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18 Abstract
19 The transition from the Smithian substage to the Spathian substage of the Olenekian stage 
20 of the late Early Triassic was a critical time marked by a series of biological and environmental 
21 changes during the multimillion-year recovery interval following the end-Permian mass 
22 extinction. However, the Smithian/Spathian boundary (SSB) has not yet been formally defined, 
23 a shortcoming that inhibits targeted detailed studies of successive events during the Smithian-
24 Spathian transition and the recovery of the marine ecosystem during the Early Triassic. Here, 
25 we review main biostratigraphic (i.e., ammonoid and conodont) studies of the Smithian and 
26 Spathian substages in historically important regions (e.g., the Canadian Arctic for the Boreal 
27 realm, western North America for the eastern Panthalassic Ocean) and more recently re-studied 
28 locations (e.g., Pakistan and India in the southern Tethys, South China in the eastern Tethys) 
29 as well as the carbon isotope chemostratigraphy of 29 major Smithian-Spathian sections 
30 globally. Key ammonoid genera (e.g., Wasatchites, Anasibirites, Glyptophiceras and 
31 Xenoceltites of the late Smithian, and Bajarunia, Tirolites and Columbites of the early 
32 Spathian), conodont species (e.g., Scythogondolella milleri, Novispathodus waageni, and 
33 Borinella buurensis of the late Smithian, and ‘Triassospathodus’ hungaricus, Neogondolella 
34 aff. sweeti, and Icriospathodus spp. of the early Spathian), and carbonate carbon isotope 
35 excursions provide appropriate markers for constraining the SSB. Use of the first occurrence 
36 of the conodont Novispathodus pingdingshanensis as a potential marker of the SSB is also 
37 discussed. Based on correlations of biostratigraphic and carbon isotope data globally, we 
38 propose to revise previous placements of the SSB transition in some sections. Finally, we show 
39 that the Smithian Thermal Maximum (STM; herein named) was middle Smithian in age and 
40 not correlative with the SSB, as inferred in some earlier studies, and that the SSB coincided 
41 with a subsequent major global cooling event.
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76
77 1. Introduction
78
79 The Early Triassic is officially divided into two stages, the Induan and Olenekian, with the 
80 latter divided into two substages, the Smithian (ca. 0.7 Myr long) and Spathian (ca. 3 Myr long) 
81 (Fig. 1; Ovtcharova et al., 2006, 2015; Lehrmann et al., 2006; Galfetti et al., 2007; Mundil et 
82 al., 2010; Baresel et al., 2017). An alternative timescale based on cyclostratigraphic analysis of 
83 successions in Germany and China has assigned durations of 1.7 and 1.4 Myr to the Smithian 
84 and Spathian substages, respectively (Li et al., 2016a). The boundary between the Smithian 
85 and Spathian substages is an important transition during the recovery of marine ecosystems 
86 following the end-Permian mass extinction (EPME). Marine faunas show major rapid changes 
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87 during the late Smithian (over <0.12 Myr; Brühwiler et al., 2010) that continued across the 
88 Smithian/Spathian boundary (SSB), including a severe loss of biodiversity among conodonts 
89 and ammonoids (Brayard et al., 2006; Orchard, 2007; Stanley, 2009), size changes among 
90 surviving conodont taxa (Chen-YL et al., 2013; Leu et al., 2016, 2018), and greater 
91 cosmopolitanism among surviving ammonoid taxa (Brayard et al., 2006, 2007a; Fig. 1). 
92 Vegetation on land was marked by a rebound of arborescent forms (gymnosperms) during the 
93 late Smithian, following a prolonged interval of dominance by shrubby disaster-type taxa 
94 following the EPME (Galfetti et al., 2007a; Schneebeli-Hermann et al., 2012; Saito et al., 2012; 
95 Hochuli et al., 2016). In addition, a significant marine transgression occurred during the 
96 Smithian, followed by a marked regression across the SSB (e.g., Embry, 1997; Twitchett and 
97 Barras, 2004; Henderson et al., 2018). In some areas, dominantly argillaceous rocks and 
98 organic-rich shales of the late Smithian were replaced by massive carbonate rocks during the 
99 early Spathian (e.g., South China, Galfetti et al., 2008). Major perturbations in the global 

100 carbon (C) cycle were recorded by a negative δ13C shift during the middle Smithian (i.e., the 
101 N3 minimum; note: the numbering system of Early Triassic C-isotopic excursions is from 
102 Song-HY et al., 2013, 2014, and used here for convenience in correlation among different 
103 studied regions), followed by a large positive shift across the SSB (to the P3 maximum) (Fig. 
104 1). These excursions represent the fluctuations in a ~1.5-Myr-long interval of rapid, large C-
105 isotope fluctuations that commenced at the EPME, and it was followed by muted C-isotope 
106 variation during the Spathian substage (e.g., Payne et al., 2004; Tong et al., 2007). The SSB 
107 transition was also characterized by strong tropical sea-surface cooling (Sun et al., 2012; 
108 Romano et al., 2013), and a likely steepening of the latitudinal temperature gradient (Brayard 
109 et al., 2009a). It also corresponds to the establishment of first known complex and diversified 
110 biotas after the EPME (Brayard et al., 2017). This amalgam of biotic, environmental, and 
111 climatic changes at the SSB transition is known as the “SSB Event” (e.g., Galfetti et al., 2007a). 
112 Biostratigraphic analysis of the SSB transition began with studies of ammonoids in the 
113 Alps (Austria, Italy and Bosnia), the Himalayas (India), and the Salt Range (Pakistan) by a 
114 number of workers during the late nineteenth and early twentieth centuries, including Edmund 
115 von Mojsisovics (1839-1907), Wilhelm Heinrich Waagen (1841-1900), and Carl Diener (1862-
116 1928). A key paper was Mojsisovics et al. (1895), which presented an ammonoid biozonation 
117 that was used to define series and stages in the first complete formal subdivision of the Triassic 
118 system. Important early work on ammonoids in the western United States was undertaken by 
119 James Perrin Smith (1864-1931) and Norman John Silberling (1928-2011), among others. The 
120 substages of the Early Triassic were established based on extensive and detailed studies of 
121 ammonoids from marine faunas collected in the Canadian Arctic by geologists from the 
122 Geological Survey of Canada (Tozer, 1962, 1965, 1967, 1971, 1984, 1994). Tozer (1994) first 
123 reported an ammonoid biozonation for both the Smithian and Spathian substages. As a result 
124 of these investigations, the Triassic portion of the Standard Global Chronostratigraphic Scale 
125 was based exclusively on ammonoid biostratigraphy until the 1990s, and ammonoid studies 
126 have been continued by later researchers (e.g., Galfetti et al., 2007b; Shigeta et al., 2009; Guex 
127 et al., 2010; Jenks et al., 2015, and references therein).
128 The comparative scarcity of ammonoids in some Lower Triassic successions and the 
129 relative inaccessibility of ammonoid-based type sections in the Canadian Arctic, however, 
130 generated interest in the use of conodonts, which are generally abundant in both tropical and 
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131 boreal sections, for biostratigraphic subdivision of the Lower Triassic beginning in the late 
132 1960s and 1970s (Mosher, 1968, 1970; Sweet, 1970a, b). Initially, most of this work was 
133 undertaken in the Tethyan region, for example Pakistan (Salt Range), Kashmir (Guryul Ravine) 
134 (Sweet, 1970a, b), and later in South China Craton (Yangtze area) (e.g., Yin et al., 1986, 1996) 
135 and North America (Henderson, 1997; Henderson et al., 2001). This was the case for the P/Tr 
136 and Induan/Olenekian boundaries, which now have ratified or proposed global stratotype 
137 sections and points (GSSPs) based on the first appearance datums (FADs) of Hindeodus parvus 
138 (Yin et al., 2001) and Neospathodus ex gr. waageni (Zhao et al., 2002, 2004, 2008a, b; Tong 
139 et al., 2003, 2004; Goudemand, 2014a), respectively. Subsequently, high-resolution conodont 
140 biozonation studies of the Lower Triassic have been undertaken broadly around the world (e.g., 
141 Krystyn et al., 2005; Henderson and Mei, 2007; Nakrem et al., 2008; Orchard, 2008; Orchard 
142 and Zonneveld, 2009; Zhao et al., 2013a; Chen-YL et al., 2015; Lyu et al., 2017). 
143 Despite its importance and the considerable research efforts lavished on it in recent decades, 
144 the SSB has yet to be formally defined by the International Commission on Stratigraphy 
145 (ICS)’s Subcommission on Triassic Stratigraphy (STS) (www.stratigraphy.org/index.php/ics-
146 gssps). The ICS is currently working on stage boundary definitions and substage boundaries 
147 will not be addressed for some time yet. However, there is considerable value in establishing a 
148 precise (not formal) definition for the SSB to direct future work.The present contribution has 
149 several goals: (1) we review the history of studies of the Smithian-Spathian transition by region 
150 globally, (2) we summarize known key features of ammonoid and conodont biostratigraphy as 
151 well as carbon isotope chemostratigraphy that may prove useful for future formal definition of 
152 the SSB, and (3) we examine placements of the SSB in earlier studies, considering problematic 
153 placements and offering corrections in some cases. The present study may serve as an important 
154 reference for the future formal definition of the SSB and in investigation of the major events 
155 associated with it.
156
157 2. Evolutionary history of ammonoids and conodonts during the Smithian-Spathian 
158 transition
159
160 Following the EPME, the diversity (sensu taxonomic richness) of ammonoids and 
161 conodonts increased and their turnover rates became more rapid than those of most other 
162 marine invertebrate clades (Brayard et al., 2006, 2009b; Orchard, 2007; Brühwiler et al., 2010a, 
163 b, c; Ware et al., 2015). They thus provide an appropriate basis for construction of a detailed, 
164 accurate biostratigraphic framework for the Early Triassic. Both ammonoids and conodonts 
165 show relatively similar patterns of rapid diversifications and extinctions during the Early 
166 Triassic: rising diversity during the Griesbachian was followed by a minimum in the middle 
167 Dienerian, and then by major radiative bursts in the early Smithian (Tozer, 1981a, b; Brayard 
168 et al., 2006, 2009b; Orchard, 2007; Brühwiler et al., 2010a, b, c; Zakharov and Abnavi, 2013; 
169 Ware et al., 2015). Both clades experienced a second deep-cutting extinction at the beginning 
170 of the late Smithian, followed by another rapid diversification in the early Spathian. The late 
171 Smithian also corresponds to a drastic reduction of the ammonoid morphological disparity with 
172 the disappearance of sphaeroconic forms (Brosse et al., 2013). These diversity (sensu lato) 
173 fluctuations correspond to the large carbonate C-isotope shifts and temperature fluctuations of 
174 the Early Triassic, likely reflecting the sensitivity of these clades to climatic and environmental 
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175 perturbations (Brayard et al., 2006, Orchard, 2007; Stanley, 2009; Leu et al., 2018; Goudemand 
176 et al., 2018).
177 The turnover among ammonoids during the late Smithian has long been recognized (e.g., 
178 Tozer, 1982). It is now dated to the base of the Anasibirites-Wasatchites Zone, which is 
179 globally recognized (see Jenks et al., 2015 for a review, and Jattiot et al., 2016 for discussion 
180 of the significance of the iconic taxon Anasibirites). Generic diversity decreased markedly from 
181 the early-middle Smithian to the SSB transition, followed by a rebound by the middle to late 
182 Spathian, as for instance inferred from Canadian (Stanley, 2009; Fig. 1) or western USA (Guex 
183 et al., 2010) ammonoid data. The Meekocerataceae superfamily suffered deep losses at the 
184 middle/late Smithian boundary, including extinction of the Lanceolitidae, Paranannitidae and 
185 Inyoitidae families (Brayard et al., 2006; Fig. 2). Many ammonoid taxa that are important for 
186 zonation of the early late Smithian, e.g., Prionitidae such as Anasibirites and Wasatchites, show 
187 highly cosmopolitan distributions at that time (e.g., Tozer, 1994; Orchard and Tozer, 1997; 
188 Zakharov et al., 2004; Jattiot et al., 2016, 2017, 2018). They were then replaced in the latest 
189 Smithian by a few taxa, mainly belonging to the Xenoceltitidae (Xenoceltites, Glyptophiceras) 
190 and Hedenstroemiidae (Pseudosageceras augustum), that had also similar cosmopolitan 
191 distributions (e.g., Brühwiler et al., 2010b, c; Jenks et al., 2015; Jattiot et al., 2017). The 
192 surviving lineages underwent a new rediversification during the earliest Spathian, marked by 
193 the rapid origination of many new families (Doricranitidae, Tirolitidae, Columbitidae, 
194 Albanitidae) and several genera of uncertain phylogenetic affinities such as Bajarunia (e.g., 
195 Balini et al., 2010; Guex et al., 2010; Zakharov and Abnavi, 2013; Jenks et al., 2013; Shigeta 
196 et al., 2014; Fig. 2). Most of these new early Spathian ammonoid taxa are now widely used for 
197 zonation, e.g., Columbites and Procolumbites among the Columbitidae, and Tirolites among 
198 the Tirolitidae (see e.g., Guex et al., 2010; Jenks et al., 2015).
199 Among the conodonts, the SSB Event marked the largest loss of diversity prior to their 
200 complete extinction at the end of the Triassic (Orchard, 2007). The number of conodont species 
201 globally declined from >30 species in the mid-Smithian to ~8 at the SSB transition and 2 at the 
202 earliest Spathian before rebounding to >20 in the mid-Spathian (simplified estimates based on 
203 Stanley, 2009; Fig. 1). Two important clades of the Smithian, the Ellisoniidae family and 
204 Mullerinae subfamily, mostly went extinct during the late Smithian or at the SSB (Orchard, 
205 2007; Fig. 3). In contrast, the Novispathodinae subfamily was characterized by the survival of 
206 genera that had been extant since the early Olenekian (e.g., Novispathodus) as well as 
207 origination of the new genus Triassospathodus in the early Spathian (Orchard, 2007; Fig. 3). 
208 Other taxa that are important for conodont biozonation appeared in the Spathian, including 
209 Icriospathodus (affinity unknown) in the early Spathian, and Triassospathodus 
210 (Novispathodinae subfamily) in the early to middle Spathian. Less is known about 
211 Neogondolella-like taxa, although they are important for biostratigraphy at high latitudes. The 
212 survival and rebound of Novispathodus and similar genera were maybe due in part to their high 
213 diversity prior to the SSB Event (>30 species in the mid-Smithian) (Orchard, 2007) as well as 
214 their probable survival in deep-water refugia (Song-HJ et al., 2014). However, this later 
215 hypothesis is now challenged (Leu et al., 2018). The above cited genera are among the most 
216 important for conodont biozonation in the late Smithian to early Spathian (Zhao et al., 2003a, 
217 2007a; Krystyn et al., 2005; Chen-YL et al., 2015, 2018).
218
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219 3. Global review of Smithian-Spathian sections
220
221 Historically, the Olenekian Stage (the second stage of the Early Triassic) was defined in 
222 the Boreal realm (originally on sections along the Olenek River in Siberia), in contrast to the 
223 Induan Stage (the first stage of the Early Triassic), which was defined in the tropical Tethyan 
224 realm (Salt Range, Pakistan) (Kiparisova and Popov, 1956, 1961). In the following decades, 
225 detailed ammonoid biostratigraphic studies of the Olenekian were carried out elsewhere in the 
226 Boreal realm (Canadian Arctic) (Tozer, 1967, 1994), eastern Panthalassa (western Canada and 
227 western USA) (Silberling and Tozer, 1968; Tozer, 1994, Orchard and Tozer, 1997; Lucas and 
228 Orchard, 2007; Guex et al., 2010; Brayard et al. 2013), eastern Tethys (South China) (Tong et 
229 al., 2004; Galfetti et al., 2007b, c), and southern Tethys (India and Pakistan) (Brühwiler et al., 
230 2007, 2012a, b; Krystyn et al., 2007a, b), as reviewed in Jenks et al. (2015) (Fig. 4A-C).
231 By the late 1990s and early 2000s, biostratigraphic research had shifted to a large degree 
232 from Boreal and Panthalassic to Tethyan sections, due to their abundance and generally greater 
233 accessibility, in which both ammonoids and conodonts were shown to be highly useful for 
234 biozonation owing to their wide distributions and rapid evolution during the Early Triassic 
235 (Zhao et al., 2002, 2003a, b, 2005a, b, c; Tong et al., 2004; Brühwiler et al., 2007, 2012a, b; 
236 Galfetti et al., 2007b, c). The co-occurrence of ammonoids and conodonts in Lower Triassic 
237 successions makes it possible to construct parallel biozonation schemes (e.g., Canadian Arctic, 
238 Tozer, 1994, Orchard, 2008; Chaohu, Zhao et al., 2003a, 2007a, b, Tong et al., 2004; Spiti, 
