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HIGHLIGHTED ARTICLE
| GENOMIC PREDICTION

Efficient Implementation of Penalized Regression for
Genetic Risk Prediction

Florian Privé,*,1 Hugues Aschard,† and Michael G. B. Blum*,1

*Laboratoire TIMC-IMAG, UMR 5525, University of Grenoble Alpes, CNRS, 38700 La Tronche, France and †Centre de
Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, 75015 Paris, France

ABSTRACT Polygenic Risk Scores (PRS) combine genotype information across many single-nucleotide polymorphisms (SNPs) to give a
score reflecting the genetic risk of developing a disease. PRS might have a major impact on public health, possibly allowing for
screening campaigns to identify high-genetic risk individuals for a given disease. The “Clumping+Thresholding” (C+T) approach is the
most common method to derive PRS. C+T uses only univariate genome-wide association studies (GWAS) summary statistics, which
makes it fast and easy to use. However, previous work showed that jointly estimating SNP effects for computing PRS has the potential
to significantly improve the predictive performance of PRS as compared to C+T. In this paper, we present an efficient method for the
joint estimation of SNP effects using individual-level data, allowing for practical application of penalized logistic regression (PLR) on
modern datasets including hundreds of thousands of individuals. Moreover, our implementation of PLR directly includes automatic
choices for hyper-parameters. We also provide an implementation of penalized linear regression for quantitative traits. We compare
the performance of PLR, C+T and a derivation of random forests using both real and simulated data. Overall, we find that PLR achieves
equal or higher predictive performance than C+T in most scenarios considered, while being scalable to biobank data. In particular, we
find that improvement in predictive performance is more pronounced when there are few effects located in nearby genomic regions
with correlated SNPs; for instance, in simulations, AUC values increase from 83% with the best prediction of C+T to 92.5% with PLR.
We confirm these results in a data analysis of a case-control study for celiac disease where PLR and the standard C+T method achieve
AUC values of 89% and of 82.5%. Applying penalized linear regression to 350,000 individuals of the UK Biobank, we predict height
with a larger correlation than with the best prediction of C+T (�65% instead of �55%), further demonstrating its scalability and
strong predictive power, even for highly polygenic traits. Moreover, using 150,000 individuals of the UK Biobank, we are able to
predict breast cancer better than C+T, fitting PLR in a few minutes only. In conclusion, this paper demonstrates the feasibility and
relevance of using penalized regression for PRS computation when large individual-level datasets are available, thanks to the efficient
implementation available in our R package bigstatsr.
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POLYGENIC risk scores (PRS) combine genotype infor-
mation across many single-nucleotide polymorphisms

(SNPs) to give a score reflecting the genetic risk of developing

adisease. PRSareuseful for genetic epidemiologywhen testing
polygenicity of diseases and finding a common genetic contri-
butionbetween twodiseases (Purcell et al.2009). Personalized
medicine is another major application of PRS. Personalized
medicine envisions to use PRS in screening campaigns in order
to identify high-risk individuals for a given disease (Chatterjee
et al. 2016). As an example of practical application, targeting
screening of men at higher polygenic risk could reduce the
problem of overdiagnosis and lead to a better benefit-to-harm
balance in screening for prostate cancer (Pashayan et al.
2015). However, in order to be used in clinical settings, PRS
should discriminate well enough between cases and controls.
For screening high-risk individuals and for presymptomatic
diagnosis of the general population, it is suggested that, for a
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10% disease prevalence, the AUC must be .75% and 99%,
respectively (Janssens et al. 2007).

