Fabien Paganelli
email: fabien.paganelli@renault.com

Luc Bourgeois
email: luc.l.bourgeois@renault.com

Session 3: Business Models Context, issues and solutions for automotive embedded software products

Keywords: Re-use, embedded software, architecture, software product line

published or not. The documents may come

Introduction

Shorter time to market

Competition in the automotive industry has led car manufacturers like Renault to increase their competitiveness through a defined business strategy including :

• Reducing time to market for new vehicle projects.

• Increasing the number of vehicle product families and types in the expectation of larger production volumes leading to purchasing cost reductions and sale increasing. • Developing strong in-vehicle customer benefit policies to make cars more attractive.

Such an accelerating context put even more pressure on quality aspects. Making cars quicker does not mean putting away quality of products. Putting even more the emphasis on quality is the best way to avoid large and costly car recall campaigns and high guarantee costs impacting business results and public image. Furthermore, quality and reliability are leverage for customer trust and business improvement. The evolution of the automotive context in this way affects all engineering fields involved in car design and production, among which in-vehicle software product development. In this way, it represents a challenge for both car manufacturers and suppliers to address the following issue regarding software development : how deploying quicker in-vehicle software products while improving in quality.

Innovation protection and subcontracting

Today Renault model of working on ECU (Electronic Control Unit) and embedded software is mainly based on sub-contracting. Renault makes totally, partially or sub-contracts functional specifications on the basis of customer benefits and functionality requirements, and achieves functional and system validation testing. Suppliers are in charged of the whole software product development and testing. Therefore, Renault provides all specifications and know-how to external companies, among which are functional requirements implementing innovative customer benefits. This means that innovation protection for Renault is quite poor while it is a territory of intensive competition between car manufacturers. This brings about the issue of protecting innovation more efficiently.

In the following chapters, based on the state of our current investigations on software product and management, and in an attempt to identify solutions to address the issues mentioned above, we introduce our point of view on the notion of software product line and architecture based development for automotive products, and the opportunity to build car manufacturer software components.

2 Software product line for in-vehicle embedded products

A point of view on SPL

Starting from scratch for every application, or making too many modifications in existing software is time consuming and error-prone. This puts a lot of pressure on suppliers and the car manufacturer teams while introducing risks in the car design and test process. On the current evolution trend of automotive business as exposed earlier, such a software development model is no longer acceptable.

The software engineering institute has developed an approach to build software product lines. A software product line is defined in [cle02] as a set of softwareintensive systems sharing a common, managed and set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way.

Core assets are defined as software artifact that are used in the production of more than one product in a software product line. A core asset may be an architecture, a software component, a process model, a plan, a document, or any other useful result of building a system.

According to what is exposed in [cle02], there are no more places for opportunistic fine-grain re-use in a software product line. Re-use becomes a plan, enabled and organized activity.

The reason why Renault is interested in product lines is that the latter is a systematic and engineered way to develop well fitting software products based on large and mastered re-use. Thus, it is a good mean to develop solutions faster as a solution to tackle the shrinking of vehicle development time while improving quality since it re-uses well known core assets. As such, we consider that it is potentially a good approach to address our first issue. On the supplier side, the creation of software product lines may lead to the following advantages :

• It is a mean to be more competitive as software product lines have proven payback as exposed in [cle02] through many examples in different industrial sectors.

• It allows suppliers to better fit to customer expectations in terms of quality and development schedule constraints. Therefore it is a good point for suppliers to be more eligible on request for quotations at the beginning of a car project for developing a software product supporting a number of vehicle functionalities.

Therefore, a well established software product line approach through the implementation of required practices and organization as exposed in [cle02], may represent a positive evolution factor on software product development in a win-win approach between car manufacturers and suppliers.

Among keys in the in the development of a software product line are management and analysis of variability and the design of an adequate software architecture framework. Through the notion of adequate software architecture, we mean the development of a software architecture addressing the qualities that must be extracted from stakeholders' requirements and providing mechanisms to implement points of variability.

