Baffreau Stéphane
email: stephane.baffreau@insa-tlse.fr

Bouaziz Rachid

Motet Gilles

Session 4A: Fault Tolerance Embedded real-time software techniques to handle misfunctioning due to electromagnetic fields

Keywords: Dependability, EMC, Fault detection of embedded real-time systems

The team EMC of LESIA/INSA works on emission and susceptibility of electronic systems in cooperation with numerous firms from several domains including avionics (EADS) and automotive (Motorola, Siemens VDO)

Introduction

Whereas most of the electronic systems are located in protected environments (offices, special rooms, etc.), embedded systems are included in products such as cars, aircrafts, etc. which are affected by numerous aggressions. The electromagnetic fields are one of them. Parasitic electromagnetic emissions are generated by numerous sources with various intensity levels and aspects (high power pulses, modulated or continuous signals, etc.). Some examples of such sources are mobile phones (mWatts), wireless networks (Watts), Radio Frequency base stations (kWatts) and radars (Mwatts). For instance, all these devices may aggress jointly the systems embedded in cars to control the engine, the breaks, the airbags, etc.

The systems considered in this paper are real-time systems. Therefore, their functioning cannot be stopped due to the dynamics of their environment. For instance, the behaviour of an automatic pilot cannot be suspended as the gravitation law effects always exist. Moreover, the stopping or any failures of these systems may cause numerous damages due to the increasing responsibilities delegated to these highcritical systems.

Therefore, the studied systems have opposite characteristics: as high-critical real-time systems, they have to operate correctly continuously; as embedded systems, they have a high probability to fail due to their aggressive environment.

The risk of such failures can be handled by two points of view:

-prevention: it consists in reducing the emissions of other systems. For instance, we participated to the elaboration of the standard ISO 62014-3 [ICEM00] aiming at providing electronic design guidelines to reduce such emissions for electronics chips. However, the emission of certain sources have not to be eliminated as it provides the device functionalities: communication (mobile phones, wireless networks, radio frequency stations), detection (radars), etc.

-protection: it consists in avoiding the bad effects of the electromagnetic aggressions on electronics systems behaviours. This second viewpoint is considered in this paper.

In section 2, we briefly introduce hardware protection techniques whereas software approaches are developed in section 3. Finally, we evaluate the efficiency of one of the proposed techniques presenting the results of experiments at section 4.

Hardware protection techniques

-Introduction

In this section we mainly focus on some hardware protection techniques in order to prevent system failures from electromagnetic field effects. Nowadays, more and more hardware solutions are directly integrated on chip, such as clamp diodes or electrostatic discharge protections. Such protections are available on the major part of the electronic components, so we can consider them as general protections.

Embedded systems often use some specific devices such as microcontrollers which integrate specific on-chip protections. Watchdog which acts as a timer that must be periodically refreshed on pain of reset the device is an example of such specific protections. At present, power supervisor or power on reset are more and more implemented in order to prevent from power supply fluctuations. In the particular case of 32 bit microcontrollers or microprocessors, some techniques are added to check the validity of the data stored in memory locations.

External protection techniques also exist. The most popular are RC filters for particular frequency bands, faraday cage or shielding. Indeed, every embedded systems are encapsulated into shielding enclosure. We will not develop such hardware protection techniques which are presented in [START_REF] Baffreau | La protection des micro-contrôleurs aux aggressions électromagnétiques[END_REF], [START_REF] Charoy | Parasites et perturbations des électroniques -blindages filtres et câbles blindés[END_REF].

-Advantage and drawback

Hardware techniques are mainly used to quickly limit some parasitic effects of electromagnetic disturbances such as sharp transient pulses or electrostatic discharge (ESD), where important energy flow reaches into the hardware platform. They can be very efficient if electromagnetic problems are considered during the first step of the system design. On the other hand, they can be high or even very high cost solution when electromagnetic considerations are treated to late, because a new or a complementary design can be needed. Moreover, added elements, such as additional shielding, often impact on the global system weight that could be not acceptable in some embedded real-time systems. Finally, their expenditure must be added to each produced systems.

Software protection techniques

-Principle

The electromagnetic aggression disturbs the hardware platform behaviour. This misfunctioning cause an erroneous execution of the program. Software redundancy by N-Version programming is not considered due to its cost and the risk of common mode failures. The phenomena caused by the electromagnetic fields being transient, on-line detection techniques have to be proposed. Indeed, the program cannot check periodically erroneous state occurrence. It must permanently perceive such issues. Several points of view are described hereafter. At first we propose criteria to assess the presented techniques.