Several methods have been developed to predict disease
status, or any phenotype, based on SNP information. A com-
monly used method often called “P+T” or “C+T” (which
stands for “Clumping and Thresholding”) is used to derive
PRS from results of Genome-Wide Association Studies
(GWAS) (Wray et al. 2007; Evans et al. 2009; Purcell et al.
2009; Chatterjee et al. 2013; Dudbridge 2013). This tech-
nique uses GWAS summary statistics, allowing for a fast
implementation of C+T. However, C+T also has several lim-
itations; for instance, previous studies have shown that pre-
dictive performance of C+T is very sensitive to the threshold
of inclusion of SNPs, depending on the disease architecture
(Ware et al. 2017). In parallel, statistical learning methods
have also been used to derive PRS for complex human dis-
eases by jointly estimating SNP effects. Suchmethods include
joint logistic regression, Support Vector Machine (SVM) and
random forests (Wei et al. 2009; Abraham et al. 2012, 2014;
Botta et al. 2014; Okser et al. 2014; Lello et al. 2018;
Mavaddat et al. 2019). Finally, Linear Mixed-Models (LMMs)
are another widely used method in fields such as plant and
animal breeding, or for predicting highly polygenic quantita-
tive human phenotypes such as height (Yang et al. 2010). Yet,
predictions resulting from LMM, known e.g., as “gBLUP,”
have not proven as efficient as other methods for predicting
several complex diseases based on genotypes [see table 2 of
Abraham et al. (2013)].

We recently developed two R packages, bigstatsr and
bigsnpr, for efficiently analyzing large-scale genome-wide
data (Privé et al. 2018). Package bigstatsr now includes an
efficient algorithm with a new implementation for comput-
ing sparse linear and logistic regressions on huge datasets as
large as the UK Biobank (Bycroft et al. 2018). In this paper,
we present a comprehensive comparative study of our
implementation of penalized logistic regression (PLR),
which we compare to the C+T method and the T-Trees
algorithm, a derivation of random forests that has shown
high predictive performance (Botta et al. 2014). In this com-
parison, we do not include any LMM method, yet, L2-PLR
should be very similar to LMM methods. Moreover, we do
not include any SVM method because it is expected to give
similar results to logistic regression (Abraham et al. 2012).
For C+T, we report results for a large grid of hyper-param-
eters. For PLR, the choice of hyper-parameters is included in
the algorithm so that we report only one model for each
simulation. We also use a modified version of PLR in order
to capture not only linear effects, but also recessive and
dominant effects.

To perform simulations, we use real genotype data and
simulate newphenotypes. In order tomake our comparison as
comprehensive as possible, we compare different disease
architectures by varying the number, size and location of
causal effects as well as disease heritability. We also compare
two different models for simulating phenotypes, one with
additive effects only, and one that combines additive, domi-

nant and interaction-type effects. Overall, we find that PLR
achieves higher predictive performance than C+T except in
highly underpowered cases (AUC values lower than 0.6),
while being scalable to biobank data.

Materials and Methods

Genotype data

We use real genotypes of European individuals from a case-
control study for celiac disease (Dubois et al. 2010). This
dataset is presented in Supplemental Material, Table S1. De-
tails of quality control and imputation for this dataset are
available in Privé et al. (2018). For simulations presented
later, we first restrict this dataset to controls from UK in order
to remove the genetic structure induced by the celiac disease
status and population structure. This filtering process results
in a sample of 7100 individuals (see supplemental notebook
“preprocessing”). We also use this dataset for real data appli-
cation, in this case keeping all 15,155 individuals (4496 cases
and 10,659 controls). Both datasets contain 281,122 SNPs.

Simulations of phenotypes

We simulate binary phenotypes using a Liability Threshold
Model (LTM) with a prevalence of 30% (Falconer 1965). We
vary simulation parameters in order to match a range of ge-
netic architectures from low to high polygenicity. This is
achieved by varying the number of causal variants and their
location (30, 300, or 3000 anywhere in all 22 autosomal
chromosomes or 30 in the HLA region of chromosome 6),
and the disease heritability h2 (50 or 80%). Liability scores
are computed either from a model with additive effects only
(“ADD”) or a more complex model that combines additive,
dominant and interaction-type effects (“COMP”). For model
“ADD,”we compute the liability score of the i-th individual as

yi ¼
X

j2Scausal
wj �gGi; j þ ei;

where Scausal is the set of causal SNPs,wj are weights generated
from a Gaussian distribution Nð0; h2=jScausaljÞ or a Laplace dis-
tribution Laplaceð0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2=ð2jScausaljÞ
p Þ, Gi;j is the allele count of

individual i for SNP j, gGi; j corresponds to its
standardized version (zero mean and unit variance for all
SNPs), and e follows a Gaussian distribution Nð0; 12 h2Þ. For
model “COMP,”we simulate liability scores using additive, dom-
inant and interaction-type effects (see SupplementalMaterials).

