally Lipschitz over (R d ) N with a uniform constant on products of compact sets, so that sup

t∈[0,T ] |r * i (t)| ≤ R 2 T , Lip(r * i (•); [0, T ]) ≤ L 2 T , (47) 
for all i ∈ {1, . . . , N } and for some positive constants R 2 T , L 2 T > 0. Subsequently, there exists uniform constants R T , L T > 0 which are again independent from N , such that

Graph (x * (•), r * (•)) ⊂ [0, T ] × B(0, R T ) 2N , Lip (x * (•), r * (•)) ; [0, T ] ≤ L T ,
which concludes the proof of Proposition 6.

We end this first step of our proof by a simple corollary in which we provide a common Lipschitz constant for all the maps involved in (P N ) that is uniform with respect to N . Corollary 1. Let K = [0, T ] × B(0, R T ) 2N × U N where R T > 0 is defined as in (39). Then, there exists a constant L K > 0 such that the C 2,1 -norms of the maps H N (t, •, r, •), L N (t, •), 1 N N i=1 ψ(•) and ϕ N (•) with respect to the variables (x, u) are bounded by L K over K, uniformly with respect to (t, r) ∈ [0, T ] × B(0, R T ) N .

Proof. This result follows directly from the C 2,1 loc -Wasserstein regularity hypotheses (H3)-(H6) on the datum of (P N ) along with the uniform compactness of the optimal Pontryagin triples derived in Proposition 6.

Step 2 : Construction of a Lipschitz-in-space optimal controls for (P N ) In this second step, we associate to any solution (u * N (•), x * N (•)) of (P N ) a mean-field optimal control map u * N ∈ L ∞ ([0, T ], Lip(R d , U )). We have seen in Proposition 6 that any optimal pair (u * N (•), x * N (•)) satisfies a PMP adapted to the mean-field structure of (P N ). In Proposition 7 below, we show that this result along with the coercivity assumption (CO N ) and Theorem 3 allows us to build a sequence of optimal controls (u

N (•, •)) ⊂ L ∞ ([0, T ], Lip(R d , U ))
which Lipschitz constants are uniformly bounded with respect to N ≥ 1.

Proposition 7 (Existence of mean-field locally optimal Lipschitz feedback).

Let (u * N (•), x * N (•)) ∈ U N × Lip([0, T ], B(0, R T ) N
) be an optimal pair control-trajectory for (P N ) and assume that hypotheses (H) hold. Then, there exists a Lipschitz map u

* N (•, •) ∈ Lip([0, T ] × R d , U ) such that u * N (t, x i (t)) = u * i (t)
for all times t ∈ [0, T ] and which Lipschitz constant L U with respect to the space variable is independent from N .

Proof. The first step of this proof is to apply Theorem 3 to (P N ) seen as an optimal control problem in the rescaled Euclidean space (R d ) N , •, • N introduced in [START_REF] Burger | Mean-Field Optimal Control and Optimality Conditions in the Space of Probability Measures[END_REF]. As it was already mentioned in the proof of Proposition 6, (P N ) satisfies the structural assumptions (H oc ) of Section 3. Given a rescaled covector r * N (•) associated to (u * N (•), x * (•)) via [START_REF] Dontchev | Implicit Functions and Solution Mappings : A View from Variational Analysis[END_REF], the mean-field Pontryagin triple (

x * N (•), r * N (•), u * N (•)) is bounded in L ∞ ([0, T ], (R 2d ) N × U N )
uniformly with respect to N as a consequence of (H1) and Proposition 6. By Corollary 1, the C 2,1 -norms of the datum of (P N ), defined in the sense of ( 19)- [START_REF] Caponigro | Sparse Stabilization and Control of Alignment Models[END_REF], are uniformly bounded over