239 Brühwiler et al., 2007, Krystyn et al., 2005), which facilitates global correlations. Correlations 
240 based on C-isotope chemostratigraphy have also been used, especially when fossil records are 
241 sparse, as for some sections in the Tethyan (Horacek et al., 2007a, b; Zhang et al., 2015), Boreal 
242 (Grasby et al., 2016; Wignall et al., 2016), and Panthalassic regions (Zhang et al., 2017). Below, 
243 we review ammonoid- and conodont-based biostratigraphic as well as C-isotopic 
244 chemostratigraphic studies of the Olenekian in key geographic regions, their intercalibration, 
245 and their significance for definition of the SSB.
246 Boreal and Tethyan faunas experienced fluctuating patterns of endemism and 
247 cosmopolitanism throughout the Early Triassic related to recurrent environmental stresses and 
248 large geographic distances (Brayard and Bucher, 2015). Boreal ammonoid faunas are generally 
249 different and less diverse than those of the Tethyan realm (Tozer, 1981b; Dagys, 1988). 
250 Brayard et al. (2006, 2007a) studied the global patterns of latitudinal diversity gradients and 
251 assemblage similarity, showing that ammonoid faunas exhibit a clear latitudinal diversity 
252 gradient during most of the Smithian and Spathian stages, and a return to cosmopolitan 
253 distributions in the late Smithian. Boreal ammonoids were characterized by peak endemism 
254 during the Spathian (Kummel, 1973; Dagys, 1997). During the Spathian, ammonoid diversity 
255 in high-latitude areas was generally lower than at low latitudes (Brayard et al., 2006; Fig. 1). 
256 In northeastern British Columbia, Boreal and Tethyan ammonoid faunas can be found together, 
257 thus facilitating correlations between high- and low-latitude regions (Tozer, 1994).
258 The Smithian and Spathian substages have been subdivided recently into early/middle/late 
259 subunits on the basis of global ammonoid biostratigraphy (Brühwiler et al., 2010; Guex et al., 
260 2010; Brayard et al., 2013; Jenks et al. 2015; Fig. 5). The early Smithian corresponds to first 
261 flemingitid and kashmiritid occurrences, and the middle Smithian represents the flourishing of 
262 families such as the Paranannitidae, Inyoitidae, Aspenitidae and Lanceolitidae (Fig. 2). The 
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263 late Smithian, which began with a major extinction among several ammonoid families, 
264 corresponds to a marked diversification of highly cosmopolitan prionitids such as Anasibirites 
265 and Wasatchites followed by the occurrence of cosmopolitan xenoceltitid (Xenoceltites sp., 
266 Glyptophiceras) and hedenstroemiid (Pseudosageceras augustum) taxa (Fig. 2). The early 
267 Spathian is marked by the first occurrences of Bajarunia and Doricranites and continues up to 
268 the Procolumbites Zone. The middle and late Spathian span the Subcolumbites and 
269 Neopopanoceras haugi zones, respectively. It should be noted that some ammonoid zones/beds 
270 are of regional significance and not found globally. These ultrafine subdivisions are possible 
271 primarily due to the practice of identifying ammonoid assemblages, which provide a high level 
272 of biostratigraphic resolution (Fig. 5). It should also be noted that the basal Smithian cannot be 
273 precisely delineated until the Induan/Olenekian boundary is formalized.
274 The record of sedimentation during the Smithian-Spathian transition was significantly 
275 affected by contemporaneous eustatic fluctuations. Short-term eustatic variation can be due to 
276 changes in continental ice mass and thermal expansion/contraction of seawater linked to 
277 changing global climate conditions (Milne et al., 2009; Dutton et al., 2015), or to 
278 astronomically forced land–ocean watermass exchange during geologic epochs lacking ice 
279 sheets (as postulated for the Early Triassic by Li et al., 2018). Large temperature changes were 
280 the likely cause of eustatic fluctuations during the SSB transition. The middle Smithian was an 
281 interval of hyperwarming (the Smithian Thermal Maximum, or STM; see Section 5.5) that 
282 coincided with a global transgression, and the SSB interval proper was an interval of 
283 pronounced cooling that coincided with a sharp eustatic fall (Sun et al., 2012; Romano et al., 
284 2013; Zhang et al., 2017; see Section 5.5). The eustatic fall at the SSB resulted in widespread 
285 deposition of regressive systems tracts and/or sedimentary hiatuses, as in northern Italy 
286 (Twitchett and Barras, 2004), Iran (Horacek et al., 2007b), and Japan (Zhang et al., 2017), 
287 although the SSB succession in the western USA is thought to be nearly continuous (Guex et 
288 al., 2010; Brayard et al., 2013) due to regional tectonic controls (e.g., Caravaca et al., 2018). 
289 As such, the issue of stratigraphic condensation at the SSB is one that will have to be evaluated 
290 carefully in the context of selecting a suitable section as the GSSP of the SSB. A potential way 
291 to circumvent this problem is, for instance, to give preference to deeper-water sections.
292
293 3.1 Canadian Arctic (western Boreal)
294
295 3.1.1 Ammonoid and conodont biostratigraphy
296
297 The Canadian Arctic has long been central to an ammonoid-based subdivision of the 
298 Triassic in the northern Pangea region owing to a near-continuous marine succession from the 
299 lower Griesbachian to the upper Norian (Thorsteinsson and Tozer, 1970; Tozer, 1994). 
300 Substages of the Early Triassic were named for type sections in this area, i.e., the Griesbachian, 
301 Dienerian, Smithian, and Spathian were derived from Griesbach Creek on Axel Heiberg Island, 
302 and the Diener, Smith, and Spath creeks on Ellesmere Island (Tozer, 1965, 1967) (Fig. 4B). 
303 The thick (>2000 m) Lower Triassic successions in the Arctic accumulated in the Sverdrup 
304 Basin, grading from sandstones of the Bjorne Formation on the basin margin to shaly siltstones 
305 of the Blind Fjord Formation in the basin center (Tozer, 1961; Embry, 1986, 1991). The Blind 
306 Fjord Formation consists of three members, the Confederation Point Member (Griesbachian to 
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307 Dienerian in age), Smith Creek Member (Smithian in age), and Svartfjeld Member (mostly 
308 Spathian in age) (Embry, 1986; Orchard, 2008).
309 Despite the discontinuous stratigraphic distribution of ammonoid-bearing beds in these 
310 units, a succession of Early Triassic ammonoid zones were recognized (Tozer, 1994) and 
311 provided a basis for broad definition of the SSB. These ammonoid zones (in ascending order) 
312 are the Hedenstroemia hedenstroemi, Euflemingites romunderi, and Anawasatchites tardus for 
313 the Smithian (Tozer, 1994) and the Olenikites pilaticus and Keyserlingites subrobustus for the 
314 late early and latest Spathian, respectively (Tozer, 1967; Fig. 5A). Most of the early Spathian 
315 strata in this region are devoid of ammonoids. For example, at Smith Creek, no ammonoids 
316 were found above the upper Smithian A. tardus beds (Fig. 6A). The Spathian Olenikites 
317 pilaticus Zone is found only in limited areas south of Svartevaeg on Axel Heiberg Island (Tozer, 
318 1967), where it directly overlies Arctoceras gigas n. sp. beds (GSC loc. 64719 above GSC loc. 
319 64718) that have been tentatively correlated with the A. tardus Zone (Tozer, 1994), but this 
320 attribution is doubtful (see Section 5.1). In this area, the SSB is thus bracketed by the late 
321 Smithian A. tardus Zone and the late early Spathian Olenikites pilaticus Zone. This represents 
322 an important information gap, but the SSB is usually placed just above the A. tardus Zone (e.g., 
323 Grasby et al. 2013) as it corresponds to a complex assemblage of several typical late Smithian 
324 taxa (e.g., Anawasatchites, Xenoceltites).
325 The most detailed biostratigraphic studies of Early Triassic conodonts in the Canadian 
326 Arctic to date were carried out by Mosher (1973) and Orchard (2008). At Smith and Spath 
327 creeks, conodonts were recovered mainly from ammonoid-bearing limestones, whereas other 
328 lithologies (e.g., shales) are conodont-poor (Orchard, 2008). In the lower Smith Creek Member, 
329 no conodont species are known from the Hedenstroemia hedenstroemi beds, whereas the 
330 Euflemingites romunderi beds are more productive of conodonts of congruent mid-Smithian 
331 age (Mosher, 1973; Orchard, 2008) (Fig. 6A). This increased diversity of conodonts was 
332 attributed to the explosive radiation that occurred during the early Smithian (Orchard, 2007; 
333 Stanley, 2009) (Fig. 1). Higher in the section, the upper Smithian Anawasatchites tardus beds 
334 of the upper Smith Creek Member yielded less diverse faunas, including conodonts such as Nv. 
335 waageni, Sc. milleri and Sc. mosheri (Orchard, 2008). The lower Spathian strata in this area 
336 lack carbonate and are not amenable to recovery of conodonts. Conodonts thus cannot serve to 
337 complement the ammonoid biostratigraphical scale in this area.
338
339 3.1.2 Carbon-isotope chemostratigraphy
340
341 So far, carbon isotope chemostratigraphy of the Smithian and Spathian substages in 
342 Canadian Arctic has only been reported from Smith Creek, shown as organic carbon isotopes 
343 (δ13Corg) (Grasby et al., 2013). At Smith Creek, δ13Corg shows higher values (ca. 27 to 25 ‰) 
344 in the lower Smithian (P2*; the asterisk indicating that the timing of peaks in the organic δ13C 
345 record might differ somewhat from those in the carbonate δ13C record), a large negative 
346 excursion to ca. 33 ‰ in the middle Smithian (N3*), followed by recovery to a maximum of 
347 ca. 27 ‰ (P3*) at the SSB (top of the Anawasatchites tardus beds), and a subsequent drop to 
348 ca. 33 ‰ (N4*) much later in the Spathian (Grasby et al., 2013; Fig. 7). It should be noted 
349 that the δ13Corg profile at Smith Creek exhibits a second positive excursion in the upper Spathian, 
350 before the Spathian/Anisian boundary.
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351  
352 3.2  Spitsbergen (eastern Boreal)
353
354 3.2.1 Ammonoid and conodont biostratigraphy
355
356 Triassic clastic rocks are known to crop out extensively in the Svalbard archipelago, 
357 including on the largest island Spitsbergen (Buchan et al., 1965). Stratigraphic successions of 
358 Olenekian age consist of the Tvillingodden Formation (lower Iskletten Member and upper 
359 Kaosfjellet Member) in western Svalbard and the Vikinghøgda Formation (lower 
360 Lusitaniadalen Member and upper Vendomdalen Member) in eastern Svalbard (Hounslow et 
361 al. 2008; Mørk et al., 2013). The Tvillingodden Formation mainly consists of sandstone in the 
362 regressive part of the unit, due to closer proximity to the basin margin, whereas the 
363 Vikinghøgda Formation is a shale or mudstone without substantial sandstone or siltstone beds, 
364 which generally grades upward into mudstone with thin sandstone or siltstone beds (Mørk et 
365 al. 1982).
366 The ammonoid zones identified on Svalbard are, in ascending order, the Euflemingites 
367 romunderi and Anawasatchites tardus for the Smithian, and the Bajarunia euomphala, 
368 Parasibirites grambergi and Keyserlingites subrobustus for the Spathian (Dagys and Weitschat, 
369 1993). Ammonoid studies of the Lusitaniadalen Member (~88 m) and Vendomdalen Member 
370 (~92 m) in the Deltadalen area (east-central Spitsbergen) yielded first occurrences of E. 
371 romunderi and A. tardus at, respectively, ~28 m and ~4 m below the base of the Vendomdalen 
372 Member (Mørk et al., 1999; Hounslow et al., 2008; Fig. 6B). The main co-occurring 
373 ammonoids in the middle Smithian E. romunderi Zone are Arctoceras blomstrandi and 
374 Paranannites spathi (Mørk et al., 1999). In the latest Smithian A. tardus Zone, which is found 
375 across central and eastern Spitsbergen (Hounslow et al., 2008), various prionitids and 
376 Xenoceltites subevolutus are present into the base of the Vendomdalen member indicating a 
377 late Smithian age for these levels (Mørk et al., 1999; Piazza et al., 2017). The base of the B. 
378 euomphala Zone of earliest Spathian age is ~17 m above the base of the Vendomdalen Member 
379 (Mørk et al. 1999; Hounslow et al. 2008), resulting in a biostratigraphic gap of ~15 m above 
380 the latest Smithian beds within which the SSB must be located. Ammonoids of middle Spathian 
381 age are apparently lacking on Spitsbergen, but late Spathian taxa are present (Hounslow et al. 
382 2008).
383 The conodont Scythogondolella mosheri was recognized from the lower part of the 
384 Iskletten Member in Pitnerodden, indicating a Smithian age (Clark and Hatleberg, 1983; 
385 Hatleberg and Clark, 1984). Upwards in the Iskletten Member, Eurygnathodus sp. (assigned to 
386 Icriospathodus collinsoni by Hatleberg and Clark, 1984), Borinella buurensis and 
387 Neogondolella elongata (both assigned to Ng. jubata by Hatleberg and Clark, 1984, later, re-
388 assigned by Nakrem et al., 2008 to Borinella or Scythogondolella taxa) of Smithian age have 
389 also been reported (Nakrem et al., 2008). Conodonts from the top of the Iskletten Member 
390 (Skilisen Bed) in Akseløya are Borinella? sp., Ng. sp. B, Ns. pakistanensis and Borinella 
391 buurensis (Nakrem et al., 2008). Only Ng. ex. gr. regalis was reported from the Kaosfjellet 
392 Member in Reinodden, co-occurring with Keyserlingites subrobustus and Posidonia” aranea 
393 and indicating a late Spathian age (Nakrem et al., 2008).
394 Previous conodont studies in Milne Edwardsfjellet recognized Novispathodus waageni 
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395 from 2 m below the top of the Lusitaniadalen Member, co-occurring with an ammonoid fauna 
396 consisting of Xenoceltites subevolutusand various prionitids, within the late Smithian A. tardus 
397 Zone (Nakrem et al., 2008). Weitschat and Lehmann (1978) also reported a late Smithian 
398 conodont fauna with Sc. milleri, Sc. mosheri, Borinella aff. buurensis and Nv. waageni, from 
399 7 m below the top of the Lusitaniadalen Member, within the A. tardus Zone on the southern 
400 shore of Sassenfjorden (close to Botneheia). No conodonts were recovered from the lower part 
401 of the Vendomdalen Member (lowermost Spathian), but gondolellids are present at 31 to 54.4 
402 m above the base of the Vendomdalen Member, within the range of the late Spathian 
403 Keyserlingites sp. (Nakrem et al., 2008). Neogondolella ex. gr. regalis (assigned to Ng. jubata 
404 by Dagis and Korčinskaja, 1989) was also reported from the Keyserlingites subrobustus Zone 
405 (Nakrem et al., 2008). Conodont data are thus lacking for the early Spathian but overall support 
406 placement of the SSB between the X. subevolutus and B. euomphala beds.
407
408 3.2.2 Carbon-isotope chemostratigraphy
409
410 Carbon isotope studies of the Smithian and Spathian substages in Spitsbergen, shown as 
411 δ13Corg, are from Dicksonfjellet (Galfetti et al., 2007a), Festningen (Grasby et al., 2016), and 
412 Vindodden (Wignall et al., 2016) sections (Fig. 7). Ammonoid data are available in 
413 Dicksonfjellet (Weitschat and Dagys, 1989), while no biostratigraphic work has been done to 
414 date in the Festningen and Vindodden sections. At Dicksonfjellet, the δ13Corg profile exhibits 
415 low values (ca. 34 to 33 ‰) in the middle Smithian (within the Euflemingites romunderi 
416 Zone), followed by a positive excursion beginning from the base of the upper Smithian to ca. 
417 28 ‰ (P3*) in the lowermost Spathian (base of the Euomphala Zone), and then a gradual 
418 decrease to ca. 32 ‰ in the upper Spathian (within the Subrobustus Zone) (Galfetti et al., 
419 2007a). The δ13Corg profile at Festningen was chemostratigraphically correlated with Smith 
420 Creek by Grasby et al. (2016), who showed a δ13Corg maximum of ca. 25 ‰ (P2*) in the 
421 lowermost Smithian, then a negative excursion to a minimum of ca. 33 ‰ (N3*) at what they 
422 considered as the SSB (but which more likely represents the middle Smithian), followed by a 
423 rebound to ca. 29 ‰ (P3*) in the lower Spathian, and a gradual decrease to ca. 32 ‰ (N4*) 
424 in the middle Spathian. The δ13Corg profile at Vindodden was correlated with the nearby 
425 Festningen section by Wignall et al. (2016) following the same chemostratigraphic approach. 
426 They showed stable and low values (ca. 32 ‰; N3*) during the middle Smithian, then a 
427 positive excursion following a δ13Corg minimum at their inferred SSB (however, this level is 
428 actually the N3 event, which is of middle Smithian age; see Section 5.3). The lower Spathian 
429 is charactereized by a peak at ca. 28 ‰ (P3*), followed by a gradual decrease to ca. 30 ‰ 
430 in the middle Spathian. 
431
432 3.3  Western Canadian Sedimentary Basin (eastern Panthalassa)
433
434 3.3.1 Ammonoid and conodont biostratigraphy
435
436 The Western Canadian Sedimentary Basin (WCSB) contains ammonoid faunas that have 
437 been used, generally in conjunction with Canadian Arctic data, in the construction of a 
438 preliminary Early Triassic biozonation scheme for northwestern Pangea (Tozer, 1994). Triassic 

