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The Smithian-Spathian boundary: A critical juncture in the Early Triassic recovery
of marine ecosystems

1. Introduction

The Smithian-Spathian boundary (SSB), i.e., the transition between the Smithian and
Spathian substages of the Olenekian Stage (late Early Triassic), represents a key interval
associated with some of the most profound climatic, oceanic, and biotic changes of the Early
Triassic. The SSB marked a shift away from the extreme fluctuating global environmental
conditions that followed the end-Permian crisis (i.e., during the Griesbachian-Smithian
substages) to potentially less severe conditions during the latter part of the Early Triassic (i.e.,
the Spathian substage). At the SSB, a major cooling event was accompanied by re-invigorated
global-ocean circulation and turnovers in a number of marine invertebrate clades. The present
thematic issue explores these developments in a series of 11 studies covering aspects of the
biostratigraphy, paleoecology, paleoceanography, and volcanic history of the late Early Triassic,
with special emphasis on the SSB.

2. Biostratigraphy and paleoecology of Smithian-Spathian transition

The Early Triassic comprises two official stages, the Induan and Olenekian, with the latter
divided into two substages, the Smithian and Spathian (Fig. 1). Although formal definition of the
Induan and Olenekian stages is underway (www.stratigraphy.org/index.php/ics-gssps), the
International Commission on Stratigraphy (ICS)’s Subcommission on Triassic Stratigraphy (STS)
has not yet begun to consider substage boundaries in detail. With regard to the SSB, this
situation is inconvenient as geochemical and paleobiological studies of this boundary have
advanced rapidly, showing major concomitant biotic and abiotic events, as reflected in the
contributions to the present thematic issue, accentuating the need for formal definition of the
boundary. Inconsistent placement of the SSB in different sections to date has led to conflicting
interpretations of Smithian-Spathian transition events (e.g., Sun et al., 2012, 2013; Goudemand
et al., 2013). Another pressing issue is refinement of Early Triassic geochronology. At present,
the durations of the Early Triassic substages remain contentious, with two competing and
largely irreconcilable age models in use: one based on zircon U-Pb dating that has assigned
durations of ~0.7 Myr to the Smithian and ~3.0 Myr to the Spathian (Ovtcharova et al., 2006;
Lehrmann et al., 2006; Galfetti et al., 2007; Mundil et al., 2010; Baresel et al., 2017), and one
based on cyclostratigraphic analysis of continental redbed successions in Germany and marine
successions in China that has assigned durations of ~1.7 Myr to the Smithian and ~1.4 Myr to
the Spathian (Szurlies, 2007; Li et al., 2016; Ogg et al., 2016). Resolution of these issues would
establish a more robust biostratigraphic-geochronologic framework for future studies of the late
Early Triassic.

In this volume, Zhang-L et al. (2019a) review the historical foundations of the Smithian
and Spathian substages, survey ammonoid and conodont biostratigraphic studies on a regional
basis, and evaluate chemostratigraphic (especially carbon isotope) records for the SSB, with the
overarching goal of laying the groundwork for a formal definition of the SSB in the future. This
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study shows that viable definitions must take into consideration key changes in ammonoid
faunas (e.g., from Wasatchites, Anasibirites, Glyptophiceras and Xenoceltites in the late
Smithian to Bajarunia, Tirolites and Columbites in the early Spathian) and conodont faunas (e.g.,
Scythogondolella milleri, Novispathodus waageni, and Borinella buurensis in the late Smithian
to ‘Triassospathodus’ hungaricus, Neogondolella aff. sweeti, and Icriospathodus spp. in the early
Spathian). It also reviews recent debate concerning suitability of the conodont Novispathodus
pingdingshanensis as a potential SSB marker and its possible diachronous first occurrence, as
well as the utility of the N3-to-P3 carbonate §3C shift (note: numbering system of Song et al.,
2013, 2014) to constrain the position of the SSB in sections without adequate biostratigraphic
control. Finally, this study evaluates inconsistencies in placement of the SSB in earlier studies,
which has led to some confusion about the basic nature of paleoclimatic and oceanographic
changes during the Smithian-Spathian transition. Specifically, it shows that Early Triassic
hyperwarming peaked around the middle/late Smithian boundary (i.e., Smithian Thermal
Maximum, or STM) and not at the SSB itself, as proposed in some earlier studies, and that the
SSB coincided with a major cooling episode.

Correlations of Early Triassic conodont assemblages can be difficult owing to a high
degree of endemism and some uncertainties in taxonomic determination (Krystyn et al., 2007;
Zhao et al., 2007, 2013; Chen et al., 2015, 2016; Guex et al., 2015; Henderson, 2018). In this
volume, Chen et al. (2019) use a combination of paleontological and geochemical methods to
establish a high-resolution biostratigraphy based on 7 conodont Unitary Association zones
(UAZs; Guex and Davaud, 1984) for the Smithian-Spathian boundary interval for two sections in
Oman. Earlier studies have defined conodont UAZs for the Permian-Triassic transition (Brosse et
al., 2016). In their study, Chen et al. (2019) extend UAZs into the mid-Spathian. In combination
with previously published data from both South-Central Europe and South China, they identify
the Smithian-Spathian boundary in the interval from UAZ4 to UAZS5, close to the last occurrence
of Nv. pingdingshanensis in Oman and South China, and within the range of P. inclinata, Ns.
planus, Pl. regularis, and PI. corniger in south-central Europe. The UAZ7 fauna displays a clear
diachronism, originating in South China and arriving progressively later in Oman and the
western Tethys. Thus, this study provides insights into the challenges of working with Early
Triassic conodont assemblages and the utility of UAZs in refining Early Triassic biostratigraphic
zonations and identifying faunal migration patterns.