K = [0, T ] × B(0, R T ) 2N × U N by a constant L K > 0.
Similarly to what was presented in Section 3, the mean-field Pontryagin optimality system (37) can be written as the dynamical differential inclusion 0 ∈ F N τ (x(•), r(•), u(•)) + G N τ (x(•), r(•), u(•)), [START_REF] Glowinski | A Mixed Finite Element Formulation for the Boundary Controllability of the Wave Equation[END_REF] for any τ ∈ [0, T ). Here, the mappings F N τ : Y N τ → Z N τ and G N τ : Y N τ ⇒ Z N τ are respectively defined by

F N τ (x(•), r(•), u(•)) =       ẋ(•) -V N [x(•)](•, x(•)) -u(•) x i (τ ) -x * i (τ ) ṙ(•) + Grad x H N (•, x(•), r(•), u(•)) r(T ) + Grad x ϕ(x(T )) -Grad u H N (•, x(•), p(•), u(•))       , ( 49 
)
where

V N [x(•)](t, x(•)) ≡ (v N [x(•)](t, x i (•))) 1≤i≤N ∈ (R d ) N ,
and

G N τ (x(•), r(•), u(•))= (0, 0, 0, 0, N ∞ UN (u(•))) ⊤ . The two Banach spaces Y N τ , Z N τ are defined in this context by Y N τ = W ,1,∞ ([τ, T ], (R d ) N ) × W ,1,∞ ([τ, T ], (R d ) N ) × L ∞ ([τ, T ], U N ), Z N τ = L ∞ ([τ, T ], (R d ) N ) × (R d ) N × L ∞ ([τ, T ], (R d ) N ) × (R d ) N × L ∞ ([τ, T ], (R d ) N
). Following [START_REF] Cibulka | Metrically Regular Differential Generalized Equations[END_REF], we now compute the first-order variation of the map F N τ (•) with respect to the adapted differential structure introduced in Section 2.3. Let (y(•), s(•), w(•)) ∈ Y N 0 , i ∈ {1, . . . , N } and t ∈ [0, T ]. One has that

v N [x + y](t, x i + sy i ) = v N [x](t, x i ) + D x v N [x](t, x i )y i + 1 N N j=1 D xj v N [x](t, x i )y j + o(|y i |) + o(|y| N ), (50) 
where It is again possible to interpret the partial linearisation of the differential generalized inclusion [START_REF] Glowinski | A Mixed Finite Element Formulation for the Boundary Controllability of the Wave Equation[END_REF] as the Pontryagin maximum principle for the linear-quadratic problem 

D xj v N [x](t
                 min w∈U N τ T τ 1 2 A(t
       ẏi (t) = D x v N [x * N (t)](t, x * i (t))y i (t) + 1 N N j=1 D xj v N [x * N (t)](t, x * i (t))y j (t), y i (τ ) = 0,
where the set of admissible controls is defined by

U N τ = v ∈ L ∞ ([τ, T ], U N ) s.t. u * N (t) + w(t) ∈ U N for L 1 -a.e. t ∈ [τ, T ]
, and the cost functionals by

A(t) = -Hess x H N (t, x * N (t), r * N (t), u * N (t)), C(T ) = Hess x ϕ N (x * N (T )), B(t) = -Hess u H N (t, x * N (t), r * N (t), u * N (t)
). Moreover, we assumed in (CO N ) that there exists a constant ρ T , which is independent from N , such that the mean-field coercivity estimate 

Hess x ϕ N [x * N (T )](y(T ), y(T )) - T 0 Hess x H N [t, x * N (t),
(•)) ∈ L 2 ([0, T ], (R d ) N ) × W 1,2 ([0, T ], (R d ) N
) for (P N Lin ). We can therefore apply Theorem 3 to (P N ) and recover the existence of a neighbourhood N ⊂ [0, T ]×(R d ) N of Graph(x * (•)) along with that of a locally optimal Lipschitz feedback ũ(•, •) defined over N ∩ [0, T ] × B(0, R T ) N which Lipschitz constant L U depends only on the structural constant L K introduced in Corollary 1 and on the coercivity constant ρ T introduced in (CO N ). In particular, L U is independent from N .