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590



439 strata are best exposed in the eastern Cordillera (e.g., Rocky Mountains and foothills) in 
440 northeastern British Columbia (Tozer, 1982). Lower Triassic stratigraphic successions mainly 
441 consist of the Phroso Formation (siltstone) and Vega Formation (siltstone) in the south, and the 
442 Grayling Formation (gray shale and sandstone) and Toad Formation (dark gray calcareous 
443 siltstone and shale) in the north (Gibson, 1971).
444 The Toad Formation contains ammonoids of the middle and late Smithian Euflemingites 
445 romunderi and Anawasatchites tardus Zones and the late Spathian Keyserlingites subrobustus 
446 Zone, in ascending order (McLearn and Kindle, 1950; Tozer, 1965, 1967, 1994; Orchard and 
447 Tozer, 1997) (Fig. 5B). The E. romunderi Zone had also been reported from the Vega 
448 Formation in the southern British Columbia (Tozer, 1967). The type locality of the A. tardus 
449 Zone is on the Toad River of the northeastern British Columbia (McLearn and Kindle, 1950; 
450 Tozer, 1967, 1994), and it is also known from the Liard River and Ursula Creek (Orchard and 
451 Tozer, 1997). In general, Early Triassic ammonoid occurrences in western Canada correspond 
452 to the zonal divisions previously established in the Canadian Arctic region (Tozer, 1994).
453 In the WCSB, conodonts were recovered not only from the Euflemingites romunderi and 
454 Anawasatchites tardus beds of middle to late Smithian age, but also from overlying 
455 (?lowermost Spathian) strata in which ammonoids are apparently absent (Orchard and Tozer, 
456 1997; Orchard and Zonneveld, 2009). The E. romunderi beds yielded conodonts such as Ns. 
457 pakistanensis and Nv. waageni at Mount Ludington and Liard River in northeastern British 
458 Columbia (Orchard and Tozer, 1997), and additionally Scythogondolella lachrymiformis, 
459 Paullella meeki, Discretella discreta, and Wapitiodus robustus from the Sulphur Mountain 
460 Formation in the Wapiti Lake area, western British Columbia (Orchard and Zonneveld, 2009). 
461 Orchard (2008) also reported the conodont species Neospathodus posterolongatus, Ns. 
462 cristagalli, Guangxidella bransoni, and Paullella meeki from E. romunderi Zone in British 
463 Columbia. The A. tardus beds yielded conodonts such as Sc. milleri, Sc. mosheri, 
464 Novispathodus. ex gr. waageni and Borinella buurensis, which are also similar to assemblages 
465 from correlative units at Smith Creek in the Canadian Arctic (Orchard and Tozer, 1997). Sc. 
466 milleri and Sc. mosheri have also been reported in the Xenoceltites beds of the A. tardus Zone 
467 in the Wapiti Lake area (Orchard and Zonneveld, 2009). Orchard and Zonneveld (2009) 
468 established three conodont zones of the Smithian age in the Wapiti Lake area, which are (in 
469 ascending order) the Sc. lachrymiformis, Paullella meeki and Sc. mosheri zones, with the last 
470 subdivided into the Sc. phryna and Sc. milleri subzones. Therefore, ammonoid-conodont 
471 assemblages of the WCSB are nearly identical to those in age-equivalent strata of the Canadian 
472 Arctic (Orchard, 2008). Just 1 m above the top of the A. tardus Zone at Toad River, the 
473 overlying strata yielded the conodont Neogondolella aff. sweeti (=Ng. n. sp. D sensu Orchard, 
474 2007), which was suggested to be indicative of an earliest Spathian age based on correlation 
475 with Californian successions (Orchard and Tozer, 1997). These observations confine the 
476 position of the SSB above the first occurrence of Sc. milleri and below the first occurrence of 
477 Ng. aff. sweeti.
478
479 3.3.2 Carbon-isotope chemostratigraphy
480
481 To date, no carbon isotope profile of the Smithian and Spathian substages is available 
482 from the WCSB.
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483
484 3.4  Western United States (eastern Panthalassa)
485
486 3.4.1 Ammonoid and conodont biostratigraphy
487  
488 Ammonoid-bearing marine deposits are widely distributed in the western United States. 
489 Brayard et al. (2009c, 2011, 2013), Jenks et al. (2010), Jattiot et al. (2016, 2017, 2018) and 
490 Jenks and Brayard (2018) reported Smithian ammonoid faunas, which are characterized by 
491 increasing diversity from the lower Smithian to the middle Smithian. Within this basin, late 
492 Smithian ammonoid beds are, in ascending order, the Anasibirites kingianus and the overlying 
493 Xenoceltitidae beds, which contain Glyptophiceras, Xenoceltites and Pseudosageceras 
494 augustum. They correspond respectively to the UAZ5 and UAZ6 of Jattiot et al. (2017) and 
495 can be easily correlated with Tethyan sections along the North Indian Margin. The UAZ6 
496 contains the latest Smithian ammonoids reported worldwide so far.
497 Guex et al. (2005a, b; 2010) and Jenks et al. (2013) identified ammonoids from Spathian 
498 successions including, in ascending order, the early Spathian Bajarunia confusionensis beds, 
499 Tirolites harti beds, Columbites beds, and Procolumbites beds, followed by the middle 
500 Spathian Subcolumbites Zone and the late Spathian Neopopanoceras haugi Zone (Fig. 5C). 
501 The Cowboy Pass site in western Utah was inferred to contain the oldest Spathian ammonoids, 
502 i.e., B. confusionensis, but the lack of Smithian ammonoids in these sections does not constrain 
503 placement of the SSB well (Guex et al., 2010; Brayard et al., 2013; Fig. 6C). In addition, the 
504 nearby Confusion Range in western Utah recorded a series of Smithian ammonoid assemblages, 
505 in which Anasibirites, Wasatchites and Xenoceltites sp. indet. were discovered, indicative of a 
506 late Smithian age (Brayard et al., 2013). Based on the ammonoid data in the Confusion Range 
507 area, the SSB is located between the Anasibirites beds and the B. confusionensis beds. Sampled 
508 ammonoid faunas in Idaho also show a similar scheme with the first Bajarunia specimens 
509 occurring above the Xenoceltitidae beds (Brayard et al., work in progress).
510 In the western United States, lower-middle Smithian rocks yielded not only the conodonts 
511 Neospathodus pakistanensis, Novispathodus waageni, Discretella discreta, but also 
512 Conservatella conservativa, Guangxidella bransoni, and Paullella meeki (Orchard and Tozer, 
513 1997; Orchard, 2008; Orchard and Zonneveld, 2009). Conodont assemblages from the late 
514 Smithian Anasibirites multiformis beds are similar to those from the WCSB, containing 
515 Scythogondolella milleri, Sc. mosheri, Nv. ex gr. waageni and Borinella buurensis (Müller, 
516 1956; Orchard and Tozer, 1997; Orchard, 2008). Moreover, Orchard and Zonneveld (2009) 
517 reported both Nv. waageni and Nv. pingdingshanensis with Spathicuspus sp. from Xenoceltites 
518 beds of the upper A. multiformis Zone in Georgetown, Idaho and with Borinella buurensis and 
519 Sc. milleri in the Tardus Zone at Crittenden Springs, Nevada. The latest Smithian occurrence 
520 of Nv. pingdingshanensis in the western United States is thus similar to that reported from the 
521 subsurface of the WCSB (Henderson et al., 2018). Although Spathian successions in the 
522 western United States are more complete and better studied than those in the WCSB, relatively 
523 few conodonts have been described (Orchard and Tozer, 1997; Lucas and Orchard, 2007; 
524 Orchard, 2008). According to Orchard and Tozer (1997), the lowermost Spathian in the Darwin 
525 Canyon section in California contains Neogondolella aff. sweeti-Ns. crassatus, which has been 
526 tentatively correlated with the post-Tardus Zone fauna on the Toad River in northeastern 
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527 British Columbia. The Darwin faunas, which are presently under review (Goudemand et al., 
528 2006), also include Nv. pingdingshanensis and Ic. zaksi and should provide an important North 
529 American SSB reference section for conodonts. Lucas and Orchard (2007) reported the 
530 conodonts Icriospathodus collinsoni and Nv. abruptus from the lower Spathian Tirolites beds 
531 and Ng. elongata from the overlying Columbites beds, all of which are indicative of an early 
532 Spathian age (Orchard and Tozer, 1997). These conodont occurrences constrain the position of 
533 the SSB to between the first occurrences of Sc. milleri and Ng. aff. sweeti, which is comparable 
534 to its placement in the WCSB. For the western United States generally, ammonoid biozonations 
535 are more highly resolved than those for conodonts, indicating a SSB placement between the 
536 top of the Xenoceltitidae beds and the base of the Bajarunia beds.
537
538 3.4.2. Carbon-isotope chemostratigraphy
539
540 In the western United States, detailed continuous C-isotope profiles of the Smithian-
541 Spathian transition are available for the Mineral Mountains section in Utah (Thomazo et al. 
542 2016; Fig. 7) and the Hot Springs section in southeastern Idaho (Caravaca et al., 2017). At 
543 Mineral Mountains, the δ13Ccarb profile exhibits values close to 0 ‰ in the lowermost Smithian, 
544 a gradual negative excursion to a minimum of ca. 4 ‰ (N3) in the middle Smithian (Owenites 
545 ammonoid beds), and a rebound through the Anasibirites kingianus and Xenoceltitidae ‘gen. 
546 indet.’ A. beds to a maximum of ca. +2 ‰ (P3) in the early Spathian (Thomazo et al., 2016; 
547 Fig. 7). A similar trend is observed at Hot Springs, with the most negative values recorded in 
548 the uppermost beds of the middle Smithian and a strong increase in δ13C through the SSB and 
549 into the early Spathian (Caravaca et al., 2017). Biostratigraphic control is largely lacking for 
550 the SSB at the Hot Springs section, however.
551
552 3.5 Kamura and Inuyama, Japan (central Panthalassa)
553
554 3.5.1. Ammonoid and conodont biostratigraphy
555 The Kamura section represents a shallow-water (atoll) environment that was located in 
556 the central Panthalassic Ocean at the time of its accumulation (Zhang et al., 2017). The Triassic 
557 carbonate succession lithologically belongs to the Kamura Formation, which is composed 
558 mainly of micritic, microbial, and bioclastic limestones with some coarsely crystalline dolomite 
559 in its lower part (Kanmera and Nakazawa, 1973; Zhang et al., 2017). A thick Smithian 
560 succession consisting largely of bioclastic limestones is well-preserved, whereas the Spathian 
561 is largely or completely missing (Zhang et al., 2017). Conodont biostratigraphic work has been 
562 undertaken at Kamura, but no ammonoid data are available (Watanabe et al., 1979; Horacek et 
563 al., 2009; Zhang et al., 2017). It should be noted that ammonoid data are available from 
564 Japanese sections but in other tectonic and environmental contexts (e.g., Ehiro, 2016; Ehiro et 
565 al., 2016). The conodont taxa Novispathodus ex gr. waageni, Parachirognathus, Discretella 
566 and Wapitiodus(?) have been recovered from the middle part of the Kamura Formation, within 
567 the Nv. ex gr. waageni-Parachirognathus Zone, indicating a Smithian age (Zhang et al., 2017). 
568 Koike (1979) reported Spathian-age conodonts (e.g., “Neospathodus? sp. G. Sweet et al.” 
569 (= ?Icriospathodus collinsoni), Triassospathodus homeri and Tr. triangularis) from this section, 
570 but they were not illustrated in that paper and have not been rediscovered in later studies. The 
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571 SSB apparently lies above the Nv. ex gr. waageni-Parachirognathus Zone and below the first 
572 occurrence of ?Icriospathodus collinsoni.
573 The Inuyama section represents a deep-water (abyssal) environment that was located in 
574 the central Panthalassic Ocean at the time of its accumulation (Sakuma et al., 2012). It consists 
575 of a series of disconnected stratal blocks scattered through the Mino Belt, composed of black 
576 shales, argillaceous cherts, and siliceous mudstones, in ascending order (Yao and Kuwahara, 
577 1997; Tada et al., 2005; Sakuma et al., 2012). Lower Smithian to lower Spathian successions 
578 were recognized based on conodonts and radiolarians, but no ammonoid data are available 
579 (Sakuma et al., 2012). The conodont taxa Guangxidella bransoni and Neogondolella milleri, 
580 which are indicative of a late Smithian age, were recovered from the argillaceous cherts. The 
581 overlying siliceous mudstone yields Neospathodus symmetricus of early Spathian age. 
582 Therefore, the SSB can be constrained to within a ~2 m interval between the first occurrences 
583 of Ng. milleri and Ns. symmetricus.
584
585 3.5.2. Carbon-isotope chemostratigraphy
586
587 At Kamura, the δ13Ccarb profile shows a negative excursion from ca. +2.5 ‰ (P2) in the 
588 lowermost Smithian to ca. 0 ‰ (N3) in the middle Smithian, followed by a rebound to ca. +4 ‰ 
589 (P4) above the unconformity at which most or all of the Spathian is missing (Zhang et al., 2017; 
590 Fig. 7). Below the unconformity, the positive δ13Ccarb shift rises to a peak value of ca. +3.5 ‰ 
591 (Horacek et al., 2009), which is typical of the P3 maximum in other sections globally (e.g., 
592 Galfetti et al., 2007c; Horacek et al., 2007a, b) and thus suggests that the SSB and earliest 
593 Spathian may be present just below the unconformity.
594 At Inuyama, the δ13Corg profile shows a negative excursion from ca. 27 ‰ in the lower 
595 Smithian to ca. 32 ‰ (N3*) in the middle Smithian, followed by a positive excursion to ca. 
596 27 ‰ across the SSB (Sakuma et al., 2012; Fig. 7). Above the SSB, the δ13Corg profile 
597 exhibits fluctuations between ca. 27 ‰ and 29 ‰ in the lower Spathian and a negative 
598 excursion to ca. 30 ‰ (N4*?) in the early to middle Spathian. 
599
600 3.6. Chaohu area, eastern China (eastern Tethys)
601
602 3.6.1. Ammonoid and conodont biostratigraphy
603
604 The Chaohu area of eastern Anhui Province, eastern China, has come under intense 
605 investigation in recent years, including studies of its sedimentology (Li et al., 2007; Chen-ZQ 
606 et al., 2011), geochemistry (Tong et al., 2002, 2007; Zuo et al., 2006; Horacek et al., 2007c; 
607 Chen-JB et al., 2015; Zhao and Zheng, 2015), cyclostratigraphy (Li et al., 2007; Li et al., 2016a, 
608 b), and other topics (Chen-ZQ et al., 2010; Motani et al., 2015; Huang et al., 2017). During the 
609 Early Triassic, it was situated on a deep ramp on the northern margin of the Yangtze Platform, 
610 eastern China (Tong et al., 2004). At Chaohu, the Lower Triassic consists of the Yinkeng, 
611 Helongshan and Nanlinghu formations, in ascending order, in which are developed a multilevel 
612 hierarchy of mudstone and limestone cycles (Li et al., 2007; Tong et al., 2007). The Yinkeng 
613 and Helongshan formations comprise interbedded mudstone and (muddy) limestone, whereas 
614 the Nanlinghu Formation is composed of thin shale and interbedded thin and thick limestone 
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615 (Zhao et al., 2005b). The Olenekian successions in the Chaohu area extend from the middle of 
616 the Yingkeng Formation to the top of the Nanlinghu Formation. The SSB transition is present 
617 in three closely spaced sections (<1 km apart): West Pingdingshan (31°38�00��N, 
618 117°49�43��E), North Pingdingshan (31°38�14��N, 117°49�53��E), and South 
619 Majiashan (31°37�33��N, 117°49�21��E). They provide a continouous and complete 
620 succession from the lowermost Smithian to the upper Spathian, and the West Pingdingshan 
621 section has been nominated as a candidate for the GSSP of the Induan/Olenekian boundary 
622 (Zhao et al., 2002, 2003a, 2007a, b, 2008a, b; Tong et al., 2003, 2004, 2005, 2007).
623 The Olenekian successions in the Chaohu area have received detailed study of both their 
624 ammonoid and conodont faunas. Tong et al. (2004, 2005, 2007) reported four ammonoid zones 
625 in the Olenekian Stage, including the Flemingites-Euflemingites and Anasibirites zones of 
626 Smithian age and the Tirolites-Columbites and Subcolumbites zones of Spathian age, in 
627 ascending order (Fig. 5D). Numerous ammonoids recovered at South Majiashan provide 
628 constraints on the SSB, limiting it to an ~8-m stratal interval between occurrences of the late 
629 Smithian Anasibirites (including A. kingianus, A. onoi and A. plicatus; note: all these 
630 determinations will have to be revised per e.g., Jattiot et al., 2016) in the upper Helongshan 
631 Formation (Beds 6 and 13) and the early Spathian Tirolites-Columbites (including C. cf. 
632 parisianus, C. contractus, T. latumbilicatus, T. ?cf. spinosus and Xenoceltites sp.) in the lower 
633 Nanlinghu Formation (Bed 18) (Tong et al., 2004, 2005, 2007) (Fig. 8). Euflemingites and 
634 Anasibirites cf. kwangsiana were also recovered from the middle Helongshan Formation at 
635 North Pingdingshan (Beds 56-57) and the upper Helongshan Formation at West Pingdingshan 
636 (Beds 50-51) (Figs. 9-10). However, these two genera do not co-occur elsewhere as they are 
637 respectively of middle and late Smithian age. One issue at Chaohu is the relatively poor 
638 preservation of ammonoid fossils, which makes firm taxonomic assignments difficult. Further 
639 work on the Chaohu ammonoid fauna will be needed to resolve inconsistencies.
640 This area contains an especially rich and diverse conodont fauna of the tropical 
641 biogeographic province that accumulated in an open-shelf setting at intermediate water depths 
642 (of a few hundred meters). Conodont biozonation offers narrower constraints on placement of 
643 the SSB in the Chaohu area. Zhao et al. (2007a, 2008a, b) reported five conodont zones in the 
644 Olenekian Stage, including the Novispathodus waageni eowaageni and Nv. waageni waageni 
645 of Smithian age and Nv. pingdingshanensis, Triassospathodus homeri and Neospathodus 
646 anhuinensis of Spathian age (Fig. 5D). They defined the Nv. pingdingshanensis Zone as 
647 ranging from the first occurrence of Nv. pingdingshanensis to the first occurrence of 
648 Triassospathodus homeri, with the lowermost occurrence of Nv. pingdingshanensis 
649 representing the SSB. The first occurrences of Nv. pingdingshanensis recognized were located 
650 at 48 cm above the base of Bed 52 (uppermost Helongshan Formation) at West Pingdingshan, 
651 ~40 cm above the base of Bed 61 (uppermost Helongshan Formation) at North Pingdingshan, 
652 and ~120 cm above the base of Bed 15 (lowermost Nanlinghu Formation) at South Majiashan 
653 (Figs. 8-10). In a higher-resolution study of the SSB transition in the Chaohu area, Liang et al. 
654 (2011) collected 38 samples from Beds 49-54 at West Pingdingshan and recovered 4 genera 
655 and 15 species. The first specimens of Nv. pingdingshanensis were found at a slightly lower 
656 stratal level than in the earlier work by Zhao and others, i.e., at 30 cm above the base of Bed 
657 52 (Fig. 10). Occurrences of the early Spathian conodont species Tr. homeri (Bed 64 at North 
658 Pingdingshan; Bed 56 at West Pingdingshan), Ns. abruptus (Beds 64 and 52, respectively), and 
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659 Ns. spathi (Beds 64 and 56, respectively) are useful in placing an upper stratigraphic limit on 
660 the position of the SSB (Tong et al., 2007; Zhao et al., 2007a). In this context, placement of the 
661 SSB in the Chaohu area at the first occurrence of Nv. pingdingshanensis is consistent with the 
662 existing constraints based on local ammonoid data, but it may be diachronous with respect to 
663 occurrences of Nv. pingdingshanensis in upper Smithian beds globally (Orchard and Zonneveld, 
664 2009; Komatsu et al., 2016; Chen-YL et al., 2018; Leu et al., 2018; Goudemand et al., 2018).
665
666 3.6.2. Carbon-isotope chemostratigraphy
667
668 The North Pingdingshan and West Pingdingshan sections show similar δ13Ccarb profiles 
669 from the lower Smithian to the lower Spathian, and South Majiashan yields a continuous 
670 δ13Ccarb profile from the uppermost Smithian to the upper Spathian (Figs. 8-10). At North 
671 Pingdingshan and West Pingdingshan, the δ13Ccarb profiles exhibit high values (ca. 0 ‰) in the 
672 lowermost Smithian (base of the Novispathodus waageni eowaageni Zone; close to P2), 
673 followed by negative excursions to ca. 7 to 4 ‰ in the middle Smithian (mid-Nv. waageni 
674 waageni Zone; N3), and then a rebound to ca. +4 ‰ in the lowermost Spathian (lower Nv. 
675 pingdingshanensis Zone; P3) (Zuo et al., 2003, 2004; Tong et al., 2007). At South Majiashan, 
676 the δ13Ccarb profile also shows a positive excursion from ca. 2 ‰ in the uppermost Smithian 
677 to ca. +4 ‰ in the lowermost Spathian (lower Nv. pingdingshanensis Zone; P3) (Tong et al., 
678 2007). The δ13Ccarb profiles of all three sections show relatively stable values (ca. +2 to +4 ‰) 
679 in the lower Spathian (within the Nv. pingdingshanensis and Triassospathodus homeri zones 
680 or Columbites-Tirolites Zone), followed by a gradual decrease to ca. 2 ‰ in the middle to 
681 upper Spathian (within the Neospathodus anhuiensis Zone or Subcolumbites Zone; 
682 approaching N4, although it is unclear whether the N4 minimum is reached).
683 The proximity of the three Chaohu sections allows an evaluation of the relationships 
684 between biostratigraphic markers and features of their carbon isotope profiles (Figs. 8-10). 
685 Taking Nv. pingdingshanensis as an example, the first occurrence of this taxon shows 
686 somewhat variable locations relative to the major features of the δ13C profiles (i.e., N3 and P3). 
687 At South Majiashan, Interval II is 19.57 m thick and extends from 6.3 ‰ (N3) to +4.3 ‰ 
688 (P3), and the first occurrence of Nv. pingdingshanensis is located 0.90 m below P3 (Interval I-
689 IV was divided based on Olenekian carbon isotope excursions, see Section 4.1), which 
690 corresponds to a δ13C value of ~2.0 ‰ that represents ~80 % of the rise from N3 to P3 (Fig. 
691 8). At North Pingdingshan, Interval II is 8.28 m thick and extends from 7.3 ‰ (N3) to +3.8 ‰ 
692 (P3), and the first occurrence of Nv. pingdingshanensis is located approximately at P3, which 
693 corresponds to a δ13C value of +4.0 ‰ that represents ~100 % of the rise from N3 to P3 (Fig. 
694 9). At West Pingdingshan, Interval II is 24.22 m thick and extends from 4.3 ‰ (N3) to +4.2 ‰ 
695 (P3), and the first occurrence of Nv. pingdingshanensis is at 5.33 m below P3, which 
696 corresponds to a δ13C value of ~0 ‰ that represents ~50 % of the rise from N3 to P3 (Fig. 10). 
697 It is unlikely that Nv. pingdingshanensis was not present in all three sections simultaneously 
698 (since they are within 1 km of each other), and the differences in stratigraphic placement of its 
699 first occurrence likely results from local environmental and taphonomic controls, with the West 
700 Pingdingshan section recording the oldest first occurrence and the other two sections slightly 
701 younger first occurrences (“Signor-Lipps Effect”; Signor and Lipps, 1982; Raup, 1986). Given 
702 that this problem exists in such a limited area as at Chaohu, it must be a common phenomenon 
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703 at other locales around the world and at a more global scale, implying that many first 
704 occurrence are local and diachroneous and obviously do not represent the true first appearance 
705 of a specific taxon in a given area, especially when only limited work has been done.
706
707 3.7 Nanpanjiang Basin, southwestern China (eastern Tethys)
708
709 3.7.1. Ammonoid and conodont biostratigraphy
710
711 During the Early Triassic, the Nanpanjiang Basin (mainly northwestern Guangxi and 
712 southern Guizhou provinces) was an epicontinental sea between the Yangtze Platform and the 
713 western Panthalassic Ocean (Enos et al., 2006). In Nanpanjiang Basin, the Lower Triassic 
714 mainly consists of the Luolou Formation (limestone and limestone-shale interbeds) and part of 
715 the overlying Ziyun Formation (thick-bedded micritic and intraclastic limestone with thin 
716 argillites) (Enos et al., 2006). Studies of Olenekian ammonoid biostratigraphy have been 
717 undertaken mainly in the Jinya area (northwestern Guangxi) (Galfetti et al., 2007b, c; Brayard 
718 and Bucher, 2008) and Jiarong section (southern Guizhou) (Chen-YL et al., 2015). Detailed 
