Session 4B: Model Driven Approaches

Keywords: Model Driven Architecture, Templates, JSP, Generative Programming

The MDA (Model Driven Architecture) approach by the OMG has been evolved as a defacto-standard for modern modelling tools. MDA uses the UML, which is based on top of programming language concepts. Therefore it is fairly limited when using it in the automotive domain, since the UML offers only limited ways for adapting it to special purposes. A possible solution is to replace the UML with a domain specific modelling language (DSML). This implies also dismissing the existence of UML profiles, since the DSML includes them already. In this article we show an approach to take advantages of the MDA combined with the power of domain specific models. We built a code generator using the Java Server Pages (JSP) technology and are able to transform any domain model into code or other artefacts.

Introduction

The foundation of the MDA approach is the UML. In conjunction with UML profiles they form a platform independent model, which are dedicated to a certain domain. By defining architectural styles and transformation rules, the PIM can be transformed to a platform specific model (PSM). In the last step, the PSM is transformed into source code or other artifacts [OMG].

The reader may argue, that MDA knows already the concept of domain specific models, but the difference between MDA and a DSML may be huge, since domain specific part in MDA is often realized by defining additional stereotypes resp. tagged values, but the UML notation is kept. Additionally most case tools do not distinguish between PIM and PSM due to weak UML extension mechanisms. Instead, the modeler defines the needed stereotypes directly and passes the model to a code generator (sometimes called "MDA light" [MDA2003]).

The knowledge about transforming a model into code often lies in code generators resp. in their templates.

So there is a need for a modeling language, which supplies terms, elements and rules used in a domain, a domain specific modeling language. By replacing UML with a DSML, we can combine the strengths of MDA and DSM's. Unfortunately it is not surprisingly, that most code generators rely on UML. So we developed a template-based code generator, which is dedicated to a domain specific modeling language [Pr2003].

Transformation of a DSM into code

To realize the described approach, we first had to define a DSM. In our project we used Architecture Definition Language (ADL) by the ITEA1 /EAST2 -EEA3 project.

EAST/EEA is a research project sponsored by the european community. Participants are car manufactures, suppliers and research institutes. The goal is the development of an open software architecture, which allows a flexible distribution of functions in a car.

One important deliverable is the ADL to describe the problem space of car ECU's. It is founded on UML 2 concepts but has certain extensions, e. g. variability and hardware issues.

The ADL was created with GME 2000, a free modeling tool by the Institute for Software Integrated Systems (ISIS) at the Vanderbuilt University (USA). It allows the definition of DSML's as well as the creation of DSM's on top of a DSML. GME 2000 provides a set of basic elements (atom, connections, constraints, etc.) to form a DSML. After the definition of the DSML, GME 2000 can be used as CASE tool to develop a model according to the previously defined DSML.

According to the MDA paradigm, we need a tool, which is able to transform the PIM/PSM into source code. Most CASE tools provide a code generator, which uses templates to realize the transformation step. Templates can be described as "intelligent text files". Besides static text they contain embedded code to control the generation process. Typically a common programming or scripting language (e. g. Python or Tcl/Tk) is used for this purpose. This technique allows a very fine-grain adoption of the generation output. In our project we chose Java resp. JSP as template language.

Collecting Requirements

Obviously, the main purpose of a code generator is to generate code. But there are some issues that makes live easier. First, templates should be modular in order to grant maintainable and reusable templates. Second, existing code should be easy to integrate into templates. Once integrated, this code must be protected in subsequent generation runs and must not be lost.

Third, syntactical errors in the template should be easily trackable. During the generation process the template is transformed into a java class. Of course, the compiler tells us the error location in the source code, but it is very difficult to track it back to the template, since the mapping between template and the corresponding java code is not straightforward. Finally, changing the target technology ("projection") should be done without changing a template. With projection we mean the transformation rules to a certain programming language, architecture or even hardware platform. From a more general point of view, the generator should not be usable for all kinds of domain specific models. So it must not contain constructs, which are dedicated to a particular domain.

Designing the Code Generator

In this section we explain the foundations of the code generator. Since we decided to use JSP, the architecture of the code generator relies heavily on this technology. So we focus on it in order to demonstrate the working method of the generator. Figure 1 shows the transformation process of a JSP template into generated code. Strictly speaking, there are two generation steps. First, the JSP template is transformed into instrumented java source code. Second, the source code is compiled into a java class. Finally, the class is executed which produces the defined output (second generation step).