For any i ∈ {1, . . . , N }, we associate to x * i (•) the projected control maps ũi :

N i := π i (N ) → R d defined by ũi (t, x) = ũi (t, xx i (t)), where xx i (t) = (x * 1 (t), . . . , x * i-1 (t), x, x * i+1 (t), . . . , x * N (t)
) denotes the element in (R d ) N which has all its components matching that of x * (t) except the i-th one which is free and equal to x. By construction, each ũi (•, •) defines a locally optimal feedback in the neighbourhood N i of Graph(x * i (•)). Furthermore, we can derive the following uniform estimate for the projected control maps

|ũ i (t, y) -ũi (t, x)| = |ũ i (t, xy i (t)) -ũi (t, xx i (t))| ≤ N j=1 |ũ j (t, xy i (t)) -ũj (t, xx i (t))| 2 1/2 ≤ √ N L U |x y i (t) -xx i (t)| N = L U |y -x|,
so that we recover the uniform Lipschitz estimate

|ũ i (t, y) -ũi (t, x)| ≤ L U |y -x|, for all (t, x, y) ∈ [0, T ] × π R d (N i ) 2
. This shows that the projected optimal control ũi (•, •) maps are Lipschitzregular in space uniformly with respect to N . Therefore, each ũi (•, •) can be defined unequivocally on a closed neighbourhood of Graph(x * i (•)) contained in N i . By using e.g. McShane's Extension Theorem (see e.g. [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]Theorem 3.1]) combined with a projection on the convex and compact set U , one can define a global optimal control map u *

N : [0, T ] × R d → U such that u * N (t, x * i (t)) = u * i (t) for all t ∈ [0, T ] and Lip(u * N (t, •); R d ) ≤ L U , for L 1 -almost every t ∈ [0, T ], where we redefined the constant L U := √ dL U .
The first term in the right-hand side of (53) vanishes as N → +∞ as a consequence of [START_REF] Lions | Contrôlabilité Exacte, Stabilisation et Perturbation de Systèmes Distribués[END_REF]. By invoking Kantorovich's duality formula [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF] along with the uniform Lipschitz-regularity of the maps (u * N (•, •)), we can obtain the following upper bound on the second term in the right-hand side of ( 53)

T 0 R d ξ(t, x), u * N (t, x) d(µ * (t) -µ * N (t))(x)dt ≤ C ξ sup t∈[0,T ] W 1 (µ(t), µ N (t)) -→ N →+∞ 0,
where C ξ = L U sup t∈[0,T ] ξ(•) C 0 (Ω) + Lip(ξ(t, •); Ω) . Therefore, we recover that 

T 0 R d ξ(t, x), u * N (t, x) dµ * N (t)(x)dt -→ N →+∞ T 0 R d ξ(t, x), u * (t, x) dµ * (t)(x)dt, (54) 
* (•, •), µ * (•)) ∈ L ∞ ([0, T ], Lip(R d , U )) × Lip([0, T ], P(B(0, R T )
) is a classical optimal pair for (P), which concludes the proof of Theorem 1.

Discussion on the coercivity assumption (CO N )

In this section, we discuss more in detail the mean-field coercivity assumptions (CO N ) by developing an example in which it is both necessary and sufficient for the Lipschitz regularity in space of the optimal control. With this goal, we consider the following Wasserstein optimal control problem

(P V )            min u∈U λ 2 T 0 R |u(t, x)| 2 dµ(t)(x)dt - 1 2 R |x -μ(T )| 2 dµ(T )(x) s.t. ∂ t µ(t) + ∇ • (u(t, •)µ(t)) = 0, µ(0) = 1 2 1 [-1,1] L 1 .
In the latter, one aims at maximising the variance at time T > 0 of a measure curve µ(•) starting from the normalised indicator function of [-1, 1], while penalizing the L 2 (µ(t))-norm of the control . Here, the set of admissible control values is U = [-C, C] for a positive constant C > 0, and the parameter λ > 0 is the relative weight between the final cost and the control penalization. It can be verified straightforwardly that this problem satisfies the hypotheses (H1)-(H6) of Theorem 1. Given a sequence of empirical measures (µ 0 N ) := (µ[x N ]) ⊂ P N (R) converging narrowly towards µ 0 , we can define the family (P N V ) of discretized multi-agent problems as