We implement three different simulation scenarios, sum-
marized in Table 1. Scenario N�1 uses the whole dataset (all
22 autosomal chromosomes – 281,122 SNPs) and a training
set of size 6000. For each combination of the remaining pa-
rameters, results are based on 100 simulations except when
comparing PLR with T-Trees, which relies on five simulations
only because of a much higher computational burden of
T-Trees as compared to other methods. Scenario N�2 consists
of 100 simulations per combination of parameters on a data-
set composed of chromosome six only (18,941 SNPs).
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Reducing the number of SNPs increases the polygenicity (the
proportion of causal SNPs) of the simulated models. Reduc-
ing the number of SNPs (p) is also equivalent to increasing
the sample size (n) as predictive power increases as a func-
tion of n=p (Dudbridge 2013; Vilhjálmsson et al. 2015). For
this scenario, we use the additive model only, but continue to
vary all other simulation parameters. Finally, scenario N�3
uses the whole dataset as in scenario N�1 while varying the
size of the training set in order to assess how the sample size
affects predictive performance of methods. A total of 100 sim-
ulations per combination of parameters are run using
300 causal SNPs randomly chosen on the genome.

Predictive performance measures

In this study, we use two different measures of predictive
accuracy. First, we use the Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC) (Lusted 1971; Fawcett
2006). In the case of our study, the AUC is the probability that
the PRS of a case is greater than the PRS of a control. This
measure indicates the extent to which we can distinguish be-
tween cases and controls using PRS. As a second measure, we
also report the partial AUC for specificities between 90 and
100% (McClish 1989; Dodd and Pepe 2003). This measure is
similar to the AUC, but focuses on high specificities, which is the
most useful part of the ROC curve in clinical settings. When
reporting AUC results of simulations, we also report maximum
achievable AUC values of 84% and 94% for heritabilities of 50%
and 80%, respectively. These estimates are based on three dif-
ferent yet consistent estimations (see Supplemental Materials).

Methods compared

In this paper,wecompare threedifferent typesofmethods: the
C+T method, T-Trees and PLR.

The C+T method directly derives PRS from the results of
Genome-Wide Associations Studies (GWAS). In GWAS, a
coefficient of regression (i.e., the estimated effect size b̂j) is
learned independently for each SNP j along with a corre-
sponding P-value pj. The SNPs are first clumped (C) so that
there remain only loci that are weakly correlated with one
another (this set of SNPs is denoted Sclumping). Then, thresh-
olding (T) consists in removing SNPs with P-values larger
than a user-defined threshold pT . Finally, the PRS for individ-
ual i is defined as the sum of allele counts of the remaining
SNPs weighted by the corresponding effect coefficients

PRSi ¼
X

j2Sclumping

pj , pT

b̂j � Gi;j;

where b̂j ðpjÞ are the effect sizes (P-values) learned from the
GWAS. In this study, we mostly report scores for a clumping
threshold at r2 . 0:2 within regions of 500 kb, but we also
investigate thresholds of 0.05 and 0.8. We report three
different scores of prediction: one including all the SNPs
remaining after clumping (denoted “C+T-all”), one includ-
ing only the SNPs remaining after clumping and that have

a P-value under the GWAS threshold of significance
(P, 5 � 1028, “C+T-stringent”), and one that maximizes
the AUC (“C+T-max”) for 102 P-value thresholds
between 1 and 102100 (Table S2). As we report the optimal
threshold based on the test set, the AUC for “C+T-max” is an
upper bound of the AUC for the C+T method. Here, the
GWAS part uses the training set while clumping uses the test
set (all individuals not included in the training set).