Figure 1 -Transformation Process from Template into Code

With respect to the requirements stated above, we will talk about possible consequences and solutions.

Why not using an existing JSP engine?

One of the first questions which came up was the make-or-buy decision. There are a lot of free available JSP engines, which supports the complete JSP standard. But they are unsurprisingly designed for the original purpose of JSP, namely generation of dynamic web pages. So we have to carry a lot of code without using it and cutting the unused pieces is more work than implementing a lean JSP engine. Additionally we have to adapt the engine to our needs. With respect to the complexity of these engines this leads to a very high effort.

Code Merging

The field of code merging is a complex one. An obvious solution may be a merging mechanism like CVS. But the situation here is a little bit different. Every line in a source file has the same origin and "equal rights". So the algorithm can decide, which parts should be inserted or dropped. The problem with generated code is a question of priorization. In other words, who decides, which part should be preserved: User defined code or generated code? The decision depends heavily on the generation context, but there is no (convenient) way to store the context information in the generated code.

Therefore we chose another way to protect user-defined code, which is also used by others code generators: Protected Areas. Code inside these areas will be preserved in subsequent generation runs. The developer can define them by inserting special tag pairs in the template, as shown in Figure 2.

Maintainability and Reusability

The key issue for maintainability and reusability is modularity. JSP already offers the include-command, which allows the inclusion or further JSP files resp. templates. Another concept of JSP that supports this quality are tag libs. Tag libs contain userdefined tags that capsule recurring code fragments (e. g. iterations, switch-case). The code generator supports both approaches.

Master and Code Templates

We distinguish between two different kinds of templates. On the one hand we have templates for code generation as depicted in Figure 3. On the other hand we have a master template, which maps model elements to appropriate templates (Figure 4) and is responsible for compound operations, e. g. pre-and postprocessing of the generation process. Preprocessing is useful to prepare the generation process. During generation, templates are allowed to store informations in user-defined lists. For example, every template for a certain artefact may store its file name in a list. After the code generation has finished, the master template may evaluate these lists to generate a makefile or a deployment descriptor. The concept of master templates hides the generation details from the generator and allows a better maintenance of different projections.

An Example Model

To demonstrate the abilities of the code generator, we chose a simple model of an Adaptive Cruise Control System (ACC). ACC enables a car to drive automatically in a stop-and-go situation. To that it warns the driver if the distance to another car becomes too short or brakes even the car, if necessary. One of the work products of the ITEA project is a sample ACC model described with the ITEA ADL. The ADL founds on UML 2 concepts, but offers some extensions, e.

Conclusions and Future Work

In this article we showed a lightweight MDA approach. By replacing UML with a domain specific modeling language, we get a more flexible way to describe and solve domain specific problems. On the other hand we have to consider the initial effort to create a domain specific model. So we started with an existing domain model and used the code generator to transform the model into C code. Moving to another programming language should be very easy with this approach.

Future work may result in further model extensions. For example, a model element may contain quality attributes to select a template, which contains appropriate mechanisms (e. g. global variables instead of local variables in order to save resources).

Another example may consider further model informations, e. g. sequence diagrams to setup a scheduler or test cases, which check the timing constraints in real-time applications.

In short, every step towards increasing quality and quantity of code will result in a more comprehensive model. Another interesting field in context of domain specific models may be aspect-orientation or establishing "model bridges" to other domains [Mell2003].

Figure 2 -

 2 Figure 2 -Protected Areas

Figure 3 -

 3 Figure 3 -Sample Code Template

 g. to model the hardware architecture of an ECU.

Figure 4 -

 4 Figure 4 -Sample Master Template

-22 -23 January 2004

ITEA: Information Technology for European Advancement

EAST: Embedded Architecture and Software Technologies

EEA: Embedded Electronic Architecture

Author

Dipl.-Wirt.Ing. Oliver Wieland Robert Bosch GmbH

Brief Biography

Mr. Wieland has been working for Robert Bosch since 2001 and is responsible for researching and introducing software engineering methods to the product divisions. Previously he worked as a consultant in the field of software architectures and model driven architecture.