719 conodont biostratigraphic analyses have been reported from a number of sections including 
720 Guandao (Wang et al., 2005; Lehrmann et al., 2015), Mingtang (Liang et al., 2016), Jiarong 
721 (Chen-YL et al., 2015, 2018), Shitouzhai (Zhang et al., 2015), Bainyang (Yan et al., 2013) and 
722 Qingyan (Ji et al., 2011) in southern Guizhou, and Zuodeng (Tong et al., 2007, revised after 
723 Yang et al., 1984) in northwestern Guangxi.
724 In the Jinya area, ammonoid biostratigraphic studies led to the recognition of eleven 
725 beds/zones in the Smithian and Spathian substages (Galfetti et al., 2007b, c; Fig. 5E) of which 
726 some can be further refined (Brayard and Bucher, 2008). Olenekian conodont data from this 
727 area are largely unpublished (Goudemand, 2014a). The Smithian ammonoid beds/zones are the 
728 Clypites sp. indet. beds, Kashmirites kapila beds, Flemingites rursiradiatus beds, Owenites 
729 koeneni beds (subdivided in Ussuria, Hanielites and Inyoites horizons) and Anasibirites 
730 multiformis beds (with Anasibirites and Xenoceltites-Pseudosageceras augustum assemblages 
731 respectively at the base and top of these beds), and those from the Spathian are the Tirolitid n. 
732 gen. A beds, Tirolites/Columbites beds, Procolumbites beds, Hellenites beds, and 
733 Neopopanoceras haugi Zone, in ascending order (Galfetti et al., 2007b; Brayard and Bucher, 
734 2008). The SSB was placed at the base of the Tirolitid n. gen. A. beds, ~1-2 m above the late 
735 Smithian Xenoceltites-Pseudosageceras augustum assemblage of the A. multiformis beds (Fig. 
736 6D). Note that another ammonoid assemblage of undetermined taxa, and thus of uncertain age, 
737 occurs between the late Smithian Xenoceltites-Pseudosageceras augustum assemblage and the 
738 earliest Spathian Tirolitid n. gen. A beds (Brayard and Bucher, 2008). This undetermined 
739 assemblage could correspond either to latest Smithian or earliest Spathian ammonoid beds.
740 Conodont biostratigraphic studies reported only the Novispathodus waageni Zone within 
741 the Smithian in the Guandao, Mingtang, Shitouzhai, and Zuodeng sections (Tong et al., 2004, 
742 2007; Zhang et al., 2015; Lehrmann et al., 2015; Liang et al., 2016) (Fig. 11). In the Jiarong 
743 section, reported Smithian conodont zones are in ascending order, the Nv. waageni eowaageni, 
744 Nv. waageni waageni, Discretella discreta and Pachycladina-Parachirognathus zones (Chen-
745 YL et al., 2015; but see Chen-YL et al., 2018, for an update based on quantitative 
746 biostratigraphic methods). In the Bianyang section, they are the Ds. discreta and Pachycladina-
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747 Parachirognathus (Yan et al., 2013). Spathian conodont zones are in ascending order, the Nv. 
748 crassatus and Triassospathodus homeri zones at Guandao (Tong et al., 2004; Lehrmann et al., 
749 2015); the Tr. homeri-Tr. triangularis Zone at Mingtang (Liang et al., 2016); the Nv. 
750 pingdingshanensis, Icriospathodus collinsoni, Tr. homeri and Tr. triangularis zones at Jiarong 
751 (Chen-YL et al., 2015, 2018); the Nv. pingdingshanensis and Tr. homeri zones at Shitouzhai 
752 and Zuodeng (Tong et al., 2007; Zhang et al., 2015); and the Ic. collinsoni and Tr. homeri zones 
753 at Bianyang (Yan et al., 2013) (Fig. 11).
754 At Guandao and Zuodeng, the SSB was placed at the first occurrences of Novispathodus 
755 crassatus and Nv. pingdingshanensis, respectively (Tong et al., 2004, 2007; Lehrmann et al., 
756 2015) (Fig. 11). At Jiarong, only one ammonoid zone of early Spathian age was recognized, 
757 i.e., the Columbites beds in the upper part of the Luolou Formation, ~5 m above the first 
758 occurrence of Nv. pingdingshanensis (Chen-YL et al., 2015). Chen-YL et al. (2015) inferred 
759 that some small specimens of Nv. pingdingshanensis were of late Smithian age (see Maekawa 
760 and Komatsu, 2014; Komatsu et al., 2016 in An Chau Basin, Section 3.8) and placed the SSB 
761 within the Nv. pingdingshanensis Zone, between the first occurrence of Nv. pingdingshanensis 
762 and the Columbites beds. Chen-YL et al. (2018) recently revised conodont occurrences in 
763 Jiarong and confirmed the late Smithian occurrence of Nv. pingdingshanensis. At Mingtang 
764 and Shitouzhai, reports of early Spathian conodonts are not well-established. Thus, the SSB 
765 was placed based only on global correlations of carbon isotope profiles (Zhang et al., 2015; 
766 Liang et al., 2016; see Section 3.7.2). At Bianyang, the SSB was not clearly located because 
767 only early Spathian Icriospathodus collinsoni was recovered (Yan et al., 2013). At Qingyan, 
768 the Olenekian strata were assigned to the Nv. waageni and Triassospathodus homeri conodont 
769 zones, and the FAD of Nv. crassatus and Nv. pingdingshanensis are (nearly) the same as the 
770 first occurrence of Tr. homeri, making placement of the SSB somewhat equivocal (Ji et al., 
771 2011). 
772
773 3.7.2. Carbon-isotope chemostratigraphy
774
775 In Nanpanjiang Basin, carbon isotope profiles of the Olenekian Stage have been generated 
776 for multiple sections, including Jinya area (Galfetti et al., 2007c), Guandao (Tong et al., 2007), 
777 Zuodeng (Tong et al., 2007), Jiarong (Chen-YL et al., 2013), Mingtang (Liang et al., 2016) and 
778 Shitouzhai (Zhang et al., 2015) (Fig. 11). Guandao and Mingtang show similar δ13Ccarb trends, 
779 with a negative excursion from high values (ca. +4 to +6 ‰) in the lowermost Smithian to ca. 
780 2 ‰ (N3) in the middle Smithian, a rebound to ca. +2.5 ‰ in the lowermost Spathian, a long 
781 plateau in the lower Spathian, a second negative excursion to ca. 1 ‰ (N4) in the middle 
782 Spathian, and finally a positive excursion to ca. +4 ‰ in the uppermost Spathian (Tong et al., 
783 2007; Liang et al., 2016). The δ13Ccarb profile at Jiarong is similar to that at Mingtang except 
784 for the absence of a plateau in the lower Spathian (Chen-YL et al., 2013). At Zuodeng, δ13Ccarb 
785 shows high values (ca. +4 ‰) in the lowermost Smithian, a decrease to ~0 ‰ (N3) in the middle 
786 Smithian, a rebound to ca. +3 ‰ (P3) in the lower Spathian (base of the Nv. pingdingshanensis 
787 Zone), a minor negative excursion (to ca. +1 ‰; N4) in the mid-Spathian, and finally 
788 fluctuations between ~0 and +4 ‰ in the upper Spathian (Tong et al., 2007). The δ13Ccarb profile 
789 at Jinya is similar to that at Zuodeng except for a gradual increase in the late Spathian (Galfetti 
790 et al., 2007c). At Shitouzhai, δ13Ccarb varies between ca. +1 ‰ and 3 ‰ (Zhang et al., 2015), 
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791 which is lower than in other Nanpanjiang Basin sections, although its plateau in the lower 
792 Spathian is comparable to those at Guandao and Mingtang.
793
794 3.8. An Chau Basin, northern Vietnam (eastern Tethys)
795
796 3.8.1. Ammonoid and conodont biostratigraphy
797
798 The An Chau Basin was another epicontinental sea connected to the Nanpanjiang Basin 
799 and bordering the western Panthalassic Ocean during the Early Triassic. In this basin, the 
800 Lower Triassic succession consists of the Lang Son Formation (siliciclastics) of Induan-early 
801 Olenekian age and the Bac Thuy Formation (fossiliferous carbonates, limestone breccia, 
802 hemipelagic basinal marl and mudstone) of Olenekian age (Komatsu and Dang 2007; Maekawa 
803 and Komatsu, 2014; Maekawa et al. 2015; Komatsu et al., 2016).
804 To date, only the Bac Thuy Formation has yielded both ammonoids and conodonts of 
805 Olenekian age. Komatsu et al. (2016) reported four ammonoid beds from KC-02 (in ascending 
806 order, the Owenites koeneni and Xenoceltites variocostatus beds of middle and late Smithian 
807 age, respectively, and the Tirolites cf. cassianus and T. sp. nov. beds of early Spathian age) and 
808 three conodont zones (the Novispathodus ex gr. waageni Zone of Smithian age, the Nv. ex gr. 
809 pingdingshanensis Zone straddling the SSB, and the Icriospathodus collinsoni Zone of early 
810 Spathian age) (Fig. 11). The conodont Nv. ex gr. pingdingshanensis was reported at three 
811 stratigraphic levels: (1) from the lower part of the uppermost Smithian X. variocostatus beds 
812 (KC02-08); (2) from the top of the basal Spathian Tirolites cf. cassianus beds (KC02-10); and 
813 (3) from strata between the Tirolites cf. cassianus and Tirolites sp. nov. beds (between KC02-
814 10 and KC02-14) (Maekawa and Komatsu, 2014; Komatsu et al., 2016). 
815 Based on ammonoid data, Komatsu et al. (2016) placed the SSB in the An Chau Basin at 
816 the base of the T. cf. cassianus beds, which is ~0.95 m above the first occurrence of the Nv. ex 
817 gr. pingdingshanensis, and proposed that the conodont Nv. ex gr. pingdingshanensis ranged 
818 from the uppermost Smithian into the lowermost Spathian. The ammonoid Xenoceltites sp. was 
819 also reported from the T. cf. cassianus and Columbites sp. beds of the An Chau Basin (i.e., 
820 Sample 14 in Komatsu et al., 2016). However, this placement of the SSB may be called into 
821 question owing to some uncertainties in taxonomic identifications in this study. After 
822 reconsideration of Xenoceltites variocostatus specimens from KC02-10 illustrated in Shigeta 
823 et al. (2014), these may not pertain to this late Smithian species. Some illustrated specimens of 
824 KC02-11 also resemble some early Spathian Bajarunia (sensu lato) forms. Overall, if true, 
825 these few new tentative assignments may imply that the top of the X. variocostatus beds has to 
826 be only slightly shifted downward, as well as their considered SSB, as other determinations of 
827 X. variocostatus appear robust. Thus, Nv. ex gr. pingdingshanensis in KC02-10 and overlying 
828 beds may be of earliest Spathian age. A reconsideration of Nv. ex gr. pingdingshanensis from 
829 KC02-08 suggest it may not pertain to this species. However, at NT01-07, well-preserved 
830 specimens of X. variocostatus specimens co-occur with Nv. ex gr. pingdingshanensis, thus 
831 supporting a FAD of Nv. ex gr. pingdingshanensis within the late Smithian as observed in other 
832 some other basins (also see discussion in Section 5.2).
833
834 3.8.2. Carbon-isotope chemostratigraphy
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835
836 In the An Chau Basin, the δ13Ccarb profile exhibits stable values of ca. -2 ‰ through the 
837 middle Smithian (up to the top of the Owenites koeneni beds; N3), followed by a positive 
838 excursion to maximum values of ca. +6 ‰ in the uppermost Smithian (within the X. 
839 variocostatus beds; P3) or earliest Spathian if we took into account our potential revised 
840 assignment, and finally a negative excursion to ca. +1 ‰ from this point into the lower Spathian 
841 (Komatsu et al., 2016; Fig. 11).
842
843 3.9. Salt Range and Surghar Range, Pakistan (southern Tethys)
844
845 3.9.1. Ammonoid and conodont biostratigraphy
846
847 A highly resolved Smithian ammonoid zonation based on the quantitative Unitary 
848 Association (UA) method has been proposed by Brühwiler et al. (2010c, 2011) using sections 
849 from the North Indian Margin. A total of 14 UA zones have been defined based on material 
850 from Pakistan (Salt Range), northern India (Spiti) and Tulong (Tibet) allowing detailed 
851 calibration and correlation of Smithian δ13C curves.
852 The Salt Range, located on the northern Gondwanan shelf in the southern Tethys Ocean 
853 during the Early Triassic, has an Olenekian succession consisting of, in ascending order, the 
854 Ceratite Beds (Ceratite Marls and Ceratite Sandstone members), Bivalve Limestone (Upper 
855 Ceratite Limestone and Bivalve Beds members), and Dolomite Group (Dolomitic Beds and 
856 Topmost Limestone members) (Waagen, 1895; Kummel and Teichert, 1973; Guex, 1978). 
857 Recently, PJRG (1985) proposed subdivision of the succession into the Mittiwali (comprising 
858 Units 1 to 5) and Narmia members in the Salt Range and the nearby Surghar Range, in which 
859 Unit 2 (mudstone) was equivalent to the Ceratite Marls, Unit 3 (shale-sandstone) to the the 
860 Ceratite Sandstone, Unit 4 (limestone) to the Upper Ceratite Limestone and lower part of the 
861 Bivalve Beds, Unit 5 (sandstone-shale) to the upper part of the Bivalve Beds and Dolomitic 
862 Beds, and the Narmia Member to the Topmost Limestone. Important sections for Lower 
863 Triassic biostratigraphic studies include the Nammal Gorge, Chiddru and Zaluch locales in the 
864 western Salt Range, and the Narmia and Chitta-Landu in the Surghar Range.
865 The high-resolution ammonoid zonation established from different sections in Salt Range 
866 and Surghar Range by Brühwiler et al. (2010c, 2011, 2012a) consists of 13 Smithian UA zones 
867 of which 2 are late Smithian (Fig. 5F): the Wasatchites distractus beds (including the iconic 
868 genus Anasibirites), and the Glyptophiceras sinuatum beds (including Xenoceltites 
869 variocostatus) (Fig. 6E). As in other area worldwide, the Glyptophiceras sinuatum beds are of 
870 latest Smithian age (e.g., Jenks et al., 2015). The SSB is thus placed just above the G. sinuatum 
871 Zone within the “Bivalve Beds” (BB; Brühwiler et al., 2012a).
872 These upper Smithian ammonoid assemblages are relatively similar to those reported in 
873 earlier studies by PJRG (1985) based on material from the Narmia, Nammal Gorge, and 
874 Chhidru sections. Late Smithian ammonoids from the lower part of Unit 4 (equivalent to the 
875 upper part of Upper Ceratite Limestone) include Anasibirites kingianus and Xenoceltites sp. 
876 (PJRG, 1985). The upper part of Unit 4 includes A. kingianus and X. aff. evolutus (PJRG, 1985). 
877 Early Spathian Tirolites sp. was recently sampled a few meters above the BB at Chitta-
878 Landu. Procolumbites was found at the top of the BB at Nammal, but as Procolumbites is 
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879 younger than Tirolites (e.g., Guex et al., 2010), a sedimentary gap at this place is likely within 
880 the BB (Hermann et al., 2011). Spathian rocks being eroded above the BB at Chhidru, this 
881 section is uninformative for Spathian biostratigraphy. Overall, these ammonoid data constrains 
882 the position of the SSB in Pakistan to between the Glyptophiceras sinuatum beds and the 
883 Tirolites sp. beds.
884 The first conodont study in Nammal Gorge and Narmia yielded three zones, in ascending 
885 order, the Novispathodus waageni and Neogondolella elongata zones of Smithian age and the 
886 Triassospathodus triangularis-Tr. homeri Zone of Spathian age (PJRG, 1985; Fig. 5F). The 
887 Sc. milleri Zone, occupying a narrow interval between the Nv. waageni and Ng. elongata zones, 
888 was recognized only at Chhidru. Spathian conodont species in the Tr. triangularis-Tr. homeri 
889 Zone, including Tr. triangularis, Tr. homeri, Ng. elongata and Ng. jubata, range through a ~40-
890 m-thick stratigraphic interval from the top of Unit 4 to near the top of the Narmia Member 
891 (PJRG, 1985). Therefore, based on these conodont data, the SSB can be constrained to between 
892 the first occurrences of the Ng. elongata and Tr. triangularis. Recent works of Romano et al. 
893 (2013), Leu et al. (2018), and Goudemand et al. (2018) reported several new occurrences of 
894 conodonts in Nammal and especially confirmed the occurrence of Nv. pingdingshanensis 
895 within the late Smithian Glyptophiceras sinuatum ammonoids beds.
896
897 3.9.2. Carbon-isotope chemostratigraphy
898
899 Carbon isotope profiles for the Olenekian Stage have been reported from the Nammal 
900 (Baud et al., 1996; Galfetti et al., 2007c, modified after Baud et al., 1989, and Atudorei, 1999) 
901 and Chhidru of the Salt Range, and Chitta-Landu of the Surghar Range in Pakistan (Baud et 
902 al., 1996; Hermann et al., 2011) (Fig. 12). The ammonoid and carbon isotope studies at Salt 
903 Range and Surghar Range facilitate intercalibrations (Hermann et al., 2011). The δ13Ccarb 
904 profile in Nammal exhibits stable values of ca. 2 ‰ in the middle Smithian (N3), a positive 
905 excursion to ca. +2 ‰ across the SSB, and then a decrease to ca. 2 ‰ by the mid-Spathian. 
906 In the composite section (Nammal, Chhidru, Chitta-Landu and Narmia gorges) of Hermann et 
907 al. (2011, 2012), δ13Ccarb values were only reported from the middle to uppermost Smithian, 
908 showing similar variations as in Galfetti et al. (2007c). The δ13Corg profile of the composite 
909 section exhibits high values (ca. 24 to 28 ‰) in the lower Smithian, followed by a negative 
910 excursion to ca. 33 ‰ (N3*) in the middle Smithian (Pseudoceltites multiplicatus beds), then 
911 back to ca. 26 ‰ (P3*) in the lowermost Spathian (Hermann et al., 2011, 2012). Within the 
912 Spathian, the δ13Corg signal shows a slight decrease to ca. 30 ‰ (N4*?) then an increase to ca. 
913 26 ‰ in the upper Spathian. In the Salt Range and Surghar Range, however, the δ13Corg profile 
914 of the Smithian interval is slightly different from those of other sections globally (Figs. 7, 11-
915 12), possibly due to unusual sedimentation rates, or diagenetic alteration or contamination of 
916 the organic carbon isotope record. 
917
918 3.10. Spiti Valley, India (southern Tethys)
919
920 3.10.1. Ammonoid and conodont biostratigraphy
921
922 In the Spiti Valley of northern India, Olenekian strata belong to the Mikin Formation, 
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923 which consists of the Smithian Limestone and Shale Members, and the Spathian Niti Limestone 
924 Member (Brühwiler et al., 2010a). Lower Triassic ammonoids and conodonts have been 
925 studied in a series of sections including Mud, Guling, Lalung, and Losar (Brühwiler et al., 
926 2007, 2012b; Krystyn et al., 2007a, b). To date, biostratigraphic works in the Spiti Valley have 
927 focused mainly on the Permian/Triassic and Induan/Olenekian boundaries, as well as Smithian 
928 ammonoids (Orchard and Krystyn, 1998, 2007; Krystyn et al., 2004; Orchard, 2007).
929 At Mud, Brühwiler et al. (2010a, 2012b) reported fourteen ammonoid UA zones of 
930 Smithian age, including the late Smithian Wasatchites distractus, Subvishnuites posterus and 
931 Glyptophiceras sinuatum beds, in ascending order (Fig. 5G and 6F). The W. distractus beds 
932 also contain abundant specimens of Anasibirites; this assemblage can be correlated worldwide 
933 (e.g., Jenks et al. 2015; Jattiot et al. 2016, 2017). The S. posterus beds contain S. posterus, 
934 Pseudosageceras augustum, and Xenocelties cf. variocostatus. This interval, together with the 
935 overlying G. sinuatum beds, are indicative of the latest Smithian (Brühwiler et al., 2010a; 
936 Jattiot et al. 2017). Tirolites is reported from overlying lower Spathian beds (Brühwiler et al. 
937 2010a, 2011), but with uncertainty on its exact occurrence. Nevertheless, based on ammonoids 
938 the SSB can be placed above the G. sinuatum beds and below the Tirolites beds.
939 The corresponding conodont zones at Mud are the lower-middle Smithian Novispathodus 
940 waageni eowaageni and Nv. waageni waageni, the upper Smithian Scythogondolella milleri, 
941 and the Spathian Icriospathodus collinsoni and Chiosella gondolelloides zones, in ascending 
942 order (Bhatt et al., 1999; Krystyn et al., 2004, 2005; Orchard and Krystyn, 2007) (Fig. 5G). 
943 Therefore, the SSB could be placed at or below the first occurrence of Ic. collinsoni.
944
945 3.10.2. Carbon-isotope chemostratigraphy
946
947 Carbon isotope profiles have been reported from the Mud and Losar sections, Mud profile 
948 covering the upper Dienerian to lower Smithian (Krystyn et al., 2007a), and the Losar profile 
949 covering the whole Olenekian (Atudorei, 1999; Galfetti et al., 2007c) (Fig. 12). At Mud, the 
950 δ13Ccarb profile shows a gradual decrease from ca. 0 ‰ at the Induan/Olenekian boundary to 
951 ca. 2 ‰ in the lower/middle Smithian (i.e., within the Flemingites-Euflemingites ammonoid 
952 Zone and the Neospathodus spitiensis conodont Zone; close to N3). At Losar, the δ13Ccarb 
953 profile exhibits a gradual decrease from ca. +0.5 ‰ in the lowermost Smithian (close to P2) to 
954 ca. 3 ‰ in the middle Smithian (at ~1 below the Nyalamites angustecostatus beds; N3), a 
955 positive excursion to ca. +2.5 ‰ (P3) across the SSB, a gradual negative excursion to ca. 1 ‰ 
956 by the middle Spathian (N4), and finally a rebound to ca. +2 ‰ in the uppermost Spathian 
957 (close to P4) (Galfetti et al., 2007c; Fig. 12).
958
959 3.11. Southern Europe, Caucasus, and Middle East (western Tethys)
960
961 3.11.1. Ammonoid and conodont biostratigraphy
962
963 Various localities in southern Europe have yielded ammonoid assemblages, but most of 
964 them are poorly preserved with a rather low diversity (e.g., Romania, Cavin and Gradinaru, 
965 2014; Hungary, Hips and Pelikan, 2002; Balkans, Kittl, 1903; Krystyn, 1974; Golubić, 1996, 
966 2000). Additionnally, mostly reported faunas are early Spathian, and detailed biostratigraphic 
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967 zonations are rare, preventing a firm definition of the SSB within this area based on 
968 ammonoids. However, Smithian material is beginning to be described relatively finely in 
969 some places (e.g., Ðacović, 2017), suggesting that future biostratigraphic improvements 
970 around the SSB are possible. Sections in the Caucasus mainly include Smithian ammonoids 
971 (e.g., Popov, 1964), whereas reported taxa from Mangyshlak are mainly early Spathian in age 
972 (e.g., Balini et al., 2000). Here again, future improvements in ammonoid biostratigraphy may 
973 help to better constrain the SSB. Detailed ammonoid zonal schemes for the SSB in the 
974 Middle East are also lacking, in part due to the limited acessibility of this area (e.g., Iran, 
975 Balini et al., 2009, Vaziri, 2011). However, some abundant and diversified assemblages are 
976 known from the Smithian and Spathian of Oman (Tozer and Calon, 1990; Brühwiler et al., 
977 2012c), suggesting that future biostratigraphic improvements are also possible in this region.
978 Latest Permian-Early Triassic conodonts have been extensively studied in Europe, for 
979 example, in Italy (Huchkriede, 1958; Assereto et al., 1973; Mostler,1982; Perri, 1986; Perri 
980 and Andraghetti, 1987; Samankassou, 1995; Perri and Farabegoli, 2003), Slovenia (Kolar-
981 Jurkovšek and Jurkovšek, 2007; Kolar-Jurkovšek et al., 2011a, b), Croatia (Aljinović et al., 
982 2006, 2011) and Serbia (Sudar et al., 2007; Nestell et al., 2009; Crasquin et al., 2010), including 
983 conodonts of the Olenekian age (Staesche, 1964; Perri, 1991; Kolar-Jurkovšek et al., 2013, 
984 2015, 2017; Sudar et al., 2014; Chen-YL et al., 2016). Generally, conodont data in this area are 
985 rarer (e.g., Italy) than elsewhere and also endemic. This does not facilitate correlation with 
986 other regions. For example, some classical Smithian taxa (e.g., Novispathodus waageni) and 
987 taxa considered as markers of the earliest/early Spathian (e.g., Nv. pingdingshanensis, 
988 Icriospathodus collinsoni) are often absent. Sudar et al. (2014) reported two lower Smithian 
989 conodont zones, in ascending order, the Pachycladina obliqua–Foliella gardenae and 
990 Neospathodus planus zones, from the Gučevo mountain area in northwestern Serbia. In 
991 northern Italy, the Pa. obliqua Zone ranges through almost the entire Olenekian (Perri, 1991). 
992 Posenato (2008) suggested that F. gardenae may have ranged from the late Dienerian to the 
993 late Smithian. A lower Smithian Pa. obliqua Zone was reported from Croatia by Aljinović et 
994 al. (2011), which included the conodont taxa Hadrodontina anceps, Parachirognathus 
995 ethingtoni, Foliella sp. or ?Furnishius sp. Kolar-Jurkovšek et al. (2013) and Kolar-Jurkovšek 
996 and Jurkovšek (2015) reported Olenekian conodont assemblages from the Julian Alps area in 
997 Slovenia, in which Triassospathodus hungaricus was regarded as indicative of an earliest 
998 Spathian age. In Chen-YL et al. (2016), nine discrete conodont UA zones were recognized in 
999 the Olenekian of the Idrija–Žiri area in Slovenia, namely the Eurygnathodus costatus, 