T-Trees (Trees inside Trees) is an algorithm derived from
random forests (Breiman 2001) that takes into account the
correlation structure among the genetic markers implied by
linkage disequilibrium (Botta et al. 2014). We use the same
parameters as reported in table 4 of Botta et al. (2014), ex-
cept that we use 100 trees instead of 1000. Using 1000 trees
provides a minimal increase of AUC while requiring a dispro-
portionately long processing time (e.g., AUC of 81.5% instead
of 81%, data not shown).

Finally, for PLR, we find regression coefficients b0 and b

that minimize the following regularized loss function

Lðl;aÞ ¼ 2
Xn
i¼1

ðyilogðziÞ þ ð12 yiÞlogð12 ziÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Loss function

                                             þ l
�
ð12aÞ 1

2
jjbjj22 þ ajjbjj1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Penalization

;

(1)

where zi ¼ 1=ð1þ expð2ðb0 þ xTi bÞÞÞ, x denotes the geno-
types and covariables (e.g., principal components), y is the
disease status to predict, l and a are two regularization hy-
per-parameters that need to be chosen. Different regulariza-
tions can be used to prevent overfitting, among other
benefits: the L2-regularization (“ridge,” Hoerl and Kennard
(1970)) shrinks coefficients and is ideal if there are many
predictors drawn from a Gaussian distribution (corresponds
to a ¼ 0 in the previous equation); the L1-regularization
(“lasso,” Tibshirani 1996) forces some of the coefficients to
be equal to zero and can be used as a means of variable
selection, leading to sparse models (corresponds to a ¼ 1);
the L1- and L2-regularization (“elastic-net,” Zou and Hastie
2005) is a compromise between the two previous penal-
ties and is particularly useful in the p � n situation (p is
the number of SNPs), or any situation involving many cor-
related predictors (corresponds to 0,a, 1) (Friedman
et al. 2010). In this study, we use a grid search over
a 2 f1; 0:5; 0:05; 0:001g. This grid-search is directly embed-
ded in our PLR implementation for simplicity. Using
a ¼ 0:001 should result in a model very similar to gBLUP.

To fit PLR, we use an efficient algorithm (Friedman et al.
2010; Tibshirani et al. 2012; Zeng and Breheny 2017) from
which we derived our own implementation in R package
bigstatsr. This algorithm builds predictions for many values
of l, which is called a “regularization path.” To obtain an
algorithm that does not require to choose this hyper-param-
eter l, we developed a procedure that we call Cross-Model
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Selection and Averaging (CMSA, Figure S1). Because of L1-
regularization, the resulting vector of estimated effect sizes is
sparse.We refer to this method as “PLR” in the results section.

To capture recessive and dominant effects on top of addi-
tive effects in PLR, we use simple feature engineering: we
construct a separate dataset with three times as many vari-
ables as the initial one. For each SNP variable, we add two
more variables coding for recessive and dominant effects: one
variable is coded1 ifhomozygousvariantand0otherwise, and
the other is coded 0 for homozygous referent and 1 otherwise.
We then apply our PLR implementation to this dataset with
three times asmanyvariables as the initial one;we refer to this
method as “PLR3” in the rest of the paper.

Evaluating predictive performance for celiac data

We useMonte Carlo cross-validation to compute AUC, partial
AUC, the number of predictors, and execution time for the
original Celiac dataset with the observed case-control status:
we randomly split 100 times the dataset in a training set of
12,000 individuals and a test set composed of the remaining
3155 individuals.

Data availability

Supplemental Data include a PDFwith two sections ofmethods,
two tables and eight figures. Supplemental data also include six
HTML R notebooks including all code and results used in this
paper, for reproducibility purposes, and available at https://fig-
share.com/articles/code/7178750. Additional analyses of the
UK Biobank are available as three R scripts at https://figshar-
e.com/articles/code_UKB/7531559. Results of simulations are
available at https://figshare.com/articles/results_zip/7126964.
A tutorial on how to start with R packages bigstatsr and bigsnpr
is available at https://privefl.github.io/bigsnpr/articles/demo.html.
The two R packages are available on GitHub. Supplemental ma-
terial available at https://doi.org/10.25386/genetics.7851470.