-Software techniques analysis criteria

The criteria considered to assess the protection techniques are associated with the development cost of the detection statements instrumenting the program. This cost is correlated to the degree of genericity of the method used to find these statements. A full generic method means that the statements used to detect erroneous states at run-time, can be added automatically to the program at design-time.

In this paper, we search for such generic approaches as hand-made instrumentations for error detections have too much drawbacks: their efficiency in detecting errors depends on the knowledge of engineers who add the statements; it is difficult to assess their actual efficiency after their adding and to maintain these detection mechanisms; finally, instrumentation cost is high and this overcost has to be spent again for a new product or a new release of an existing product. On the contrary, a generic approach whose efficiency is known, will not require overcost being implemented automatically and will be easily maintainable.

-Software techniques

-Detection associated with the microprocessor instructions

Research activities have been done to propose mechanisms to detect and to correct damaged data before their processing: Software-Implemented Error Detection and Correction techniques or Error Detection by Duplicated Instructions (cf., for instance, Stanford Argos project [SHIR00]).

Our project aims at handling hardware failures occurring due to electromagnetic fields and detecting their effects on the data and control flows of the software application executed by the hardware platform. The instructions offered by the microprocessors may be considered as services called by the executable program (Figure 1). These services act on the program data as well as on the program control flow (jump instruction for example). The implementation of additional instructions checking that each application instruction has been correctly executed cannot be envisaged, being untractable.

Techniques such as Enhanced Control Flow Checking using Assertions propose to include instructions checking assertions for each block of instructions [START_REF] Alkhalifa | Design and Implementation of a Portable Control-Flow Checking Technique[END_REF]. Other proposals aim at detecting the Instruction Pointer corruption in particular, due to electromagnetic interference [START_REF] Ong | Empirical Comparison of Software Error Detection and Correction Techniques for Embedded Systems[END_REF] or using techniques based on signatures [START_REF] Shirvani | Software-Implemented Hardware Fault Tolerance Experiment COTS in Space[END_REF].

All these solutions have a main drawback: they are specific to the used microprocessor. In fact, the misfunctioning of the processor instructions due to aggression causes a specific wrong behaviour of a program which must be known. Therefore, it may be better to study error detection at the source program level instead of the executable program level.

-Detection associated with the software application

A source program is written in a given programming language. A first approach consist in adding statements checking that the software application functionalities behave as expected. These statements are implemented using defensive programming techniques based on pre-conditions, post-conditions and invariants on variables or subprogram calls [START_REF] Luckham | Programming with Specification[END_REF].

However, this method needs again a specific design of the program instrumentation for each specific application. The implementation of such a solution is therefore expensive. The efficiency of the error detection means is assessed with difficulties, as we do not have precise models of the effects due to electromagnetic fields on program behaviour. Moreover, the actual efficiency depends on the competence of the engineers who instrumented the program.

-Detection associated with the programming language

Our proposal does not depend on the specific functionality of a software application as it is based on the characteristics of the programming language. Therefore it could be reused in any application implemented using this programming language.

A programming language offers features (declaration of variables, assignment statements, etc.) which could be considered as services of an "abstract machine" defined by the semantics of the language. For instance, the statement "J=I+1" uses a machine which can evaluate the arithmetic expressions and can assign the result to a variable. This abstract machine is implemented by hardware and software components. For instance, "printf (...)" assumes that a service exists to display a text which is implemented by an operating system as well as a microprocessor (Figure 2). Such abstract machines are sometimes specified when languages are designed (Cf. for instance, Java Virtual Machine). The "abstract machine" implements the operational semantics of the programming language which also provides a checking semantics often implicitly expressed. For example, let T be an array. T(I) expresses an access to the I-th value of the array (operational semantics). However, a pre-condition is associated with the execution of this service: the value of I must be in the range specified when the array was declared (between 0 and N-1 for an array of size N declared in C language). The violation of this property detects an error. Let us remark that this property is not specific to a particular application. We don't know what application concept is implemented by this array. We are only sure that an error occurs when this property is false. Thus, the checking of the property "the value of an index used to access to an array element must be in the range specified at the array declaration time" is therefore a means for generic error detection.

Our studies lead to the proposal of a checking semantics written in the C language. We previously provided a first example concerning the arrays. Hereafter, we give two other examples: the first property deals with the control flow whereas the second is associated with the data flow.