(P N V )              min u(•)∈UN λ 2N N i=1 T 0 u 2 i (t)dt - 1 2N N i=1 |x i (T ) -x(T )| 2 s.t. ẋi (t) = u i (t), x i (0) = x 0 i . where x(•) = 1 N N i=1 x i (•) and U N = L ∞ ([0, T ], U N ).
As a consequence of Proposition 5, there exists a pair control-trajectory (u

* N (•), x * N (•)) ∈ L ∞ ([0, T ], U N ) × Lip([0, T ], (R d ) N ) solution of (P N V ) for any N ≥ 1.
The mean-field Hamiltonian associated to (P N V ) is given by

H N : (t, x, r, u) ∈ [0, T ] × (R 3 ) N → 1 N N i=1 r i , u i - 1 2 |u i | 2 . ( 55 
)
By applying the mean-field Pontryagin Maximum Principle displayed in Proposition 6, we obtain the existence of a covector r *

N (•) ∈ Lip([0, T ], R N ) such that        ṙ * i (t) = -Grad xi H N (t, x * N (t), r * N (t), u * N (t)) = 0, r * i (T ) = Grad xi Var N (x * N (T )) = x * i (T ) -x * (T ), u * i (t) ∈ argmax v∈U [ r * i (t), v -1 2 |v| 2 ].
Therefore, the optimal covector r * N (•) is constant and uniquely determined via

r * i (t) = x * i (T ) -x * (T ).
Moreover, the optimal control u * N (•) is also uniquely determined, and its components write explicitly as

u * i (t) = π U (r * i (t)) ≡ π [-C,C] x * i (T ) -x * (T ) λ , (56) 
for all i ∈ {1, . . . , N }. It follows directly from this expression that ẋ *

(t) = 1 N N i=1 u * i (t) = 1 N N i=1 π [-C,C] x * i (T ) -x * (T ) λ = 0.
Without loss of generality, we can therefore choose x 0 ∈ R N such that x * (•) ≡ x0 = 0.

In the following lemma, we derive a simple analytical necessary and sufficient condition for the mean-field coercivity assumption to hold for (P V ).

Lemma 5 (Charaterization of the coercivity condition for (P V )). The mean-field coercivity condition (CO N ) holds for (P V ) if and only if λ > T . In which case, the optimal coercivity constant is given by ρ T = λ -T .

Proof. We start by computing the mean-field Hessians involved in the coercivity estimate. For any x, y, u, w ∈ R N , we have as a consequence of ( 55 and we obtain that the mean-field coercivity condition (CO N ) holds whenever λ > T .

Conversely, let us choose a constant admissible control perturbation w c (•) ≡ w c such that wc = 0. It is always possible to make such a choice since by [START_REF] Pogodaev | Optimal Control of Continuity Equations[END_REF], there exists at least two indices i, j such that sign(u i ) = -sign(u j ) for all times t ∈ [0, T ]. It is then sufficient to choose w c such that (w c ) i = -sign(u i )ǫ, (w c ) j = -(w c ) i , (w c ) k = 0 if k ∈ {1, . . . , N } and k = i, j, where ǫ > 0 is a small parameter. As a consequence of (57), the corresponding state perturbation y c (•) is such that ȳc (•) ≡ 0. Moreover, it also holds that

|y c (T )| 2 N = T 2 |w c | 2 N = T T 0 |w c | 2 N dt.
We therefore obtain that for this particular choice of linearised pair control-state, it holds that We can now use this characterization of the coercivity condition to show that it is itself equivalent to the uniform Lipschitz regularity in space of the optimal controls. Proposition 8 (Coercivity and regularity). The followings are equivalent.