1000 Eurygnathodus hamadai, F. gardenae, Ns. robustus, Platyvillosus corniger, Pl. regularis, Tr. 
1001 hungaricus, Tr. symmetricus, and Ns. robustispinus UAZs. The F. gardenae Zone from the Žiri 
1002 road section, which contains F. gardenae, Pa. obliqua and Pa. inclinata, was proposed as 
1003 indicative of the SSB transition based on its co-occurrence with the P3 carbon-isotope 
1004 maximum (Chen-YL et al., 2016) (see Section 5.3). However, the F. gardenae UAZ may also 
1005 include the N3 carbon-isotope minimum, thus constraining the SSB to within the F. gardenae 
1006 UAZ. Only limited Lower Triassic conodont biostratigraphic data are available for sections 
1007 from the Middle East (Brühwiler et al., 2012c; Chen-YL et al., 2018) and most of them are 
1008 focused on the Permian/Triassic boundary (e.g., Gallet et al., 2000; Hauser et al., 2001; Groves 
1009 et al., 2005; Horacek et al., 2007b; Richoz et al., 2010).
1010
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1011 3.11.2. Carbon-isotope chemostratigraphy
1012
1013 Carbon isotope studies of the Slovenian sections revealed a δ13Ccarb shift from ca. +0.5 to 
1014 +7 ‰ within the Foliella gardenae Zone (Interval II), followed by a decrease from ca. +5 ‰ 
1015 in the Neospathodus robustus Zone (lower Spathian; close to P3) to ca. +1 ‰ in the Ns. 
1016 robustispinus (middle Spathian; close to N4) (Chen-YL et al., 2016). Recently, Aljinović et al. 
1017 (2018) reported a continuous Olenekian δ13Ccarb curve from Croatia, showing a negative 
1018 excursion of δ13Ccarb from ca. +5 ‰ in the lower Smithian (P2) to ca. 3 ‰ in the middle 
1019 Smithian (N3), followed by a positive excursion to ca. +3 ‰ in the lower Spathian (P3). The 
1020 δ13Ccarb curve then decreased to ca. 2 ‰ in the mid-Spathian (N4) and back to ca. +3 ‰ in 
1021 the upper Spathian (close to P4). More extensive carbon-isotope work has been undertaken in 
1022 Italy. At L’Uomo, the δ13Ccarb profile shows a sharp negative excursion from ca. +6 ‰ in the 
1023 lowest Smithian (P2) to ca. 2 ‰ during the middle Smithian (N3), followed by a positive 
1024 excursion to ca. +2 ‰ in the lower Spathian (P3) (Horacek et al., 2007a). At 
1025 Lungenfrischgraben, the δ13Ccarb profile shows a gradual decrease from ca. +4 ‰ at the IOB 
1026 (P2) to ca. 2 ‰ (N3) in the middle Smithian, a rebound to ca. +3 ‰ in the lowermost Spathian 
1027 (P3), and finally a negative excursion to ca. 2 ‰ in the mid-Spathian (N4) (Horacek et al., 
1028 2010). The δ13Ccarb profile at Trudener Bach is similar to that at L’Uomo, showing a shift from 
1029 ca. 2 ‰ in the middle Smithian (N3) to ca. +3 ‰ at the lower Spathian (P3) (Horacek et al., 
1030 2010).
1031 In the Middle East, carbon isotope studies on the Smithian-Spathian transition have been 
1032 carried out for the Zal, Abadeh and Amol sections in Iran (Horacek et al., 2007b), the 
1033 Musandam section in the United Arab Emirates (Clarkson et al., 2013), the Wadi sections (i.e. 
1034 Sahtan, Shuyab, Maqam, Wasit Sud) and Sal and Radio Tower sections in Oman (Hauser et 
1035 al., 2001; Richoz, 2006, Chen-YL et al., 2018), and the Taşkent section in Turkey (Richoz et 
1036 al., 2006; Lau et al., 2016). In the Iranian sections, the δ13Ccarb profiles show negative 
1037 excursions from +5 to +8 ‰ at the Induan/Olenekian boundary (P2) to 2 to 4 ‰ in the middle 
1038 Smithian (N3), sharp rebounds to +2 to +3 ‰ at the SSB (P3), and then gradual decreases to 
1039 ca. 4 ‰ in the mid-Spathian (N4) (Horacek et al., 2007b; Fig. 12). At Musandam, the δ13Ccarb 
1040 profile shows a gradual negative excursion from ca. +3 ‰ in the lowermost Smithian (P2) to 
1041 ca. 0 ‰ in the middle Smithian (N3), a slow rebound to ca. +4 ‰ in the lower Spathian (P3), 
1042 a decrease to ca. +2 ‰ in the middle to upper Spathian (N4), and finally an increase to ca. +3 ‰ 
1043 in the uppermost Spathian (close to P4) (Clarkson et al., 2013; Fig. 12). In Taşkent, the δ13Ccarb 
1044 profile shows a negative excursion from ca. +6 ‰ in the lowermost Smithian (P2) to ca. 2 ‰ 
1045 in the middle Smithian (N3), a positive excursion to ca. +4 ‰ in the lower Spathian (P3), 
1046 followed by the second negative excursion to 2 ‰ in the middle to upper Spathian (N4), and 
1047 finally an increase to ca. +4 ‰ in the uppermost Spathian (close to P4) (Lau et al., 2016). In 
1048 Oman, the δ13Ccarb profiles show negative shifts from +4 to +6 ‰ in the lowermost Smithian 
1049 (P2) to 0 to 2 ‰ in the middle Smithian (N3), a positive excursion to a maximum of ca. +8 ‰ 
1050 in the lower Spathian (P3), a gradual negative excursion to 1 to 3 ‰ in the middle to upper 
1051 Spathian (N4), and finally a rebound to positive values in the upper Spathian (Richoz, 2006; 
1052 Clarkson et al., 2016; Chen-YL et al., 2018). Despite the frequent lack of biostratigraphic data, 
1053 the position of the SSB is generally constrained by the well-defined N3-to-P3 shift in the carbon 
1054 isotope profiles of these sections, but new biostratigraphic data will likely help to better 
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1055 constrain the SSB in this area (see Chen-YL et al., 2018).
1056
1057 4. Chemostratigraphic records for the Smithian-Spathian transition
1058
1059 4.1.  Carbon-isotope chemostratigraphy
1060
1061 The Early Triassic was an interval marked by large successive secular fluctuations in 
1062 carbon isotope records, beginning at the EPME and ending around the Early/Middle Triassic 
1063 boundary (e.g., Payne et al., 2004; Tong et al., 2007). These high-amplitude carbon isotopic 
1064 variations were often assumed to be related to rapid marine faunal overturns and to a delayed 
1065 marine ecosystem recovery following the EPME (Erwin, 2001; Bottjer et al., 2008; Chen and 
1066 Benton, 2012). During this time, there is evidence of recurrent extreme environmental 
1067 perturbations, e.g., high tropical sea-surface temperatures (Sun et al., 2012; Romano et al., 
1068 2013), relatively widespread oceanic anoxia (Wignall and Twitchett, 1996; Grice et al., 2005; 
1069 Xie et al., 2007; Galfetti et al., 2008; Algeo et al., 2010; Hermann et al., 2011; Grasby et al., 
1070 2013; Zhao et al., 2013b; Feng et al., 2014; Tian et al., 2014; Clarkson et al., 2016; Lau et al., 
1071 2016; Huang et al., 2017; Song-HY et al., 2019), and ocean acidification (Payne et al., 2010; 
1072 Hinojosa et al., 2012; Clarkson et al., 2015; Silva-Tamayo et al., 2018). Following the middle 
1073 Smithian hyperwarming (Sun et al., 2012; Romano et al., 2013), the Smithian-Spathian 
1074 transition was marked by a climatic cooling event (Goudemand et al., 2013, 2014a, 2018), 
1075 weakened ocean stratification (Song-HY et al., 2013), and increased marine productivity linked 
1076 to upwelling of sequestered deep-water nutrients at some places (Takahashi et al., 2009; Zhang 
1077 et al., 2015; Song-HY et al., 2019). A concurrent major perturbation to the global carbon cycle 
1078 before and across the SSB resulted in the largest excursions in marine δ13C records of the Early 
1079 Triassic (Payne et al., 2004; Tong et al., 2007; Galfetti et al., 2007a, b, c; Horacek et al., 2007a, 
1080 b; Brühwiler et al., 2009). Such excursions in Early Triassic marine δ13C records have multiple 
1081 proposed causes, including volcanic emissions (Galfetti et al., 2007b; Payne and Kump, 2007), 
1082 soil organic matter inputs (Sephton et al., 2005), marine productivity changes (Meyer et al., 
1083 2011), or combinations of these factors (Algeo et al., 2011). In addition, regional authigenic 
1084 and/or diagenetic effects can also modify carbon isotope signals depending on the 
1085 environmental settings (Schobben et al., 2016; Thomazo et al., 2016; Caravaca et al., 2017).
1086 These large global δ13C fluctuations can therefore be useful for global correlation when 
1087 coupled with biostratigraphic data (e.g., Galfetti et al., 2007c; Horacek et al., 2007a, b; Grasby 
1088 et al., 2016; Wignall et al., 2016; Thomazo et al., 2016). Most δ13C profiles exhibit a series of 
1089 alternating minima (N1 to N4) and maxima (P1 to P4; Fig. 1). During the Olenekian, δ13C 

1090 profiles generally exhibit a positive peak (P2) close to the Dienerian/Smithian boundary, a 
1091 major negative excursion in the middle Smithian (N3), a rebound across the SSB to a second 
1092 positive peak (P3) in the earliest Spathian, a second negative excursion (N4) in the middle 
1093 Spathian, and a third positive excursion (P4) in the lowermost Anisian, after which δ13C 