Results

Joint estimation improves predictive performance

We compared PLR with the C+T method using simulations
of scenario N�1 (Table 1). When simulating a model with

30 causal SNPs and a heritability of 80%, PLR provides AUC
of 93%, nearly reaching the maximum achievable AUC of
94% for this setting (Figure 1). Moreover, PLR consistently
provides higher predictive performance than C+T across all
scenarios considered, except in some cases of high polyge-
nicity and small sample size, where all methods perform
poorly (AUC values below 60% – Figure 1 and Figure 3).
PLR provides particularly higher predictive performance
than C+T when there are correlations between predictors,
i.e., when we choose causal SNPs to be in the HLA region. In
this situation, the mean AUC reaches 92.5% for PLR and
84% for “C+T-max” (Figure 1). For the simulations, we
do not report results in terms of partial AUC because partial
AUC values have a Spearman correlation of 98% with the
AUC results for all methods (Figure S3).

Importance of hyper-parameters

In practice, a particular value of the threshold of inclusion
of SNPs should be chosen for the C+T method, and this
choice can dramatically impact the predictive performance
of C+T. For example, in a model with 30 causal SNPs,
AUC ranges from ,60% when using all SNPs passing
clumping to 90% if choosing the optimal P-value threshold
(Figure S4).

Concerning the r2 threshold of the clumping step in C+T,
we mostly used the common value of 0.2. Yet, using a more
stringent value of 0.05 provides equal or higher predictive
performance than using 0.2 in most of the cases we consid-
ered (Figure 2 and Figure 3).

Our implementation of PLR that automatically chooses
hyper-parameter l provides similar predictive performance
than the best predictive performance of 100 models corre-
sponding to different values of l (Figure S8).

Nonlinear effects

Wetested theT-Treesmethod in scenarioN�1.As compared to
PLR, T-Trees perform worse in terms of predictive ability,
while taking much longer to run (Figure S5). Even for simu-
lations with model “COMP” in which there are dominant and
interaction-type effects that T-Trees should be able to handle,

Table 1 Summary of all simulations

Number of
scenario

Dataset
(number of SNPs)

Sample size
of training set

Causal SNPs
(number and location)

Distribution
of effects Heritability

Simulation
model Methods

1 All 22 chromosomes 6000 30 in HLA Gaussian 0.5 ADD C+T
30 in all PLR

(281,122 SNPs) 300 in all Laplace 0.8 COMP PLR3
3000 in all (T-Trees)

2 Chromosome 6 only —a — a — a — a ADD C+T
(18,941 SNPs) PLR

3 All 22 chromosomes 1000 300 in all — a — a — a — a

(281,122 SNPs) 2000
3000
4000
5000

a Parameters are the same as the ones in the upper box.
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AUC is still lower when using T-Trees than when using PLR
(Figure S5).

We also compared the two PLRs in scenario N�1: PLR vs.
PLR3 that uses additional features (variables) coding for
recessive and dominant effects. Predictive performance of
PLR3 are nearly as good as PLR when there are additive
effects only (differences of AUC are always ,2%) and can
lead to significantly greater results when there are also
dominant and interactions effects (Figures S6 and S7).
For model “COMP,” PLR3 provides AUC values at least
3.5% higher than PLR, except when there are 3000
causal SNPs. Yet, PLR3 takes two to three times as much
time to run and requires three times as much disk storage
as PLR.

Simulations varying number of SNPs and sample size

First, when reproducing simulations of scenario N�1 using
chromosome six only (scenario N�2), the predictive perfor-
mance of PLR always increase (Figure 2). There is a partic-
ularly large increase when simulating 3000 causal SNPs:
AUC from PLR increases from 60% to nearly 80% for Gauss-
ian effects and a disease heritability of 80%. On the contrary,
when simulating only 30 or 300 causal SNPs with the cor-
responding dataset, AUC of “C+T-max” does not increase,
and even decreases for a heritability of 80% (Figure 2).
Second, when varying the training size (scenario N�3), we
report an increase of AUC with a larger training size, with a
faster increase of AUC for PLR as compared to “C+T-max”
(Figure 3).