-
(i) The mean-field coercivity condition λ > T holds.

(ii) For any sequence of empirical measures (µ 0 N ) converging narrowly towards µ 0 = 1 2 1 [-1,1] L 1 and generating the discrete optimal pairs (u * N (•), x * N (•)), it holds that

|u * i (t) -u * j (t)) ≤ 1 ρ T |x * i (t) -x * j t)|,
for all t ∈ [0, T ], where ρ T = λ -T is the coercivity constant of (P V ).

Proof. Suppose first that the uniform coercivity estimate does not hold, i.e. λ ≤ T . Since the optimal controls are constant over [0, T ] as a consequence of (56), the total cost of (P N V ) can be rewritten as

C (u 1 , . . . , u N ) = 1 2N N i=1 T (λ -T )u 2 i -2T x 0 i u i -|x 0 i | 2 .
for any N -tuple u = (u 1 , . . . , u N ) ∈ [-C, C] N . Since λ ≤ T , the minimum of C is achieved by taking u * i = sign(x 0 i )C for all i ∈ {1, . . . , N }. This further implies that

|u * i -u * j | = 0 if sign(x i ) = sign(x j ),

2C

otherwise, so that for any pair of indices such that sign(x 0 i ) = -sign(x 0 j ), it holds that

|u * i -u * j | = 2C |x 0 i -x 0 j | + 2Ct |x * i (t) -x * j (t)|. (58) 
The fact that µ N ⇀ * µ 0 = 1 2 1 [-1,1] L 1 as N → +∞ implies that for all ǫ > 0, there exists N ǫ ≥ 1 such that for any N ≥ N ǫ , there exists at least one pair of indices i, j ∈ {1, . . . , N } such that sign(x 0 i ) = -sign(x 0 j ) and |x 0 ix 0 j | ≤ ǫ. Thus, it follows from (58) that (ii) fails to hold some pairs of indices and at least for small times. Suppose now that the mean-field coercivity estimate hold, i. For N sufficiently big, I N is necessarily non-empty since ρ T > 0 and as a consequence of the narrow convergence of (µ 0 N ) towards µ 0 . Then for any i ∈ I N , one has that |x * i (T )| ≤ |x 0 i | + CT ≤ (ρ T + T )C = λC, whence for any such indices, the optimal controls are given by u * i = 1 λ x * i (T ). In which case, one has that

x * i (T ) = x 0 i 1 -T /λ and u * i = x * i (t) ρ T + t so that |u * i -u * j | ≤ 1 ρ T + t |x * i (t) -x * j (t)|, (59) 
for any pair of indices i, j ∈ I N . It can be checked reciprocally that u * i = sign(x 0 i )C for any i ∈ J N , which furthermore yields by [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF] that

|u * i -u * j | ≤      0 if sign(x i ) = sign(x j ), |x * i (t) -x * j (t)| ρ T + t otherwise, (60) 
since in this case |x 0 ix 0 j | ≥ 2ρ T C whenever i, j ∈ J N and sign(x i ) = -sign(x j ). Suppose now that we are given a pair of indices i, j ∈ {1, . . . , N } such that i ∈ I N and j ∈ J N . If sign(x 0 i ) = sign(x 0 j ), it holds that By merging ( 59), ( 60), ( 61) and (62), we conclude that (ii) holds with the uniform constant 1 ρT > 0 whenever the mean-field coercivity estimate holds, which ends the proof of our claim.

|u * i -u * j | = u * j -u * i =
In Proposition 8, we have proven that the mean-field coercivity estimate is both necessary and sufficient for the existe86nce of a uniform Lipschitz constant for the finite-dimensional optimal controls. It is clear when this condition fails that it is not possible to build a sequence of uniformly Lipschitz optimal maps (u * N (•, •)) for problem (P N V ). Since the discrete optimal pairs control-trajectory (u * N (•), x * N (•)) ∈ L ∞ ([0, T ], U N ) × Lip([0, T ], R N ) are uniquely determined, we conclude that the mean-field coercivity condition (CO N ) is necessary and sufficient in the limit for the existence of a Lipschitz-in-space mean-field optimal control for the Wasserstein optimal control problem (P V ).