Changes in faunal size are common during intervals of environmental disturbance.
Decreases in size are particularly reported, and this phenomenon has been designated the
“Lilliput Effect” (Urbanek et al., 1993). It has been documented among various marine
invertebrate clades in the aftermath of the severe mass extinctions at the Permian-Triassic
boundary (Twitchett, 2007; Song et al., 2011; Chen et al., 2013; Chu et al., 2015) and the
Cretaceous-Paleogene boundary (Keller and Abramovich, 2009; Tantawy et al., 2009), although
the reality of the Lilliput Effect has engendered debate (Brayard et al., 2010, 2015; Fraiser et al.,
2011). In this volume, Leu et al. (2019) investigate changes in the size of P1 elements of
different conodont clades during the SSB transition. Assuming positive scaling between P1
elements and body size, they infer size decreases among segminate conodonts and concurrent
size increases among segminiplanate conodonts during the extreme conditions of the STM, thus
demonstrating that such responses to environmental perturbations can be clade-specific and
that a simple general relationship between temperature and size cannot be formulated.
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Segminiplanate conodonts exhibit an increase in size across the SSB, accompanying the sharp
cooling (Sun et al., 2012; Romano et al., 2013) ), but this increase continued during the general
amelioration of oceanic environmental conditions of the early Spathian (Zhang-L et al., 2015;
Song et al., 2019), indicating that temperature alone cannot explain size variations of this clade

3. Chemostratigraphy of Smithian-Spathian transition

The oceans of the Early Triassic experienced multiple major perturbations as shown by
proxy records for paleotemperatures (Sun et al., 2012; Romano et al., 2013), the carbon cycle
(e.g., Payne et al., 2004; Tong et al., 2007), water-column stratification (Song et al., 2013),
seawater pH (Hinojosa et al., 2012; Clarkson et al., 2015), redox conditions (Lau et al., 2016;
Elrick et al., 2017), and unusual carbonate precipitates (Baud et al., 2007; Tian et al., 2015). The
marine sulfur cycle was significantly perturbed during the Early Triassic as well, as reflected in
strongly fluctuating 83*S profiles in carbonate-associated sulfate (CAS) (e.g., Song et al., 2014).
Oceanic environmental perturbations during the Early Triassic generally, and at the SSB
specifically, are likely to have been a primary factor in wide biodiversity fluctuations among
ammonoids, conodonts, and other marine invertebrate clades (Brayard et al., 2006, 2009;
Orchard, 2007; Stanley, 2009; Wignall et al., 2016).

This volume contains several high-resolution case studies of §34Scas variation in SSB
sections representing different ocean basins. Stebbins et al. (2019a) examine §34Scas, 580cas,
and 834Spyrite Variation in the Jesmond section (Cache Creek Terrane, western Canada),
representing a carbonate atoll in the central Panthalassic Ocean, which comprised about 85% of
the Early Triassic global ocean. All profiles, which span the late Smithian to mid-Spathian, show
increases across the SSB, paralleling trends in 8'3Ccarb, that are interpreted to record a global
increase in microbial sulfate reduction (MSR) and pyrite burial. A decrease immediately
following the SSB indicates that these environmental changes reached maxima and began to
diminish or reverse in the early Spathian. Based on the “MSR-trend” method of Algeo et al.
(2015), differences between paired &34Scas and 634Spyr values (A3*Scas-pyr) yield estimates of SSB
seawater sulfate concentrations between 2.5 and 9.1 mM. These estimates are higher than
previous estimates for the PTB (<4 mM; Luo et al., 2010; Song et al., 2014), suggesting an
increase in seawater sulfate following a minimum around the Permian-Triassic boundary.

In a second study, Stebbins et al. (2019b) examine §34Scas, 6*¥0cas, and 83*Spyrite
variation in the Mud section (Spiti Valley, northern India), representing a mixed siliciclastic-
carbonate shelf on the southern margin of the Neotethys Ocean. This section, which spans the
mid-Griesbachian to mid-Spathian, exhibits secular excursions that are consistent in timing and
magnitude with those previously documented from South China (Song et al., 2014),
demonstrating that CAS is a robust recorder of a global seawater sulfate signal. Peak CAS and
pyrite 83*S values, representing maximum rates of MSR and pyrite burial, coincided with
intervals of relatively cooler sea-surface temperatures. The authors infer that episodes of
climatic cooling during the Early Triassic, especially at the SSB but also near the Griesbachian-
Dienerian and Dienerian-Smithian boundaries, led to steepened equator-to-pole temperature
gradients (Brayard et al., 2006), invigorating thermohaline overturning circulation (cf. Clarkson
et al., 2016; Huang et al., 2017), and enhancing upwelling of nutrients that stimulated marine
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productivity and increased organic carbon sinking fluxes. Enhanced productivity fueled oceanic
euxinia, primarily within thermoclinal oxygen-minimum zones (Algeo et al., 2011a; Winguth and
Winguth, 2012), leading to increased burial of 3*S-depleted pyrite and 3*S- and *¥0-enrichment
of the oceanic sulfate pool. This study also documents a slow increase in A3*Scas.pyr through the
Early Triassic due to a slow rise in seawater sulfate concentrations, confirming the inference of
Stebbins et al. (2019a).