Polygenic scores for celiac disease

JointPLRsalsoprovidehigherAUCvalues for theCeliacdata:
88.7% with PLR and 89.1% with PLR3 as compared to
82.5% with “C+T-max” (Figure S2 and Table 2). The relative
increase in partial AUC, for specificities larger than 90%, is
even larger (42 and 47%) with partial AUC values of
0.0411, 0.0426, and 0.0289 obtained with PLR, PLR3, and
“C+T-max,” respectively. Moreover, logistic regressions use
less predictors, respectively, at 1570, 2260, and 8360. In terms
of computation time, we show that PLR, while learning jointly
on all SNPs at once and testing four different values for hyper-
parameter a, is almost as fast as the C+T method (190 vs.
130 sec), and PLR3 takes less than twice as long as PLR
(296 vs. 190 sec).

Polygenic scores for the UK Biobank

Wetestedour implementationon656KgenotypedSNPsof the
UK Biobank, keeping only Caucasian individuals and remov-
ing related individuals (excluding the second individual in
each pair with a kinship coefficient .0.08). Results are pre-
sented in Table 3.

Our implementation of L1-penalized linear regression runs
in,1 day for 350K individuals (training set), achieving a
correlation of .65.5% with true height for each sex in the
remaining 24K individuals (test set). By comparison, the
best C+T model achieves a correlation of 55% for women
and 56% for men (in the test set), and the GWAS part takes
1 hr (for the training set). If using only the top 100,000
SNPs from a GWAS on the training set to fit our L1-PLR,

Figure 1 Main comparison of
C+T and PLR when simulating
phenotypes with additive effects
(scenario N�1, model “ADD”).
Mean AUC over 100 simulations
for PLR and the maximum AUC
reported with “C+T-max” (clump-
ing threshold at r2 .0:2). Upper
(lower) panels present results for
effects following a Gaussian (Lap-
lace) distribution, and left (right)
panels present results for a herita-
bility of 0.5 (0.8). Error bars are
representing 62SD of 105 non-
parametric bootstrap of the mean
AUC. The blue dotted line repre-
sents the maximum achievable
AUC.
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correlation between predicted and true heights drops at
63.4% for women and 64.3% for men. Our L1-PLR on breast
cancer runs in 13 min for 150K women, achieving an AUC of
0.598 in the remaining 39K women, while the best C+T
model achieves an AUC of 0.589, and the GWAS part takes
15 hr.

Discussion

Joint estimation improves predictive performance

In this comparative study, we present a computationally
efficient implementation of PLR. This model can be used to
build PRS based on very large individual-level SNP datasets
such as the UK biobank (Bycroft et al. 2018). In agreement
with previous work (Abraham et al. 2013), we show that
jointly estimating SNP effects has the potential to substan-
tially improve predictive performance as compared to the
standard C+T approach in which SNP effects are learned
independently. PLR always outperforms the C+T method,
except in some highly underpowered cases (AUC values
always ,0.6), and the benefits of using PLR are more pro-
nounced with an increasing sample size or when causal SNPs
are correlated with one another.

When there are many small effects and a small sample
size, PLR performs worse than (the best result for) C+T. For
example, this situation occurs when there are many causal
variants (3K) to distinguish among many typed variants
(280K) while using a small sample size (6K). In such un-
derpowered scenarios, it is difficult to detect true causal
variants, which makes PLR too conservative, whereas the

best strategy is to include nearly all SNPs (Purcell et al.
2009).