Remark 3 (

 3 Matrix representation of the mean-field Hessian in (R d ) N ). By Riesz's Theorem applied in the Hilbert space ((R d ) N ), •, • N ), one can represent the action of the Hessian bilinear form Hess φ N [x](•, •) as

  H1), (H3) and Cauchy-Schwarz inequality. Here, I(t) ∈ argmax i∈{1,...,N } |x * i (t)| is any of the indices realising the value of X N (t) for L 1 -almost every t ∈ [0, T ]. Remarking now that |x * N

  Grad x ϕ N (x(T ) + y(T )) = Grad x ϕ(x(T )) + Hess x ϕ N (x(T ))y(T ) + o(|y(T )| N )as a consequence of the chain rule of Proposition 4. Here for convenience, we used the matrix representation[START_REF] Chang | A Practical Difference Scheme for Fokker-Planck Equations[END_REF] for mean-field Hessians in (R d ) N introduced in Remark 3.

for any ξ ∈ C 1 c

 1 ([0, T ] × R d , R d ). Since the measure curves µ * N (•) are uniformly compactly supported in Ω ⊂ R d , one can show that (54) holds for any ξ∈ C 0 c ([0, T ] × R d , R d) by a classical approximation argument. This precisely amounts to saying that ν * N ⇀ * u * (•, •)μ * as N → +∞ along the same subsequence. By uniqueness of the weak- * limit in M([0, T ] × R d , U ), we obtain by combining Lemma 4 with Theorem 7 that the optimal solution ν * ∈ U of (P meas ) is induced by u * (•, •). This allows us to conclude that the pair (u

-0

  ) thatHess Var N [x](y, y) = |y| 2 N -|ȳ| 2 ≤ |y| 2 N , Hess u H N [t, x, r, w) = λ|w| 2 N . Let (w(•), y(•) ∈ L 2 ([0, T ], U N ) × W 1,2 ([0, T ], R N ) be the solution of the linearised control-state problem ẏ(t) = w(t), y(0) = 0,(57)with u * N (t) + w(t) ∈ U N . By Cauchy-Schwarz inequality, one can further estimate |y(T )| 2 Hess Var N [x * N (T )](y(T ), y(T )) -T Hess u H N [t, x * N (t), r * N (t), u * N (t)](w(t), w(t))dt ≥ (λ -T )

0

  Hess VarN [x * N (T )](y c (T ), y c (T )) -T Hess u H N [t, x * N (t), r * N (t), u * N (t)](w c (t), w c (t))dt = (λ -T ) T 0 |w(t)| 2 N dt,so that ρ T = λ -T is the sharp mean-field coercivity constant, and the mean-field coercivity condition holds only if λ > T .

  e. λ > T , and denote by ρ T = λ -T the sharp coercivity constant. Let I N , J N ⊂ {1, . . . , N } be the set of indices defined byI N = i ∈ {1, . . . , N } s.t. |x 0 i | ≤ ρ T C , J N = {1, . . . , N }\I N .