1094 stabilized during the Middle Triassic (e.g., Payne et al., 2004; Tong et al., 2007). The cause(s) 
1095 of these large carbon-isotopic excursions are not known with certainty. For instance, the P3 
1096 excursion has been tentatively partly related to increased marine productivity during the SSB 
1097 cooling event (Song-HY et al., 2013; Zhang et al., 2015; Caravaca et al., 2017; Goudemand et 
1098 al., 2018).
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1099 Although nearly all Lower Triassic marine sections examined to date yield the same 
1100 pattern of large-scale carbon-isotopic fluctuations, as described above, there are nonetheless 
1101 small differences in δ13C profiles that may have significance for global correlation of the SSB. 
1102 To facilitate discussion of carbon-isotopic variations, we have divided the Olenekian into four 
1103 intervals, with Interval I representing the P2 to N3 shift, Interval II the N3 to P3 shift, Interval 
1104 III the P3 to N4 shift, and Interval IV the N4 to P4 shift (Fig. 13A). Furthermore, we define 
1105 “mdpt(N3-P3)” as the midpoint in units of per mille PDB between the absolute δ13C value of 
1106 the N3 minimum and that of the P3 maximum in a given stratigraphic section. Present 
1107 indications are that the SSB may slightly predate the P3 maximum, which is early Spathian. 
1108 Because the N3 minimum may not be correlative between sections (owing to a slow initial rise 
1109 and consequent difficulties in uniquely locating this point in some sections), it can be useful to 
1110 have another pre-P3 geochemical marker. The mdpt(N3-P3) marker can serve this purpose 
1111 because by the midpoint of the N3-to-P3 shift, δ13C was rising rapidly in many SSB sections, 
1112 and this point can therefore be roughly correlated at a global scale in the absence of 
1113 biostratigraphic data.
1114 Most SSB sections exhibit a rapid shift from N3 to P3 (i.e., Interval II; see Fig. 13A). We 
1115 are particularly concerned with variation between the lowermost Smithian and lowermost 
1116 Spathian (i.e., Intervals I and II), within which we identified four major different patterns of 
1117 δ13C variation (Fig. 13B). This variation is mainly related to the shape and position of the N3 
1118 minimum, with implications for placement of the Interval I/II contact (see discussion in Section 
1119 5.3). Pattern 1 is characterized by an N3 minimum in the middle Smithian, followed by a slow 
1120 rise in δ13C through the late Smithian before a rapid rise across the SSB. Pattern 2 is 
1121 characterized by a protracted δ13C minimum during the middle Smithian, before a rapid rise in 
1122 the late Smithian. Pattern 3 is characterized by a slow decline in δ13C through the early Smithian, 
1123 reaching the N3 minimum during the middle Smithian, before a rapid late Smithian rise. Pattern 
1124 4 is a variant on Pattern 3, in which the decline in δ13C from the P2 maximum to the N3 
1125 minimum apparently does not show distinct rapid and slow stages (as in Pattern 3; Fig. 13B).
1126
1127 4.2.  Other chemostratigraphic records (Δδ13CDIC, δ34S and 87Sr/86Sr)
1128
1129 In addition to δ13C, various other chemostratigraphic records show pronounced variations 
1130 during the Early Triassic. Meyer et al. (2011) and Song-HY et al. (2013) documented changes 
1131 in the vertical gradient of δ13C of dissolved inorganic carbon (DIC) in Early Triassic seawater 
1132 based on secular differences in the δ13Ccarb profiles of sections deposited at different water 
1133 depths. Song-HY et al. (2013) showed that Δδ13CDIC reached high values (ca. +4 to +7 ‰) 
1134 during the middle-late Smithian, when a hot climate prevailed, and subsequently declined to 
1135 ca. 0 ‰ in the early Spathian, coincident with climatic cooling (Fig. 14A). Song-HY et al. 
1136 (2013) linked this pattern to the influence of temperature changes on the vertical temperature 
1137 structure of the water column, with warming leading to intensified water-column stratification, 
1138 reduced vertical overturn, and thus higher Δδ13CDIC values (sustained by the “biological 
1139 pump”), and cooling leading to reduced stratification, invigorated overturn, and lower Δδ13CDIC 
1140 values.
1141 The δ34S values of carbonate-associated sulfate (CAS) and evaporites, which are used as 
1142 a proxy for contemporaneous seawater sulfate δ34S, show large variations throughout the Early 
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1143 Triassic (Marenco et al., 2008; Horacek et al., 2010; Song-HY et al., 2014; Bernasconi et al., 
1144 2017; Lyu et al., 2018; Stebbins et al., 2018a, b; Thomazo et al., 2018). δ34SCAS profiles in 
1145 South China exhibit a negative excursion from a maximum of ca. +40 ‰ (P2s) in the earliest 
1146 Smithian to a minimum of ca. +20 ‰ (N3s) in the middle Smithian, a rebound to a maximum 
1147 of ~33 ‰ (P3s) in the early Spathian, and finally a slow decline in the middle to late Spathian 
1148 to values of ca. +15 ‰ by the Middle Triassic (Song-HY et al., 2014; Fig. 14B; note: the ‘s’ 
1149 suffix indicates a S-isotope excursion, whereas excursion numbers without a suffix indicate a 
1150 C-isotope excursion). Recent studies revealed relatively similar variations of δ34SCAS during 
1151 the Smithian and Spathian in the Spiti Valley (India), Jesmond (Canada), and Mineral 
1152 Mountains (USA) sections (Stebbins et al., 2018a, b; Thomazo et al., 2018). These fluctuations 
1153 here parallel those in δ13C profiles, and this relationship has been attributed to co-burial of 
1154 reduced carbon (organic matter) and reduced sulfur (pyrite), both of which are isotopically light 
1155 compared to their seawater sources (DIC and sulfate, respectively). In this scenario, positive 
1156 (vs. negative) shifts in δ34SCAS and δ13Ccarb were the result of increased (vs. reduced) burial of 
1157 organic matter and pyrite, due to increased (vs. reduced) primary productivity and intensity of 
1158 microbial sulfate reduction controlled by climate changes. Concomittant changes in 
1159 bioturbation may have also played a role (Thomazo et al., 2018). The coupling of these two 
1160 isotopic systems during the Early Triassic (which is not seen in the Cenozoic) was because of 
1161 the much lower concentration of seawater sulfate at that time (2.5 to 9.1 mM; Algeo et al., 
1162 2015), resulting in a shorter residence time for seawater sulfate that more closely matched that 
1163 of seawater DIC (Luo et al., 2010; Stebbins et al., 2018b). The decoupling of the marine C and 
1164 S cycles that occurred during the middle to late Spathian was thus probably due to increases in 
1165 seawater sulfate concentrations that resulted in residence times longer than that of DIC (Song-
1166 HY et al., 2014).
1167 Climate warming also potentially enhanced continental weathering during the Early 
1168 Triassic, as revealed by a sharp increase in seawater 87Sr/86Sr. This rise commenced in the early 
1169 Griesbachian from a baseline of ~0.7072, reaching ~0.7076 by the earliest Smithian and then 
1170 ~0.7079 by the earliest Spathian (Sedlacek et al., 2014; Song-HJ et al., 2015; Fig. 14C). 
1171 Thereafter, the rise in seawater 87Sr/86Sr slowed sharply, reaching only ~0.7081 by the late 
1172 Spathian. The abrupt break in the seawater 87Sr/86Sr profile at the SSB has been attributed to a 
1173 sharp global cooling at that time and a consequent decrease in continental weathering rates 
1174 (Algeo and Twitchett, 2010; Sedlacek et al., 2014; Zhang-L et al., 2015; Zhang-F et al., 2018).
1175
1176 5. Future formalization of the Smithian/Spathian boundary
1177
1178 Biological and environmental studies of the Smithian-Spathian transition will ultimately 
1179 lead to a formal definition of the SSB, and the present study provides a first background for 
1180 moving forward toward this objective. Both ammonoids and conodonts offer numerous and 
1181 widely distributed biostratigraphic markers that may be useful for future definitions of the SSB. 
1182 The definition of any GSSP ideally employs multiple bio-, chemo-, and physical criteria, and 
1183 when fossils are rare or lacking, as is the case for some SSB sections, then alternate proxies 
1184 must be sought. The SSB transition corresponds to a rapid positive shift of δ13C from the middle 
1185 Smithian N3 minimum to the early Spathian P3 maximum (Interval II; Fig. 13), making the 
1186 δ13C signal a potentially useful auxiliary proxy to locate the SSB (but not replacing 
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1187 biostratigraphic data, if available). In this section, we review (1) potential ammonoid and 
1188 conodont biostratigraphic as well as carbon-isotopic criteria that may prove useful for a future 
1189 formal definition of the SSB, (2) placements of the SSB in earlier studies globally, and (3) the 
1190 timing of the Smithian Thermal Maximum based on the criteria proposed in the present study. 
1191 Note that these points can potentially evolve according to future discoveries that may be made.
1192
1193 5.1. Constraints from ammonoid biozonation
1194
1195 The successive global events recorded by ammonoids during the late Smithian and early 
1196 Spathian are well-constrained and provide multiple potential criteria for definition of the SSB. 
1197 The base of the late Smithian is globally well-defined by a first major ammonoid extinction 
1198 event (see Section 2 and Fig. 2) and is characterized by an assemblage grouping iconic taxa, 
1199 notably prionitids, showing impressive cosmopolitan distributions, such as Anasibirites and 
1200 Wasatchites (AW assemblage), and representing an almost perfect global timeline. The AW 
1201 assemblage thus allows correlation at very large geographic scale among localities of different 
1202 paleolatitudes and oceans (e.g., USA, Jattiot et al., 2016, 2017; South China, Tong et al., 2004, 
1203 Brayard and Bucher, 2008; Pakistan, Brühwiler et al., 2011). The top of the late Smithian is 
1204 also rather well-defined by an assemblage of cosmopolitan taxa, much poorer in generic 
1205 richness and corresponding to a last Smithian turnover event. It is mainly found at low and 
1206 mid-paleolatitudes of the Tethys and Panthalassic oceans and shows co-occurring taxa such as 
1207 Glyptophiceras, Xenoceltites (X. variocostatus and X. subevolutus) and Pseudosageceras 
1208 augustum (GXP assemblage). This latest Smithian assemblage (or characteristic species) has 
1209 notably been reported from the USA (Brayard et al., 2013; Jattiot et al., 2017, 2018; Jenks and 
1210 Brayard, 2018), Spitsbergen (Mørk et al., 1999), South China (Tong et al., 2004; Brayard and 
1211 Bucher, 2008), Vietnam (Komatsu et al., 2016), and various localities of the North Indian 
1212 Margin (Brühwiler et al., 2012a, b). The GXP assemblage can thus be used to define the 
1213 uppermost Smithian at a very large number of localities. Another late Smithian assemblage 
1214 (Subvishnuites beds) that is intermediate between AW and GXP has been reported from the 
1215 North Indian Margin, but it is mostly endemic and not well-documented elsewhere. Earliest 
1216 Spathian assemblages are generally characterized by widespread occurrences of typical taxa 
1217 belonging to e.g., the genera Tirolites, Bajarunia and Doricranites. The first appearances of 
1218 these taxa, as well as their co-occurrences (e.g., Bajarunia and Tirolites; BT assemblage) at 
1219 some places, can serve as a potential basis for definition of the base of the Spathian (e.g., 
1220 Spitsbergen, Dagys and Weitschat, 1993; USA, Guex et al., 2010; Jenks et al., 2013; South 
1221 China, Tong et al., 2004; Galfetti et al., 2007b; Vietnam, Komatsu et al., 2016). However, as 
1222 these earliest Spathian taxa apparently exhibit rather more endemic distributions than late 
1223 Smithian taxa, diagnostic assemblages or taxa may slightly vary from basin to basin. More 
1224 work is needed to finely decipher earliest Spathian occurrences of these taxa at many places. 
1225 Within the early Spathian, taxa co-occuring with Columbites are younger.
1226 Overall, based on published ammonoid data, the SSB is constrained above the global AW 
1227 assemblage and between the latest Smithian GXP and earliest Spathian BT assemblages. Such 
1228 a sucession is frequently encountered and well-documented in the western USA, South China, 
1229 Tibet, Vietnam and South Primorye (see Section 3). Detailed study of basins where the 
1230 Smithian-Spathian transition was not affected by a eustatic regression, as is observed almost 
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1231 worldwide, or from sections representing deep water settings may help to definitively 
1232 determine the detailed succession of ammonoids assemblages across the SSB.
1233
1234 5.2. Constraints from conodont biozonation
1235
1236 Conodont taxa characteristic of the late Smithian substage are useful in constraining the 
1237 SSB. The Ellisoniidae family (e.g., Pachycladina, Foliella, Parachirognathus, Furnishius and 
1238 Hadrodontina) and Mullerinae subfamily (e.g., Discretella, Wapitiodus, Guangxidella, 
1239 Conservatella and Scythogondolella) mostly went extinct before or at the SSB (Orchard, 2007). 
1240 Diagnostic late Smithian taxa of the Ellisoniidae family have been identified in many areas, 
1241 e.g., Pachycladina from southwestern China (Yan et al., 2013; Chen-YL et al., 2015), Pa. 
1242 obliqua and Pa. inclinata from southern Europe (Perri, 1991; Aljinović et al., 2011; Sudar et 
1243 al., 2014; Chen-YL et al., 2016); Foliella from Croatia (Aljinović et al., 2011), F. gardenae 
1244 from other southern European locales (Sudar et al., 2014; Chen-YL et al., 2016); 
1245 Parachirognathus from Japan (Zhang et al., 2017) and southwestern China (Yan et al., 2013; 
1246 Chen-YL et al., 2015), Pa. ethingtoni, and Furnishius and Hadrodontina anceps from southern 
1247 Europe (Aljinović et al., 2011). Members of the Mullerinae subfamily that are characteristic of 
1248 the late Smithian include Discretella from Japan (Zhang et al., 2017), Ds. discreta from the 
1249 Canadian Arctic (Mosher, 1973; Orchard, 2008), western British Columbia (Orchard and 
1250 Zonneveld, 2009), western United States (Orchard and Tozer, 1997; Orchard, 2008; Orchard 
1251 and Zonneveld, 2009), and southwestern China (Yan et al., 2013; Chen-YL et al., 2015); 
1252 Wapitiodus(?) from Japan (Zhang et al., 2017), W. robustus from western British Columbia 
1253 (Orchard and Zonneveld, 2009); Guangxidella bransoni from British Columbia Orchard (2008) 
1254 and the western United States (Orchard and Tozer, 1997; Orchard, 2008; Orchard and 
1255 Zonneveld, 2009); Conservatella conservativa from Canadian Arctic (Mosher, 1973; Orchard, 
1256 2008) and the western United States (Orchard and Tozer, 1997; Orchard, 2008; Orchard and 
1257 Zonneveld, 2009); Sc. lachrymiformis, Sc. rhomboidea, Sc. milleri and Sc. mosheri from the 
1258 Canadian Arctic (Orchard, 2008), Sc. milleri and Sc. mosheri from Spitsbergen (Weitschat and 
1259 Lehmann, 1978; Clark and Hatleberg, 1983; Hatleberg and Clark, 1984) and the western United 
1260 States (Müller, 1956; Orchard and Tozer, 1997; Orchard, 2008), Sc. lachrymiformis, Sc. milleri, 
1261 Sc. mosheri and Sc. phryna from western British Columbia (Orchard and Zonneveld, 2009), 
1262 Sc. milleri from the Spiti Valley (Bhatt et al., 1999; Krystyn et al., 2004, 2005; Orchard and 
1263 Krystyn, 2007) and the Salt Range (PJRG, 1985).
1264 Some genera of the Novispathodinae (e.g., Novispathodus, Triassospathodus) and 
1265 Neogondolellinae (e.g., Neogondolella) subfamilies survived and rediversified after the late 
1266 Smithian extinction (Orchard, 2007), generating key early Spathian taxa that could be used in 
1267 the definition of the SSB. Commonly assumed members of this surviving and recovery fauna 
1268 included ‘Tr.’ hungaricus, Ng. aff. sweeti, and Nv. pingdingshanensis, which were first 
1269 reported from Hungary (Kozur and Mostler, 1970), the WCSB/western USA (Orchard and 
1270 Tozer, 1997), and Chaohu (Zhao et al., 2007a), respectively. Later, ‘Tr’. hungaricus was also 
1271 reported from Sichuan Province, South China (Tian et al., 1983), the western USA (Lucas and 
1272 Orchard, 2007), and various localities in Europe (Kolar-Jurkovšek et al., 2013; Chen-YL et al., 
1273 2016); Ng. aff. sweeti was reported from Chaohu (Zhao et al., 2007a); and Nv. 
1274 pingdingshanensis was reported from multiple sections in the South China region (Tong et al., 
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1275 2007; Ji et al., 2011; Chen-YL et al., 2015; Zhang et al., 2015), the WCSB (Orchard and 
1276 Zonneveld, 2009), and the An Chau Basin (Komatsu et al., 2016).
1277 Newly evolved conodont species of Spathian age, and their intercalibrations with 
1278 ammonoid biozonation data, may serve an important role in the future definition of the SSB. 
1279 In North America, Neogondolella aff. sweeti is known from strata overlying the 
1280 Anawasatchites tardus Zone in the WCSB, and is of probable Spathian age in California. This 
1281 species, as yet undescribed, differs from Ng. sweeti associated with Smithian Neospathodus 
1282 pakistanensis in the Mittiwali Formation of Pakistan (Orchard and Tozer, 1997). In Hungary, 
1283 ‘Triassospathodus’ hungaricus occurs in the Tirolites ammonoid beds (Kozur and Mostler, 
1284 1970), thus may serve as a marker for the lower Spathian, within rocks equivalent to the 
1285 Tirolites cassianus ammonoid Zone (Kozur, 2003). Kolar-Jurkovšek et al. (2013) inferred that 
1286 the ‘Tr’. hungaricus fauna lies within the lower Spathian in the shallow western Tethys, where 
1287 the Icriospathodus collinsoni fauna is missing. Chen-YL et al. (2016) speculatively proposed 
1288 that ‘Tr’. hungaricus could be correlated with Novispathodus pingdingshanensis because of 
1289 their small size and co-occurrence with the ammonoid Tirolites (e.g., Hungary, Kozur and 
1290 Mostler, 1970). At Chaohu, Nv. pingdingshanensis is found within the Columbites-Tirolites 
1291 ammonoid Zone of the Nanlinghu Formation, between the late Smithian Anasibirites beds and 
1292 the early Spathian Tirolites beds, thus leading to its proposed use as an earliest Spathian 
1293 indicator (Zhao et al., 2007a, 2008a, b; Fig. 15). There, the first occurrence of Nv. 
1294 pingdingshanensis is coincident with the first occurrence of Ng. aff. sweeti and below the first 
1295 occurrence of Ic. collinsoni (Zhao et al., 2007a, 2008a, b). Thus, even though both Nv. 
1296 pingdingshanensis and ‘Tr’. hungaricus may be indicative of the earliest Spathian, Nv. 
1297 pingdingshanensis is the older of these two taxa in South China.
1298 The taxon Nv. pingdingshanensis was first introduced by Zhao et al. (2007a), who 
1299 identified it as a marker for the SSB in South China. Since its discovery, this taxon has been 
1300 reported from a number of other locations globally, including the western USA (Orchard and 
1301 Zonneveld, 2009), western Canada (Henderson et al., 2018), Vietnam (Komatsu et al., 2016), 
1302 Salt Range (Romano et al., 2013; Leu et al., 2018; Goudemand et al., 2018), Kashmir (Leu et 
1303 al., 2018), Oman (Chen-YL et al., 2018) and the Zuodeng (Tong et al., 2007; Goudemand et 
1304 al., 2012), Youping (Goudemand et al.,2012) and Jiarong sections in South China (Chen-YL 
1305 et al., 2015). Although the first occurrence of Nv. pingdingshanensis has been used to identify 
1306 the SSB in South China (Zhao et al., 2007a; Tong et al., 2007; Chen-YL et al., 2015), several 
1307 studies elsewhere have claimed that the oldest specimens of Nv. pingdingshanensis are of late 
1308 Smithian age because of specimens that co-occur with Xenoceltites in the AW and GXP 
1309 ammonoid asssemblages (Orchard and Zonneveld, 2009; Goudemand et al., 2012; Komatsu et 
1310 al., 2016; Romano et al., 2013; Chen-YL et al., 2018; Leu et al., 2018; Goudemand et al., 2018). 
1311 In earlier literature, the genus Xenoceltites ranged from the late Smithian to the early Spathian 
1312 (Guex et al., 2010), but the rare early Spathian specimens assigned to this genus are now 
1313 excluded from Xenoceltites (Brayard et al., 2019; Leu et al., 2018), thus making key 
1314 Xenoceltites taxa found in the AW and GXP assemblages (e.g., X. variocostatus and X. 
1315 subevolutus) exclusively late Smithian in age. On this basis, some studies (e.g., Leu et al., 2018) 
1316 have inferred that Nv. pingdingshanensis may not be a suitable marker for the SSB, but more 
1317 work will be needed to definitively address the issue of a possibly diachronous first occurrence 
1318 of this taxon at a global scale.
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1319 Because of its morphological similarity to antecedent taxa, Nv. pingdingshanensis must 
1320 be carefully identified, and it is uncertain at present whether all reported occurrences of this 
1321 taxon are correctly attributed. Zhao et al. (2008a) inferred a phyletic lineage in which Nv. 
1322 pingdingshanensis evolved from the earlier taxon Nv. waageni waageni, with the latter 
1323 evolving from Ns. dieneri Morphotype 3. The original taxonomic description of Nv. 
1324 pingdingshanensis was based on 23 specimens from Beds 52 and 54-55 at West Pingdingshan 
1325 (including the holotype from Bed 54) and Beds 61-64 at North Pingdinshan (Zhao et al., 2007a). 
1326 Nv. pingdingshanensis is characterized by (1) four to nine robust, wide, and mostly fused 
1327 denticles; (2) a straight basal margin in the lateral view; and (3) a large, broadly expanded oval 
1328 to subrounded basal cavity that is upturned on the inner margin and flat to downturned on the 
1329 outer margin. Later, additional criteria of Nv. pingdingshanensis were proposed by Goudemand 
1330 et al. (2012), based on studies of conodont assemblages from the Nanpanjiang Basin in South 
1331 China. In that study, the denticle axes of P1 elements of Nv. pingdingshanensis are distinctively 
1332 curved in the posterior direction and consequently the two or three (wide) denticles anterior of 
1333 the cusp are often conspicuously asymmetrical, the posterior edge of the free tip being much 
1334 shorter than the anterior one. Moreover, Goudemand et al. (2012) showed the basal margin of 
1335 the P1 element is not necessarily straight, but, contrary to the original diagnosis by Zhao et al. 