Variability analysis as a key success factor

Since one of the main objective of a software product line is deploying more quickly customer solutions on a common software architecture basis, variability between target customer products must be identified and taken into account in the SPL architecture design. In this respect, it is required to consider variability at an early stage in the software product line built exercise with a view to allow design decisions on specific customer product development to be made later on. Too late consideration of variability is risky as it may result in too many modifications in the target software architecture to fit to target customer needs, undermining in this way the product line approach.

Among the research efforts on variability and analysis of variability, we can mention for instance [gur01] that proposes to address variability through feature analysis, [sva01] that offers a taxonomy on variability realization techniques and factors relevant to determine how to implement variability, [bac01] that proposes an analysis on the cause of variation, types of variation, a way to represent them as put into context, and implementation mechanism into software.

[thi02] describes a practical case of variability analysis and management in the aim of building a SPL for a type of automotive product.

Software architecture at the heart of SPL

Software architecture is defined in [bas02] as "The software architecture of a program or computing system is the structure or structures of the system, which comprise the software elements, the externally visible properties of those elements, and the relationships among them".

Central to a product line is the software architecture it relies on. In this respect, the software architecture must be designed in a way as dealing with variability of target products. Some work has been achieved in the automotive industry in an attempt to implement a software product line through variability formalization based on target product features [thi02].

In this context, as stated earlier, the software architecture aiming to support a product line for an invehicle software must be designed for modifiability. However, design for modifiability must be achieved in balancing with design for performance as target products are embedded software with real-time constraints, limited resources, and characterized by tight cost constraints making the adding of more resources very expensive. Therefore, trade-off must be achieved between these qualities depending on the target product feature and without jeopardizing the product line. Furthermore, other qualities must be required (security, availability, reliability, …) depending on the product type and its level of criticality (e.g., engine control, braking, multimedia systems, dashboard, light control have all different set of constraints).

Success in designing the right architecture with a view to support a software product line is paramount to keep the later operational over time. As described in [bas03], the SEI has developed an interesting approach and a set of methodological tool aiming to help entities involved in that sensitive job.

Among the main items developed in that methodology, we would like to mention as success or facilitating factors :

• The identification of the stakeholders of the target architecture with a view to capture from them and through business and technical scenarios the requirements from which the main qualities of the target architecture will be extracted, and with whom the trade-offs will be achieved.

While not pretending to be exhaustive, and in the context of automotive products, we can mention as stakeholders the developing organization (supplier), the customer, the end-user, the purchaser. Note that the three later are all represented by individuals working for the car manufacturer.

• The design of the target architecture through patterns. The pattern approach has been largely introduced in [bus96]. An example of the patternapproach benefit in the design of a software architecture aiming to become a software product line has been described in [pet03] in the field of radar systems.

Let us mention some of the advantages of patterns we have captured : Going faster in the design of an architecture through the usage and combination of patterns that represent proven solutions in essence.

Patterns do not apply constraints on detailed design solutions as they can be implemented in different ways fitting to target application requirements and properties. Pattern represent a medium for setting-up a better communication between customer and suppliers as it represents some kind of high level while concrete design language that can be understood on supplier and customer side.

Patterns dot not limit the scope of thinking but represent a way to extend it by building new patterns if none are fitting to the target problem. As such, they represent a way for knowledge management on architecture design.

• The documentation of architecture using different views fitting to stakeholders rationality as a way to communicate the architectural choices and discuss trade-offs on a common shared basis.

Among automotive target product able to carry on the way to a software product line approach, body control management and engine control are heavy strategic embedded software products as they support large customer related benefits, perceived quality, performance and global customer feeling.

Car manufacturer made components

As stated earlier, car maker know-how is mainly concentrated in functional requirements and applicative component source code. Applicative components contain the code resulting from the implementation of new functions and benefits resulting from research activities on every aspect of car control such as in-vehicle energy management, body control, chassis control, engine control, and so on. In that context, keeping confidential function content may be required. To this end, other means than providing specification or C source code to external entities must be found.