  , x i ) is the matrix which rows are the mean-field gradients with respect to x j of the components (v k N [x](t, x i )) 1≤k≤d . Analogously, it holds that Grad

	as well as	Grad u H N (t,x(t) + y, r(t) + s(t), u(t) + w(t))
		= Grad u H N (t, x(t), r(t), u(t)) + Hess u H N (t, x(t), r(t), u(t))w(t)
		+ Hess ru H N (t, x(t), r(t), u(t))s(t) + o(|s(t)| N ) + o(|w(t)| N ),
	and	

x H N (t,x(t) + y, r(t) + s(t), u(t) + w(t)) = Grad x H N (t, x(t), r(t), u(t)) + Hess x H N (t, x(t), r(t), u(t))y(t)

+ Hess rx H N (t, x(t), r(t), u(t))s(t) + o(|y(t)| N ) + o(|w(t)| N ),

  ≥ ρ T C by definition of J N . Symmetrically if sign(x 0 i ) = -sign(x 0 j ), one can easily show that

	since |x * j (t)| |u * i -u * j | ≤	|x * i (t) -x * j (t)| ρ T	.			(62)
	=	sign(x 0 j )C -x * j (t)C |x * j (t)| -x * ρ T + t x * i (t) i (t) ρ T + t ≤	x * j (t) -x * i (t) ρ T	=	|x * i (t) -x * ρ T j (t)|	,	(61)

* This research was partially supported by the Padua University grant SID 2018 "Controllability, stabilizability and infimun gaps for control systems", prot. BIRD 187147. The first author was supported by the Archimède Labex (ANR-11-LABX-0033) and by the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the "Investissements d'Avenir" French Government program managed by the French National Research Agency (ANR).

Step 3 : Existence of Lipschitz optimal controls for problem (P). In this third step, we show that the sequence of optimal maps (u * N (•, •)) constructed in Proposition 7 is compact in a suitable topology and that the limits along subsequences are optimal solutions of problem (P) which are Lipschitz-regular in space. We state in the following lemma a variation of the classical Dunford-Pettis compactness criterion (see e.g. [START_REF] Ambrosio | Functions of Bounded Variations and Free Discontinuity Problems[END_REF]Theorem 1.38]) which was already explored in [START_REF] Fornasier | Mean Field Optimal Control[END_REF]Theorem 2.5].

Lemma 3 (Compactness of Lipschitz-in-space optimal maps). Let L U > 0 be a positive constant and Ω ⊂ R d be a bounded set. Then, the set

This allows to derive the following convergence result on the sequence of controls (u * N (•, •)) built in Step 2. Corollary 2 (Convergence of Lipschitz optimal control). There exists a map

Proof. This result comes from a direct application of Lemma 3 to the sequence of optimal maps built in Proposition 7 up to redefining L U ≡ max{L U , L U }.

We now prove that the generalized optimal control ν * ∈ U for problem (P meas ) is induced by the Lipschitzin-space optimal control u * (•, •) ∈ L ∞ ([0, T ], Lip(R d , U )) which has been defined in Corollary 2. Remark first that by construction of the maps (u * N (•, •)), it holds that

for any N ≥ 1, where ν * N ∈ U denotes the generalized discrete control measure introduced in Theorem 7. In the following proposition, we prove that the sequence (u

be the sequence of optimal measure curves associated with (P N ) and

)) be the sequence of Lipschitz controls built in Proposition 7. Then, the sequence

Proof. We know by Lemma 3 that for any p ∈ (1, +∞), there exists a subsequence of (u * N (•, •)) which converges in the weak-topology of L 2 ([0, T ], W 1,p (Ω, U )) towards u * (•, •) ∈ U LU . Recalling that one can identify the topo- logical dual of the Banach space

for

, where •, • W 1,p denotes the duality bracket of W 1,p (Ω, U ).

Let us now fix in particular a real number p > d so that by Morrey's Embedding (see e.g. [13, Theorem 9.12]), it holds that W 1,p (Ω, U ) ⊂ C 0 (Ω, U ). By taking the topological dual of each spaces, we recover the reverse inclusion M(Ω, U ) ⊂ W -1,p ′ (Ω, U ). The latter relation combined with the definition (4) of the duality pairing for vector measures and (51) yields that

for any curve σ(•) ∈ C 0 ([0, T ], M(Ω, R + )) and any ξ ∈ C