When increasing sample size (scenario N�3), PLR achieves
higher predictive performance than C+T and the benefits of
using PLR over C+T increase with an increasing sample size
(Figure 3). Moreover, when decreasing the search space (to-
tal number of candidate SNPs) in scenario N�2, we increase
the proportion of causal variants and we virtually increase
the sample size (Dudbridge 2013). In this scenario N�2, even
when there are small effects and a high polygenicity
(3000 causal variants out of 18,941), PLR gets a large in-
crease in predictive performance, now consistently higher
than C+T (Figure 2).

Importance of hyper-parameters

Thechoiceofhyper-parametervalues is very important since it
can greatly impact the performance of methods. In the C+T
method, there are twomain hyper-parameters: the r2 and the
pT thresholds that control how stringent are the C+T steps.
For the clumping step, appropriately choosing the r2 thresh-
old is important. Indeed, on the one hand, choosing a low
value for this threshold may discard informative SNPs that
are correlated. On the other hand, when choosing a high
value for this threshold, too much redundant information is
included in the model, which adds noise to the PRS. Based on
the simulations, we find that using a stringent threshold
ðr2 ¼ 0:05Þ leads to higher predictive performance, even
when causal SNPs are correlated. It means that, in most cases
tested in this paper, avoiding redundant information in C+T
is more important than including all causal SNPs. The choice

Figure 2 Comparison of meth-
ods when simulating phenotypes
with additive effects and using
chromosome six only (scenario N
�2). Thinner lines represent results
in scenario N�1. Mean AUC over
100 simulations for PLR and the
maximum values of C+T for three
different r2 thresholds (0.05, 0.2,
and 0.8) as a function of the num-
ber and location of causal SNPs.
Upper (lower) panels present re-
sults for effects following a
Gaussian (Laplace) distribution
and left (right) panels present re-
sults for a heritability of 0.5 (0.8).
Error bars representing 62SD of
105 nonparametric bootstrap of
the mean AUC. The blue dotted
line represents the maximum
achievable AUC.
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of the pT threshold is also very important as it can greatly
impact the predictive performance of the C+T method,
which we confirm in this study (Ware et al. 2017). In this
paper, we reported the maximum AUC of 102 different
P-value thresholds, a threshold that should normally be
learned on the training set only. To our knowledge, there is
no clear standard on how to choose these two critical hyper-
parameters for C+T. So, for C+T, we report the best AUC
value on the test set, even if it leads to overoptimistic results
for C+T as compared to PLR.

In contrast, for PLR, we developed an automatic pro-
cedure called CMSA that releases investigators from the
burden of choosing hyper-parameter l. Not only this pro-
cedure provides near-optimal results, but it also acceler-
ates the model training thanks to the development of an
early stopping criterion. Usually, cross-validation is used to
choose hyper-parameter values and then the model is
trained again with these particular hyper-parameter val-
ues (Hastie et al. 2008; Wei et al. 2013). Yet, performing
cross-validation and retraining the model is computation-
ally demanding; CMSA offers a less burdensome alterna-
tive. Concerning hyper-parameter a that accounts for the
relative importance of the L1 and L2 regularizations,
we use a grid search directly embedded in the CMSA
procedure.

Nonlinear effects

Wealsoexploredhowtocapturenonlineareffects. For this,we
introduced a simple feature engineering technique that en-
ables PLR todetect and learnnot only additive effects, but also

dominant and recessive effects. This technique improves the
predictive performance of PLR when there are nonlinear
effects in the simulations, while providing nearly the same
predictive performance when there are additive effects only.
Moreover, it also improves predictive performance for the
celiac disease.

Yet, this approach is not able to detect interaction-type
effects. In order to capture interaction-type effects, we tested
T-Trees, a method that is able to exploit SNP correlations and
interactions thanks to special decision trees (Botta et al.
2014). However, predictive performance of T-Trees are con-
sistently lower than with PLR, even when simulating a model
with dominant and interaction-type effects that T-Trees
should be able to handle.