1. "The execution of a block of statements must start at the first statement and be completed at the last one". The negation of this property detects an abnormal branching due to an erroneous behaviour of the hardware platform, if the "go to" statement cannot be used in the program.

2. "A variable must be assigned before its use". The negation of this assertion is an error which may be due to a design fault detectable before execution [START_REF] Geffroy | Design of Dependable Computing Systems[END_REF] or due to a hardware misfunctioning which must be detected at run-time.

Experimental results

-Developed target

The efficiency of the software detection mechanisms proposed must be checked, providing aggression on hardware platform executing the software application.

To perform immunity measurement, various standardized methodologies can be used. The methods are full described in the standard IEC-62132 [START_REF]Integrated Circuits, Measurements of Susceptibility, IEC standard[END_REF]. The figure 3 presents the Direct Power Injection (DPI) method [DPI00] that we consider for our experiments. This method allows us to measure the susceptibility level of the Integrated Circuit (IC) in a frequency range from 10 kHz up to 1 GHz.

without exceeding the maximum level fixed at 10 dBm. The measurement point corresponds to the maximum aggression level, at a given frequency, that could be injected without device failure. The measurement points form together the immunity level versus the frequency of the injected signal (Figure 6). The lower is the curve, the higher is the device susceptibility.

The checked property is the following one: "the value of a variable must be in a range defined by its domain". This rule is applied to the variable Engine_Temperature.

The lower graph in figure 6 illustrates a test result obtained with a conventional software whereas the upper result is issued from a system based on defensive software. The immunity gain observed is 6 dBm at least on the whole frequency domain, and above 10 dBm excepted for the 1 MHz frequency. This frequency correspond to an harmonic of the internal clock that is used to generate the analogue to digital converter sampling clock. That is the reason why we have a specific susceptibility for this frequency.

-Software technique limits

Software techniques provide a low cost solution to detect hardware misfunctioning. Unfortunately, it has some limitations. Those limits are closely linked to hardware platform. Considering an analogue acquisition, data are sampled at a fixed frequency. If the disturbance frequency is very close to the sampling frequency, it is difficult to detect the system aggression. Figure 6 illustrates this limitation considering the 1 MHz frequency where the susceptibility threshold is low.

Moreover, due to a too important aggression the hardware platform can be temporally out of working. In that configuration, the software cannot be executed and any software techniques can be used too.

Conclusion

The protection of real-time embedded systems against electromagnetic fields aggressions is a requirement. Indeed, on one hand the number of these systems is increasing and more and more responsibilities are transferred to them and, on the other hand, these aggressions are more and more frequent as emitting devices are more and more popular.

The electromagnetic fields have effects on the electronics components. So, the conventional solution consists in adding hardware protection means. Unfortunately, their costs increase the cost of each produced system. However, the hardware misfunctioning causes effects on the software application behaviour at the origin of the system failure. In this paper we proposed to detect this misfunctioning adding software mechanisms in the application. To avoid an increasing of the product price due to the software development costs, we searched for generic approaches allowing automatic implementation of the added statements. Finally, we presented a first experiment showing that the proposed solutions are efficient. We are only working on detection techniques. They have to be coupled with recovery mechanisms to allow the execution to be resumed in a safe state.

To conclude, let us mention that the software detection techniques do not eliminate the use of some hardware means. Indeed, is a high level induction current destroys the microcontroller; then, the executed software application will have no possibilities to handle such a situation. Other experiments are done today injecting perturbations on various inputs, including the clock (induction currents) and on the chip (radiations). They demonstrate that our proposals have to be developed as they significantly increase the dependability of the systems.

Figure 1 :

 1 Figure 1 : General principle of software error detection techniques.

Figure 2 :

 2 Figure 2 : Abstract machine of a language.

Figure 6 :

 6 Figure 6 : Comparison between conventional and defensive software systems.

-22 -23 January 2004

The developed test setup (Figure 4) uses a specific printed circuit board on which the device under test (DUT) is placed. The disturbance injection is performed through an on board coupling capacitance placed near the device under test.

-Evaluation on data treatment

The considered application comes from automotive area. We sample an engine temperature from an analog sensor using an analog to digital converter integrated into a microcontroller. If the converted value is over a critical level an alarm is triggered (Figure 5). To evaluate the detection capabilities, the following procedure is used. At a determined frequency, an aggression level is injected into the device under test and its behaviour is externally checked (alarm triggered or not). If the expected behaviour occurs then the aggression level is increased step by step