1336 (2007a), may vary from substraight to slightly upturned posteriorly and, thus, cannot be used 
1337 as a diagnostic feature.
1338 Apart from Nv. pingdingshanensis, other conodont species can assist with placement of 
1339 the SSB. For example, the early Spathian Icriospathodus crassatus, which appears ~2 m above 
1340 Nv. pingdingshanensis at Chaohu (Zhao et al., 2007a; Liang et al., 2011), has been used as a 
1341 marker for the SSB at Guandao (Wang et al., 2005) and in the western United States (Orchard 
1342 and Tozer, 1997). Ic. collinsoni can also be another potentially useful indicator of an early 
1343 Spathian age―it is found slightly above Ic.? crassatus at Guandao (Wang et al., 2005), within 
1344 the Columbites beds in the western USA (Orchard and Tozer, 1997), and within the Tirolites 
1345 sp. nov. beds in the An Chau Basin (Komatsu et al., 2016).
1346
1347 5.3. Constraints from carbon-isotope chemostratigraphy
1348
1349 When fossils are absent, carbonate carbon isotope records can be useful tools in global 
1350 stratigraphic correlation because of the long residence time of dissolved inorganic carbon (DIC) 
1351 in seawater. The Smithian-Spathian transition is characterized by a large positive shift in δ13C 
1352 (from the N3 minimum to the P3 maximum) that is globally correlatable and, hence, potentially 
1353 useful as a proxy for the SSB. Payne et al. (2004) first reported from South China a positive 
1354 excursion of δ13Ccarb across the SSB, from N3 in the upper Novispathodus waageni Zone to P3 
1355 in the lower Nv. crassatus Zone. Later, positive excursions of δ13Ccarb or δ13Corg were reported 
1356 from SSB sections globally (see Section 4), including a number of biostratigraphically well-
1357 studied sections in the eastern Tethyan region (e.g., Galfeti et al., 2007b; Tong et al., 2007; 
1358 Chen-YL et al., 2013; Zhang et al., 2015; Komatsu et al., 2016).
1359 Most SSB sections exhibit a rapid shift from N3 to P3 (i.e., Interval II; see Figs. 7, 11-13). 
1360 The early part of this shift occurred slowly in some sections (e.g., δ13C Pattern 1), and it is 
1361 unclear whether the point of onset is perfectly correlative at a global scale. For example, in 
1362 sections on the North Indian Margin with well-constrained ammonoid zonations (Fig. 12), the 
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1363 onset may be located in the middle Smithian. However, the bulk of the positive shift occurred 
1364 rapidly, so both the midpoint of the shift (‘mdpt(N3-P3)’) and its termination (P3) in the early 
1365 Spathian are likely to represent nearly synchronous datums globally. This is rather true even 
1366 though the amplitude of the δ13C shift (in per mille units) within Interval II varies among 
1367 different sections―variable amplitudes are merely the expression of local effects 
1368 superimposed on the global N3-to-P3 carbon isotope excursion. Below, we evaluate the 
1369 positions of N3, mdpt(N3-P3), and P3 relative to biostratigraphic constraints on placement of 
1370 the SSB in order to assess the robustness of mdpt(N3-P3) as a potential proxy for the SSB 
1371 (Figs. 7, 11-12) in the case of absence of biostratigraphic data.
1372 Based on global ammonoid biostratigraphic constraints, N3 is generally located in the 
1373 middle Smithian. Specifically, N3 in δ13C Pattern 1 is biostratigraphically well-constrained in 
1374 the Salt Range and Surghar Ranges (within the Pseudoceltites multiplicatus beds; Hermann et 
1375 al., 2012) and at Losar (between the Nyalamites angustecostatus beds and Truempyceras 
1376 compressum beds; Galfetti et al., 2007c), and thus indicative of middle Smithian age (Fig. 12). 
1377 Besides, the location of N3 within the upper part of the Owenites koeneni beds at Jinya (δ13C 
1378 Pattern 2; Galfetti et al., 2007c) and Mineral Mountains (δ13C Pattern 4; Thomazo et al., 2016) 
1379 also yields similar age constraints (Figs. 7 and 11). Sections showing δ13C Pattern 3 are all 
1380 located in the western Tethys, where biostratigraphic resolution is generally poorer (Figs. 12 
1381 and 13B) and the position of N3 thus less well-constrained. Conodonts provide limited 
1382 constraints on the timing of N3, which is roughly in the middle to upper part of the Nv. waageni 
1383 Zone, the upper part of the Ns. discreta Zone, or the uppermost part of the Pachycladina 
1384 obliqua Zone (Figs. 11-12).
1385 The documented biostratigraphic constraints for P3 are often not as good as for N3, but 
1386 an early Spathian age is inferred. Ammonoid biostratigraphy constrains P3 to above the 
1387 uppermost AW and GXP Smithian assemblages (e.g., at Smith Creek, Grasby et al., 2013; 
1388 Dicksonfjellet, Galfetti et al., 2007a; Mineral Mountains, Thomazo et al., 2016; Salt Range and 
1389 Surghar Range, Hermann et al., 2012; and Tulong, Schneebeli-Hermann et al., 2012), and to 
1390 just below or at the base of the lowermost Spathian Tirolites beds (e.g., Jinya, Galfetti et al., 
1391 2007c and Chaohu, Tong et al., 2004; Hot Springs, Caravaca et al., 2017). It should be noted 
1392 that placement of P3 within the uppermost Smithian “Xenoceltites variocostatus” beds in the 
1393 An Chau Basin is inconsistent with its placement in other localities globally (Komatsu et al., 
1394 2016; see Section 3.8.1 and 5.1). In the eastern Tethys, conodont biostratigraphy constrains the 
1395 position of P3 to be above the first occurrences of Nv. pingdingshanensis (at Chaohu, Zhao et 
1396 al., 2007a), Ns. crassatus (at Guandao, Lehrmann et al., 2015), and Ic. collinsoni (at Jiarong, 
1397 Chen-YL et al., 2015), consistent with an early Spathian age.
1398 In the eastern Tethys, evaluation of mdpt(N3-P3) as a potential proxy for the SSB is 
1399 facilitated by the highly detailed ammonoid or/and conodont zonation schemes available for 
1400 many sections (Fig. 11). In the majority of sections (6 of 8), mdpt(N3-P3) coincides rather well 
1401 with the SSB within existing biostratigraphic constraints. Specifically, mdpt(N3-P3) is located 
1402 at the first occurrences of the Nv. pingdingshanensis or Nv. crassatus, for example, at Chaohu, 
1403 Guandao, Jiarong and Zuodeng sections. At Mingtang and Shitouzhai, conodont zonations for 
1404 the lowermost Spathian are lacking, but the SSB was initially constrained as being close to 
1405 mdpt(N3-P3) through carbon isotope correlations in South China. At Jinya, the SSB was placed 
1406 immediately below the Tirolitid n. gen. A. beds, ~2-3 m above the last occurrences of 
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1407 Anasibirites and Xenoceltites specimens in the underlying beds. A placement of the SSB based 
1408 on mdpt(N3-P3) corresponds well to ammonoid biostratigraphic constraints at Jinya and would 
1409 fall into the stratigraphic interval in between the Anasibirites beds and the Tirolitid n. gen. A. 
1410 In the An Chau Basin, the SSB was constrained to between the Xenoceltites and Tirolites beds, 
1411 but the lower constraint is biostratigraphically questionable as discussed above (see Sections 
1412 3.8.1 and 5.1). 
1413 In the southern Tethyan region, the Smithian and the SSB is better constrained 
1414 biostratigraphically, e.g., at Salt and Sughar Ranges (Hermann et al, 2012), Losar (Galfetti et 
1415 al., 2007c) and Tulong (Brühwiler et al., 2009), than western Tethyan region which is mainly 
1416 based on carbon isotope correlations (Fig. 12), e.g., L’Uomo (Horacek et al., 2007a), 
1417 Lungenfrischgraben and Trudener Bach (Horacek et al., 2010), Zal, Amol and Abadeh 
1418 (Horacek et al., 2007b), and Musandam (Clarkson et al., 2013). In the Salt and Sughar Ranges, 
1419 Tulong, and Losar, the SSB is close to P3 and above the mdpt(N3-P3). At Amol and Abadeh, 
1420 the SSB was placed close to P3; at L’Uomo, Zal and Musandam, the SSB was placed below 
1421 the mdpt(N3-P3) (Fig. 12). The SSB was not defined in the Lungenfrischgraben and Trudener 
1422 Bach sections (Horacek et al., 2010). Thus, in these areas, small regional inconsistencies in 
1423 placement of the SSB compare to the mdpt(N3-P3) can be noticed and highlight the influences 
1424 of local conditions on the observed signal. However, mdpt(N3-P3) is most of time located not 
1425 far from the SSB defined by biostratigraphic markers.
1426 In the Boreal and eastern and central Panthalassic regions, ammonoid biostratigraphic data 
1427 for the SSB interval are variable in terms of temporal resolution and quantity among basins 
1428 (Fig. 7). For example, ammonoid biozonation of the late Smithian and early Spathian is 
1429 available in Spitsbergen (Weitschat and Dagys, 1989), whereas only late Smithian ammonoid 
1430 beds are known so far from the Canadian Arctic (Tozer, 1967). Thus, adequate biostratigraphic 
1431 data allowing for constraining the SSB placement are available only in a few sections, leading 
1432 to variable uncertainties in placements of the SSB when compared to mdpt(N3-P3) or P3. In 
1433 these regions, carbon-isotope correlations were used in some sections for placement of the SSB, 
1434 but the δ13C datum chosen was not consistent among different studies. For example, Grasby et 
1435 al. (2013) placed the SSB at P3 in Smith Creek, Grasby et al. (2016) placed it at N3 in 
1436 Festningen, Galfetti et al. (2007a) placed it near mdpt(N3-P3) in Dicksonfjellet (just above late 
1437 Smithian Anawasatchites tardus beds), and Wignall et al. (2016) placed it between N3 and 
1438 mdpt(N3-P3) in Vindodden. In the Mineral Mountains Thomazo et al. (2016) placed it near 
1439 what it is mdpt(N3-P3), this one being located at the top of the late Smithian GXP assemblage. 
1440 Sakuma et al. (2012) placed the SSB between mdpt(N3-P3) and P3 in Inuyama (Fig. 7).
1441 To sum up, there is a rather good correspondence of mdpt(N3-P3) to known 
1442 biostratigraphic constraints on the SSB although some regional to local influences can 
1443 modulate this inference. An approximate placement of the SSB based at least partly on carbon 
1444 isotope chemostratigraphy thus can help to systematize SSB placement and avoid too important 
1445 miscorrelations related to inadequate biostratigraphic records (e.g., Figs. 7 and 12). 
1446 Stratigraphic boundaries  are not customarily based on chemostratigraphic records, but, based 
1447 on present-day data, the use of mdpt(N3-P3) can be an auxiliary criterion to locate the SSB.
1448 Obviously, the use of δ13C records for correlation or auxiliary definition of the SSB should 
1449 be preceded by an evaluation of stratigraphic hiatuses and facies changes in the sections under 
1450 investigation. The δ13C records of most SSB sections in South China are considered to be 
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1451 stratigraphically continuous, including Chaohu (Tong et al., 2007), Jiarong (Chen-YL et al., 
1452 2015), and Shitouzhai (Zhang et al., 2015). In contrast, stratigraphic incompleteness is 
1453 indicated by the δ13C records of the SSB sections at for instance Zal, Abadeh, and Amol in 
1454 Iran, where abrupt δ13C shifts are associated with faults or regressive systems tracts (Horacek 
1455 et al., 2007b) and at Kamura, Japan, which is characterized by a major biostratigraphically 
1456 defined gap in the Spathian (Zhang et al., 2017). Moreover, the stratigraphic completeness of 
1457 the Smith Creek section through the SSB transition interval is uncertain owing to a large (to ~4 
1458 ‰), abrupt positive shift in δ13Ccarb and a concurrent facies change from siliciclastic to 
1459 carbonate sediments (Grasby et al., 2013). So far, no obvious stratigraphic hiatus was reported 
1460 at the SSB transition in the western Tethys or localities in the Boreal and eastern Panthalassic 
1461 realms, but it remains a possibility in a context of global regression.
1462
1463 5.4. Placement of the Smithian/Spathian boundary in earlier studies
1464
1465 To date, biostratigraphic studies of the SSB are especially well documented in the eastern 
1466 (e.g., South China) and southern (e.g., Salt Range) Tethys. These provide a first basis for 
1467 investigation of the relationships between ammonoid zonations, conodont zonations, and 
1468 carbon isotope excursions through the SSB transition. Such relationships could also be used in 
1469 boundary definitions especially in localities where biostratigraphic data are lacking.
1470 Despite these existing high-resolution biostratigraphic studies, placement of the SSB is 
1471 still inconsistent in some sections within these areas. For example, in the An Chau Basin, 
1472 Komatsu et al. (2016) placed the SSB at the base of the Tirolites cf. cassianus beds (see 
1473 discussion of biostratigraphic data in Section 3.8.1), which are stratigraphically above the P3 
1474 carbon-isotope maximum. This placement is inconsistent with other sections worldwide, in 
1475 which the SSB lies close to the mdpt(N3-P3) or below P3 (Fig. 11). The underlying problem 
1476 here appears to have been the potentially doubtful attribution by Komatsu et al. (2016) of some 
1477 poorly preserved ammonoid specimens to Xenoceltites variocostatus, which is usually 
1478 considered as a marker for the late Smithian (see Section 3.8.1). Thus, more work is needed at 
1479 this section to confirm the placement of the SSB, which probably is actually located between 
1480 mdpt(N3-P3) and P3. 
1481 In the western Tethys, limited biostratigraphic data resulted in the SSB being identified 
1482 mainly on the basis of carbon-isotope correlations, but (as noted in Section 5.3) there has been 
1483 no consistent placement of the SSB within the δ13C chemostratigraphic framework of the Early 
1484 Triassic (Fig. 12), creating the potential for global miscorrelations and misinterpretations of 
1485 paleoceanographic signals. In the southern Tethys, the SSB was placed close to P3 at Salt and 
1486 Surghar Ranges (Hermann et al., 2012), and Tulong (Brühwiler et al., 2009) and mdpt(N3-P3) 
1487 falls in characteristic late Smithian ammonoid assemblages (Fig. 12). Compared to mdpt(N3-
1488 P3), this SSB placement is thus slightly higher stratigraphically than that favored for the eastern 
1489 Tethys, but well highlight the differential local environmental and/or diagenetic conditions 
1490 influencing the δ13C signal.
1491 The biostratigraphy of the SSB transition in the Boreal realm is more poorly constrained 
1492 owing to e.g., scarce fossil occurrences. Thus, carbon isotope excursions can be used to 
1493 constrain the location of the SSB. We suggest placement of the SSB at mdpt(N3-P3), which is 
1494 at or just above the top of the Anawasatchites tardus beds (or GXP assemblage if found) and 
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1495 just below P3. In the Mineral Mountains, western USA, the SSB was placed at the top of the 
1496 Xenoceltitidae ‘gen. indet.’ A. beds and fits rather well with the mdpt(N3-P3).
1497
1498 5.5. Relationship to the Smithian Thermal Maximum
1499
1500 The lack of a formal definition for the SSB has resulted in inconsistent placements of the 
1501 SSB in different published studies, with differences sometimes as large as one or two full 
1502 ammonoid zones. This is particularly problematic for studies attempting to evaluate 
1503 environmental or oceanographic changes accompanying the Smithian-Spathian transition, 
1504 because incorrect placement of the SSB can result in incorrect conclusions concerning the 
1505 timing and causes of such changes.
1506 These problems are illustrated by the Sun et al. (2012) study, which proposed an Early 
1507 Triassic tropical sea surface temperature (SST) profile based on conodont oxygen-isotope data 
1508 measured in multiple sections (Jiarong, Jinya, Guandao, Zuodeng, and Bianyang) in the 
1509 Nanpanjiang Basin of southwestern China. This study inferred a thermal maximum extending 
1510 from the late Smithian to the earliest Spathian (i.e., spanning the SSB), followed by a cooling 
1511 event later in the early Spathian (Fig. 16A). They concluded that the late Smithian extinction 
1512 and associated oceanographic changes were the result of hyperthermy, although this conclusion 
1513 is likely erroneous (Goudemand et al., 2013, 2018). A fundamental problem in the Sun et al. 
1514 (2012) study is that the SSB, which was putatively based on the first occurrence of Nv. 
1515 pingdingshanensis, is positioned close to the N3 carbon-isotope minimum. For example, at 
1516 Jiarong, Sun et al. (2012) placed the SSB close to N3, corresponding to a δ13Ccarb value of < 1 
1517 ‰, which is lower than the ~0 ‰ for the SSB reported by Chen-YL et al. (2013). Furthermore, 
1518 the placement of the SSB based on the FAD of Nv. pingdingshanensis in Sun et al. (2012) is 
1519 stratigraphically lower than that of Chen-YL et al. (2013) based on the same criterion, and also 
1520 lower than that of Chen-YL et al. (2015) (see Section 3.7). At Zuodeng, Sun et al. (2012) placed 
1521 the SSB at a δ13Ccarb value of ~0 ‰, which is lower than the +2 ‰ for the SSB reported by 
1522 Tong et al. (2007). The same inconsistency also occurs at Jinya, where δ13Ccarb at the SSB is ~ 
1523 2 ‰ in Sun et al. (2012) but ~+2 ‰ in Galfetti et al. (2007c). Thus, systematic misplacement 
1524 of the SSB (e.g., based on the first occurrence of Nv. pingdingshanensis) in multiple sections 
1525 is one of the underlying causes of the erroneous conclusion concerning the timing of the 
1526 Smithian Thermal Maximum in Sun et al. (2012).
1527 Inconsistent placement of the SSB has thus resulted in different interpretations of 
1528 Smithian-Spathian transition events (see Sun et al., 2012, 2013; Romano et al., 2013; 
1529 Goudemand et al., 2013, 2018). Goudemand et al. (2013) recompiled a subset of δ13C and 
1530 δ18Oconodont data, originally from Sun et al. (2012), based on ammonoid biostratigraphic control 
1531 (Fig. 16B) constraining the SSB to between the Anasibirites and Tirolitid beds, corresponding 
1532 to the Nv. pingdingshanensis Zone (i.e., between the first occurrences of Nv. pingdingshanensis 
1533 and Ic. collinsoni). Goudemand (2014b) updated the calibration between δ13C and δ18Oconodont 
1534 based on conodont zonations and absolute ages, and his placement of the SSB is close to the 
1535 mdpt(N3-P3), below P3 (Fig. 13; see also Goudemand et al., 2018). Based on his work and the 
1536 stratigraphic framework of the present study, the Smithian Thermal Maximum (herein named) 
1537 peaked in the middle Smithian, around the N3 carbon-isotope minimum, rather than close to 
1538 the SSB as shown in Sun et al. (2012) (see discussion in Goudemand et al. 2013, 2018 and 
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1539 Goudemand, 2014b). The SSB transition proper was characterized by a cooling trend rather 
1540 than by hyperwarming (Fig. 16).
1541 Regardless of which fossil group is used in definition of the SSB, the N3-to-P3 positive 
1542 δ13C excursion is a good proxy for placement of the SSB. Therefore, δ13C chemostratigraphy 
1543 can play an important role in the formal definition of the SSB. Re-evaluation of the timing of 
1544 onset of the Smithian Thermal Maximum will help our understanding of the environmental and 
1545 biotic changes across the SSB and more broadly during the Early Triassic recovery.
1546
1547 6. Conclusions
1548
1549 This contribution reviewed the history and present status of global ammonoid and 
1550 conodont biostratigraphic research on the Smithian and Spathian substages, coeval 
1551 chemostratigraphic records of δ13C, Δδ13CDIC, δ34SCAS and 87Sr/86Sr, and their relationships to 
1552 climate change during the Smithian-Spathian transition.
1553 The Smithian/Spathian boundary (SSB) potentially can be defined on the basis of 
1554 ammonoid or conodont data. Ammonoid faunas show a pronounced transition from late 
1555 Smithian forms belonging to e.g., the genera Wasatchites, Anasibirites, Glyptophiceras and 
1556 Xenoceltites to early Spathian forms belonging to e.g., Bajarunia, Tirolites and Columbites. 
1557 The future definition of the SSB should be fuided by existing ammonoid-based biostratigraphic 
1558 constraints. Specifically, it should fall between strata containing late Smithian forms belonging 
1559 to the AW and GXP assemblages and strata containing early Spathian forms belonging to the 
1560 genera Bajarunia, Doricranites, and/or Tirolites. Conodont faunas change across this divide 
1561 from late Smithian forms such as Scythogondolella milleri, Borinella buurensis and Foliella 
1562 gardenae to early Spathian forms such as ‘Triassospathodus’ hungaricus, Neogondolella aff. 
1563 sweeti, Icriospathodus spp., and Novispathodus brevissimus. The first appearance of 
1564 Novispathodus pingdingshanensis, which has been proposed as a marker for the SSB, occurs 
1565 in several places with both ammonoids (Xenoceltites) and conodonts (Sc. milleri) regarded as 
1566 traditionally of late Smithian age. The ranges of these various taxa, as well as that of other 
1567 conodonts with potential for definition of the SSB, requires more work.
1568 Carbonate carbon-isotopes (δ13Ccarb) change rapidly through the Smithian-Spathian 
1569 transition interval, from the middle Smithian N3 minimum to the early Spathian P3 maximum, 
1570 providing potential isotopic markers that could be linked to a biostratigraphically defined SSB. 
1571 In particular, the isotopic midpoint of the N3-to-P3 shift (herein termed ‘mdpt(N3-P3)’) is 
1572 generally close to the level of the SSB based on biostratigraphic constraints and may serve as 
1573 an auxiliary definition of the boundary. A test of the utility of the mdpt(N3-P3) marker as a 
1574 proxy for the SSB based on biostratigraphically well-studied SSB sections shows that 
1575 mdpt(N3-P3) is generally within 2 m of the accepted position of the SSB, especially for 
1576 sections in the Tethys region. It should be noted that the actual δ13C value of mdpt(N3-P3) is 
1577 site-specific, depending on water-depth and other local environmental factors. 
1578 Stratigraphic relationships among ammonoids, conodonts, and carbon isotope excursions 
1579 show that the Smithian Thermal Maximum (herein named) was approximately synchronous 
1580 with the N3 carbon-isotope minimum and, thus, of middle Smithian age. The 
1581 Smithian/Spathian boundary proper coincided with a pronounced relative cooling event.
1582
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Figures and captions
 