Time and memory requirements

The computation time of our PLR implementation mainly
depends on the sample size and the number of candidate
variables (variables that are included in the gradient de-
scent). Indeed, the algorithm is composed of two steps: first,
for each variable, the algorithm computes an univariate
statistic that is used to decide if the variable is included in
the model (for each value of l). This first step is very fast.
Then, the algorithm iterates over a regularization path of
decreasing values of l, which progressively enables vari-
ables to enter the model (Figure S1). In the second step,
the number of variables increases and computations stop
when an early stopping criterion is reached (when predic-
tion is getting worse on the corresponding validation set,
see Figure S1).

Figure 3 Comparison of meth-
ods when simulating 300 causal
SNPs with additive effects and
when varying sample size (sce-
nario N�3). Mean AUC over
100 simulations for the maximum
values of C+T for three different
r2 thresholds (0.05, 0.2, and 0.8)
and PLR as a function of the train-
ing size. Upper (lower) panels are
presenting results for effects fol-
lowing a Gaussian (Laplace) distri-
bution and left (right) panels are
presenting results for a heritability
of 0.5 (0.8). Error bars represent
62SD of 105 nonparametric
bootstrap of the mean AUC. The
blue dotted line represents the
maximum achievable AUC.
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For highly polygenic traits such as height and when using
huge datasets such as the UK Biobank, the algorithm might
iterate over .100,000 variables, which is computationally de-
manding. On the contrary, for traits like celiac disease or breast
cancer that are less polygenic, the number of variables included
in the model is much smaller so that fitting is very fast (only
13 min for 150K women of the UK Biobank for breast cancer).

Memory requirements are tightly linked to computation
time. Indeed, variables are accessed in memory thanks to
memory-mapping when they are used (Privé et al. 2018).
When there is not enough memory left, the operating sys-
tem (OS) frees some memory for new incoming variables.
Yet, if too many variables are used in the gradient descent,
the OS would regularly swap memory between disk and
RAM, severely slowing down computations. A possible ap-
proach to reduce computational burden is to apply penal-
ized regression on a subset of SNPs by prioritizing SNPs
using univariate tests (GWAS computed from the same
dataset). Yet, this strategy was shown to reduce predictive
power (Abraham et al. 2013; Lello et al. 2018), which we
also confirm in this paper. Indeed, when using only the
100K most significantly associated SNPs, correlation be-
tween predicted and true heights is reduced from 0.656/
0.657 to 0.634/0.643 within women/men. A key advan-
tage of our implementation of PLR is that prior filtering of
variables is no more required for computational feasibility,
thanks to the use of sequential strong rules and early stop-
ping criteria.

Limitations

Our approach has one major limitation: the main advantage
of the C+T method is its direct applicability to summary
statistics, allowing to leverage the largest GWAS results to
date, even when individual cohort data cannot be merged
because of practical or legal reasons. Our implementation of
PLR does not allow yet for the analysis of summary data, but
this represents an important future direction. The current
version is of particular interest for the analysis of modern
individual-level datasets including hundreds of thousands of
individuals.

Finally, in this comparative study, we did not consider the
problem of population structure (Vilhjálmsson et al. 2015;
Márquez-Luna et al. 2017; Martin et al. 2017), and also did
not consider nongenetic data such as environmental and clin-
ical data (Van Vliet et al. 2012; Dey et al. 2013).

Conclusions

In this comparative study, we have presented a computation-
ally efficient implementationofPLR that canbeused topredict
disease status based on genotypes. A similar penalized linear
regression for quantitative traits is also available in R package
bigstatsr. Our approach solves the dramatic memory and
computational burdens faced by standard implementations,
thus allowing for the analysis of large-scale datasets such as
the UK biobank (Bycroft et al. 2018).

We also demonstrated in simulations and real datasets
that our implementation of penalized regressions is highly
effective over a broad rangeof disease architectures. It can be
appropriate for predicting autoimmune diseases with a few
strong effects (e.g., celiac disease), as well as highly poly-
genic traits (e.g., standing height) provided that sample size
is not too small. Finally, PLR as implemented in bigstatsr can
also be used to predict phenotypes based on other omics
data, since our implementation is not specific to genotype
data.
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