Currently, one way for innovation protection is to make software components designed and built by the car manufacturer. The targeted components are the applicative components implementing protected functionalities. Such components would be provided for instance to suppliers in object or binary code for integration. However, such a solution bears a certain number of issues either business or technical.

On the business side, issues raised by such an approach are about responsibility sharing between car manufacturer and supplier in case of failure of the target product.

On the technical side, a certain number of issues must be addressed, as exposed in [aee00] regarding the integration of components from different sources on one target platform. Among the items to be considered are :

• Component features What is the level of coupling between the target component and the others ? What links are there to the hardware ? What are the component real-time constraints ? Etc.

• Interfacing with the environment

What are the inputs, outputs and calibrations of the component if applicable ?

• Data implementation As portability is one of the main features to be considered, should some specific facilities provided by the target hardware be avoided ? Ex : bit addressing, etc.

• Format of the component files at delivery Should the component be delivered in object code or binary code ? This raises an issue regarding the usage of a same or different compilation chain compared with the compilation chain used for the built of the whole target product.

All these items call for trade-off depending on the strategy defined for the target product… Furthermore, a process of interaction between the car manufacturer and the supplier(s) involved in such an exercise must be defined with a view to know who does what, when and how.

Also, software standards are required to facilitate such an approach. Some initiatives aiming to standardize software materials such as middleware, I/O control, and low level software either have been running for a while (e.g. specifications of the OSEK consortium on operating system and communication components), or are more recent (e.g. the HIS interest group, Autosar).

Renault is keeping up to date on the results of such working groups that may be transformed into software product requirements in a close future. Further investigation on business and technical issues must be performed (e.g. through collaborative projects) to define solutions that can be applicable in the automotive business context.

Conclusion

As exposed in this paper, software product lines applied to automotive software represent an interesting approach to tackle the issue of making better software product in a quicker way and in a winwin approach between car manufacturer and supplier. Nevertheless, setting-up an SPL approach is not a trivial task as it is a combination of business, organizational and technical decisions that are structuring at the company level and its competitiveness. [bir03] describes an interesting feedback on current industrial practices in the attempt to build SPL in different industrial sectors.

On the technical point of view, care must be taken to variability analysis as the result of the latter represents a strong architectural driver. Indeed, it will lead the design team to identify the mechanisms that will enable the SPL to be more or less efficient in its ability to be a common basis for making different target customer products.

Furthermore, while variability implies design for modifiability, the software architecture of the SPL must be built in balancing with performance and other qualities depending on the product mission and type and the business scenarios captured from stakeholders' requirements and needs. Since software architecture is a key parameter in the elaboration of automotive systems, it is essential for the car manufacturer as a major stakeholder to obtain a deep regard on the architectural design decision made by suppliers with a view to check the fitness between expectations and target product reality. To this end, it must have access to detailed architectural documentation. Beyond the good design approach it represents, a pattern-based language may help in this effort of communication between stakeholders.

On the reinforcement of innovation protection through component built by car maker, a lot must be done to define a solution around subjects such as working model between car maker and suppliers and technical mechanisms allowing integration at no dissuasive hardware costs. Work is under way to address these issues. Furthermore, Renault is very keen to stay in contact or participate on relevant areas in the effort of standardization, paramount to apply such a strategy.

 Evaluating Software Architectures: Methods and Case Studies". L.Bass, P.Clements, R.Kazman, Boston, MA: Addison-Wesley, 2002 [bas03] "Software architecture in practice, 2 nd edition", L.Bass, P.Clements, R.Kazman, SEI series in software engineering, Addison-Wesley, 2003

	[Aee00] "Supplier code portage process, an
	experiment	on	embedded	software
	portability", AEE project working group 4.2,
	2000			
	[bac01] "Managing	variability	in	software
	architectures",		F.Bachmann,	L.Bass,
	Proceedings of the ACM SIGSOFT
	Symposium	on	Software	Reusability
	(SSR'01), pp. 126-132, May 2001
	[bas02] "			

-22 -23 January 2004