  

Fig. 1. Simplified carbonate carbon isotopic, climatic (sea-surface temperature) and 
biotic (floras, conodont and ammonoid) changes during the Smithian and Spathian 
substages of the Early Triassic. Carbon isotope data are from Payne et al. (2004) and 
Chen and Benton (2012), with numbering of negative and positive excursions (N1-
N4, P1-P4) per Song et al. (2013). The Smithian and Spathian are subdivided into 
early, middle, and late intervals based on global ammonoid biostratigraphic studies 
summarized in Jenks et al. (2015). Sea-surface temperature modified after Sun et al. 
(2012) and Romano et al. (2013). Simplified terrestrial vegetation based on floral data 
from Hochuli et al. (2016). Conodont and ammonoid diversity profiles from Stanley 
(2009), which were drawn from global conodont records (Orchard, 2007) and regional 
(Canadian) ammonoid records (Tozer, 1981a, b, 1994). Conodont size data from 
Chen-YL et al. (2013), based on Neospathodus, Triassospathodus and Novispathodus 
taxa in South China (see also Leu et al., 2018). Ammonoid latitudinal gradients from 
Brayard et al. (2006). The geological time scale (note: non-linear ordinal axis) was 
simplified and adapted from Burgess et al. (2014) and Shen et al. (2015). SSB = 
Smithian/Spathian boundary.



Fig. 2. Stratigraphic ranges of main ammonoid families through the Smithian and 
early Spathian. Based on ammonoid studies from Brayard et al. (2007b, 2013), 
Shigeta and Zakharov (2009), Brühwiler et al. (2010c, 2011, 2012a, b), Guex et al. 
(2010), Smyshlyaeva and Zakharov (2012), Jenks et al. (2013, 2015), Zakharov and 
Abnavi (2013), Zakharov et al. (2013), Shigeta et al. (2014), Jattiot et al. (2016, 
2017), Shigeta and Kumagae (2016), Zakharov and Smyshlyaeva (2016), Shigeta and 
Nakajima (2017), Ware et al. (2017, 2019), and Jenks and Brayard (2018). Dien. = 
Dienerian, Ind. = Induan, ,SSB = Smithian/Spathian boundary.

Fig. 3. Stratigraphic ranges of conodont genera through the Smithian and Spathian. 
Data from Orchard (2007). Dien. = Dienerian, Ind. = Induan, An. = Anisian, SSB = 
Smithian/Spathian boundary. 



Fig. 4. Paleogeographic maps for key areas of Smithian-Spathian studies: (A) global, 
(B) Canadian Arctic, and (C) South China (see Bagherpour et al., 2017, for alternative 
facies distribution). Dotted line in B shows the margin of the Sverdrup Basin (Tozer, 
1994). Map sources: base map of A is copyright Ron Blakey, Deep Time Maps; B is 
from Orchard (2008), and C is from Song et al. (2013).

 



 

Fig. 5. Simplified correlation of some regional ammonoid-conodont zonation schemes for the Smithian-Spathian substages. Blue and orange bars 
at tops of columns represent ammonoid and conodont zonations, respectively. Note that ammonoid biozones are usually based on faunal 
assemblages that are not temporally continuous (see Jenks et al., 2015, for a detailed review), whereas conodont biozones are usually based on 
first occurrences of key conodont taxa and, thus, generally shown as temporally continuous. The two zonations may therefore not exactly 



correlate. Correlations between ammonoid and conodont zonations are based on original published sources and are thus approximate and subject 
to further refinement (see text for details). Abbreviations (ammonoids): b. = beds; C. = Clypeoceras; E. = Euflemingites; F. = Flemingites; I. = 
Inyoites; Kash. = Kashmirites; M. = Meekoceras; Preflo = Preflorianites; R. = Radioceras; S. = Shamaraites; Ver. = Vercherites. X. = 
Xenodiscoides. Abbreviations (conodonts): Ng. = Neogondolella; Sc. = Scythogondolella; Ns. = Neospathodus; Nv. = Novispathodus; Tr. = 
Triassospathodus; Ic. = Icriospathodus; Ch. = Chiosella.



 
Fig. 6. Distributions of ammonoids and conodonts in some representative SSB 
sections. Data sources: Smith Creek and Spath Creek from Orchard (2008); 
Deltadalen from Mørk et al (1999); Cowboy Pass from Guex et al. (2010); Confusion 
Range from Brayard et al. (2013); Nammal Gorge from Brühwiler et al. (2010, 2011, 
2012a); Mud from Brühwiler et al. (2012); and Jinya/Waili from Galfetti et al. 
(2007b). Abbreviations: S. = Stage, F. = Formation, M. = Member, H. = Height. BB = 
Bivalve Beds, NI = Niveaux Intermédiaires, A = Anasibirites sp., Ab = Arctoceras 
blomstrandi, Ak = Anasibirites kingianus, Am = Anasibirites multiformis, An = 
Arctoprionites nodosus, At = Anawasatchites tardus, Bc = Brayardites compressus, 
Be. = Bajarunia ex gr. euomphala, Ci = Clypites sp. indet, Cs = Clypeoceras 
superbum, Ec = Euflemingites cirratus, Er = Euflemingites romunderi, Es = 
Escarguelites spitiensis, Fr = Flemingites rursiradiatus, Gs = Glyptophiceras 
sinuatum, H = Hellenites, HZ = Haugi Zone, Ib = Inyoites beaverensis sp. nov., K = 
Keyserlingites sp., Kc = Kashmirites confusionensis, Ks = Keyserlingites subrobustus, 
Na = Nyalamites angustecostatus, Np = Nammalites pilatoides, Ok = Owenites 
carpenteri, Ok = Owenites koeneni, P = Procolumbites, Pm = Pseudoceltites 
multiplicatus, Po = Popovites occidentalis, Pt = Preflorianites toulai, Sp = 
Subvishnuites posterus, Ss = Svalbardiceras spitzbergense, Ta = Tirolitid n. gen. A., 
Tc = Truempyceras compressum, T/C = Tirolites/Columbites, Wd = Wasatchites 
distractus, Xc = Xenoceltites cordilleranus, Xs = Xenoceltites subevolutus, Ps = 
Pseudosageceras sp.

  



 

Fig. 7. Detailed correlations of Smithian-Spathian sections in the Boreal and eastern 
and central Panthalassic regions based on a combination of ammonoid and conodont 
biostratigraphy and C-isotope chemostratigraphy. Data sources: Smith Creek from 
Tozer (1967) and Grasby et al. (2013), Dicksonfjellet from Weitschat and Dagys 
(1989) and Galfetti et al. (2007a), Festningen from Grasby et al. (2016), Vindodden 
from Wignall et al. (2016), Mineral Mountains from Thomazo et al. (2016), Kamura 
from Zhang et al. (2017), and Inuyama from Sakuma et al. (2012). The SSB 
placements shown here are those from the original publications. In this study, we have 
divided each δ13C profile into intervals I-IV (for visualization purposes, Interval II is 
colored pink and Interval III blue) bracketed by correlatable datums (shown as green, 
red, and black dashed lines). Another correlatable feature is ‘mdpt(N3-P3)’ (shown as 
orange dots), which represents the isotopic midpoint between the middle/late 
Smithian N3 minimum and the earliest Spathian P3 maximum, and which may serve 
as an auxiliary marker for the SSB. Abbreviations: Vu = Vercherites undulatus; I.b. = 
Inyoites beaverensis; O = Owenites; Ak = Anasibirites kingianus; Xe = Xenoceltitidae 
‘gen. indet.’ A.; Dien. = Dienerian, Ind. = Induan, An. = Anisian. See Figure 1 for 
time scale.



Fig. 8. Conodont, ammonoid and carbon isotopic stratigraphy at South Majiashan 
section in Chaohu area, eastern China. Data sources: carbon isotope from Tong et al. 
(2007); conodont ranges from Zhao et al. (2007a); ammonoid ranges from Guo (1982) 
and Tong et al. (2004). Abbreviations: Ng. = Neogondolella; Ns. = Neospathodus; 
Nv. = Novispathodus; Tr. = Triassospathodus.

Fig. 9. Conodont, ammonoid and carbon isotopic stratigraphy at North Pingdingshan 
section in Chaohu area, eastern China. Data sources: carbon isotope from Zuo et al. 
(2004); conodont and ammonoid ranges from Zhao et al. (2007a). See Figure 8 for 
legend and abbreviations.



Fig. 10. Conodont, ammonoid and carbon isotopic stratigraphy at West Pingdingshan 
section in Chaohu area, eastern China. Data sources: carbon isotope from Tong and 
Zhao (2011) (orange), Liang et al. (2011) (pink) and Zhao and Zheng (2014) (light 
blue) conodont ranges from Zhao et al. (2007a) (red circles) and Liang et al. (2011) 
(blue circles); ammonoid ranges from Zhao et al. (2007a). Placement of the SSB (i.e., 
first occurrence of Nv. pingdingshanensis) by Zhao et al. (2007a) is shown as a red 
line and the revised datum by Liang et al. (2011) as a blue line. Solid circles represent 
first occurrences of individual conodont species. See Figure 8 for legend and 
abbreviations.

  



 

Fig. 11. Detailed correlations of Smithian-Spathian sections in the eastern Tethys 
region based on a combination of ammonoid and conodont biostratigraphy and C-
isotope chemostratigraphy. Data sources: Chaohu from Zuo et al. (2003, 2004), Tong 
et al. (2004, 2007) and Zhao et al. (2007a); Guandao and Zuodeng from Wang et al. 
(2005), Tong et al. (2007), and Lehrmann et al. (2015); Mingtang from Liang et al. 
(2016); Jiarong from Chen-YL et al. (2013, 2015) (note: oblique lines represent 
uncertainty in SSB placement); Shitouzhai from Zhang et al. (2015); Jinya from 
Galfetti et al. (2007c); and An Chau Basin from Komatsu et al. (2016). Abbreviations: 
Dien. = Dienerian, Ind. = Induan, An. = Anisian, HZ = Haugi Zone, Hb = Hellenites 
beds, Pb = Procolumbites beds, T/Cb = Tirolites/Columbites beds, TAb = Tirolitid n. 
gen. A. beds, Okb = Owenites koeneni beds, Amb = Anasibirites multiformis beds, 
Frb = Flemingites rursiradiatus beds. See Figure 1 for timescale and Figure 7 for 
legend (including green and red arrows).



   

Fig. 12. Detailed correlations of Smithian-Spathian sections in the southern Tethys 
(North Indian Margin) and western Tethys regions based on a combination of 
ammonoid and conodont biostratigraphy and C-isotope chemostratigraphy. Data 
sources: Salt Range and Surghar Range from Hermann et al. (2012) (note: oblique 
lines represent uncertainty in SSB placement); Losar from Galfetti et al. (2007c); 
Tulong from Brühwiler et al. (2009, 2010) and Schneebeli-Hermann et al. (2012); L’ 
Uomo from Horacek et al. (2007a); Trudener Bach and Lungenfrischgraben from 
Horacek et al. (2010); Plavno from Aljinović et al. (2018); Zal, Amol, and Abadeh 
from Horacek et al. (2007b); Sal from Richoz (2006); Radio Tower from Clarkson et 
al. (2016); Taşkent from Lau et al. (2016); Musandam from Clarkson et al. (2013). 
Abbreviations (sub/stages): Dien. = Dienerian, Ind. = Induan, An. = Anisian; 
(ammonoids): Al. = Albanitid n. gen, Bc. = Brayardites compressus, Co. = 
Columbites, C.s. = Clypeoceras superbum, Es. = Escarguelites spitiensis, Euf = 
Euflemingites cirratus, F. = Flemingites, F.bh. = Flemingites bhargavai, Fe. = 
Fengshanites, Fl.n. = Flemingites nanus, Gly = Glyptophiceras sinatum, He. = 
Hellenites, Na. = Nyalamites angustecostatus, Nam = Nammalites pilatoides, No. = 
Nordophiceras, Np. = Nammalites pilatoides, Nya = Nyalamites angustecostatus, Pa. 
= Paragoceras, P.G. = Pseudodanubites-Gymnites, Pm. = Pseudoceltites 
multiplicatus, Prh = Prohungarites, Psc = Pseudoceltites multiplicatus, Tc. = 
Truempyceras compressum, Tr = Tirolites, Was = Wasatchites distractus, Wd. = 
Wasatchites distractus, Xed = Xenodiscoides perplicatus, X.G. = Xenoceltites-
Glyptophiceras. See Figure 1 for timescale and Figure 7 for legend (including green 
and red arrows).

 

  



Fig. 13. (A) Carbon-isotope Intervals I to IV of the Olenekian substage. δ13C data 
from Payne et al. (2004) and Chen and Benton (2012); N2-N3 and P2-P4 represent 
δ13C minima and maxima per Song et al. (2013); and mdpt(N3-P3) is the isotopic 
midpoint between N3 and P3. (B) δ13C variation patterns 1 to 4 within the early 
Smithian to early Spathian (Intervals I-II) based on 29 sections globally; asterisks (*) 
represent tentative assignments. The pink boxes highlight Interval II, which 
encompasses the SSB. The early/middle/late subdivisions of the Smithian and 
Spathian are based on ammonoid biostratigraphic studies as reviewed in Jenks et al. 
(2015). Representative ammonoid assemblages for Pattern 1 from Salt and Surghar 
ranges (Hermann et al., 2012) and Losar (Galfetti et al., 2007c), for Pattern 2 from 
Jinya (Galfetti et al., 2007c), and for Pattern 4 from Mineral Mountains (Thomazo et 
al., 2016). For abbreviations of ammonoid assemblages, see Figures 7, 11-12. See 
Figure 1 for other details.



Fig. 14. Some other geochemical records for the Smithian and Spathian: (A) Δδ13CDIC 
(from Song-HY et al., 2013), (B) δ34SCAS (from Song-HY et al., 2014), and (C) 
87Sr/86Sr (dashed red line = Sedlacek et al., 2014; solid blue line = Song-HJ et al., 
2015). Conodont zones are from Song-HY et al. (2013, 2014). Dien. = Dienerian, Ind. 
= Induan, An. = Anisian.



Fig. 15. Photographs of conodont Novispathodus pingdingshanensis. a = lateral view; 
b = upper view; c = lower view. 1) Holotype of Nv. pingdingshanensis (CUG03054) 
from West Pingdingshan, Chaohu area, eastern China (Zhao et al., 2007a); 2) Nv. ex. 
gr. pingdingshanensis (MPC25395) from the An Chau Basin, northeastern Vietnam 
(Komatsu et al., 2016); and 3-5) Nv. pingdingshanensis from Jiarong, Nanpanjiang 
Basin, southwestern China (Chen-YL et al., 2015).



Fig. 16. Comparison of SSB placement based on mdpt(N3-P3) (red solid line; this study) 
with earlier SSB placements (blue dash lines) of Sun et al. (2012; A) and Goudemand 
et al. (2013; B). The orange field represents the interval of the Smithian Thermal 
Maximum (STM). Note that our SSB placement corresponds to a cooling event, as now 
widely accepted (e.g., Goudemand, 2014b, 2018; Zhang-L et al., 2017; Zhang-F et al., 
2018; Stebbins et al., 2018a, b). Abbreviations: Nv. pingding. = Nv. pingdingshanensis; 
A3 = Kashmirites densistriatus; A4 = Flemingites rursiradiatus; A5 = Owenites 
koeneni; A6 = Anasibirites multiformis; A7 = Tirolitid n. gen. A; A8 = 
Tirolites/Columbites; A9 = Procolumbites; C9 = Neospathodus dieneri; C10 = 
Novispathodus waageni; C11 = Parachirognathus sp.; C12 = Nv. pingdingshanensis; 
C13 = Icriospathodus collinsoni; C14 = Triassospathodus homeri/Ns. symmetricus. See 
Figure 1 for other details.