Also in this volume, Thomazo et al. (2019) analyze multiple sulfur isotopes (325, 335, 34S,
and 3%S) of sedimentary pyrite and CAS from the Mineral Mountains section, Utah, a shallow
carbonate shelf on the eastern margin of the Early Triassic Panthalassic Ocean. This section,
spanning the Smithian to lower Spathian, exhibits strong &3*S,rite variation accompanied by
limited 63*Scas variation (+19.5 %o to +34.8 %o) and A33S,yrite values of —0.01 %o to +0.12 %o as
evidence of the operation of porewater synsedimentary microbial sulfate reduction in an open
(sulfate-unlimited) system before the late Smithian, evolving to a closed (sulfate-limited)
system at the SSB in response to local sedimentological controls (e.g., bioturbation intensity
and sedimentation rate), rather than as a consequence of development of widespread marine
anoxia in the Early Triassic global ocean.

The marine sulfur and carbon cycles were closely coupled during much of the Early
Triassic. Marine carbonate carbon isotope records exhibit large fluctuations (to 5-10 %),
especially during the Griesbachian to Smithian substages, followed by more muted changes
during the Spathian substage (e.g., Payne et al., 2004; Tong et al., 2007; Richoz et al., 2010).
Multiple scenarios have been proposed to account for these carbon cycle perturbations,
including volcanic emissions (Payne and Kump, 2007), soil organic matter inputs (Sephton et al.,
2005), marine productivity changes (Meyer et al., 2011), or combinations of these factors
(Algeo et al., 2011b). In this volume, Lyu et al. (2019) examine changes in marine carbonate
813C records at West Pingdingshan and Jiarong in South China during the S-S transition,
documenting shifts up to 5-10 %o in multiple widely separated sections. The large positive
3'3Ccarb shift at the SSB has been attributed to increased marine productivity as a result of
intensified upwelling (Song et al., 2014; Zhang-L et al., 2015). Increased upwelling is consistent
with invigorated oceanic circulation and weakened oceanic stratification, which is reflected in
reduced vertical §3Cpic gradients (Song et al., 2013) and increases in extended tricyclic
terpanes (ETR; Saito et al., 2013). These oceanic developments at the SSB may have been
triggered by cooling following the STM (Zhang-L et al., 2019).

In this volume, Song et al. (2019) investigate redox changes in a paleo-upwelling zone
on the paleo-western margin of the South China Craton during the SSB transition, based on
analysis of carbon-sulfur-iron (C-S-Fe) systematics in the South Majiashan section. This section
exhibits a transient anoxic event concurrently with rapid positive shifts in §*3Ccarb and 83*Scas
across the SSB, which is interpreted as a signature of enhanced marine productivity in response
to intensified upwelling. This scenario accords with inferences developed in all of the studies
cited above, in which the SSB transition marks an interval of rapid cooling and re-invigoration of
global-ocean overturning circulation and upwelling on continental margins. This cooling event
bookmarks the termination of the STM and initiates an extended interval of ameliorated
climatic and oceanic environmental conditions during the Spathian substage. The study of Song
et al. (2019) specifically links enhanced burial of organic carbon to the cooling trend that
developed around the SSB, and proposes that a positive feedback between cooling and
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enhanced oceanic circulation existed until all of the nutrients that had accumulated in the deep
ocean during its stagnant phase (i.e., Griesbachian-Smithian substages) had been flushed out.

4. Global events during the Smithian-Spathian transition

Until recently, analysis of redox conditions in paleomarine systems was based
exclusively on proxies that provided information about local conditions, requiring many such
studies to evaluate whole-ocean redox changes through time. The U-isotopic composition of
marine carbonates now permits rapid assessment of global-ocean redox changes through time,
as shown by numerous studies of the PTB (e.g., Brennecka et al., 2011a; Lau et al., 2016; Elrick
et al., 2017; Zhang-F et al., 2018a, 2018b) and other geologic intervals (e.g., Dahl et al., 2014;
White et al., 2018). Although some of the earlier PTB studies extended their analysis into or
through the Early Triassic, none covered the Smithian-Spathian transition at the high level of
stratigraphic resolution of Zhang-F et al. (2019) in this volume. In this study, carbonate U-
isotope profiles were generated for two sections, one representing an atoll in the central
Panthalassic Ocean (Jesmond) and the other a platform in the eastern Paleotethys Ocean
(Zuodeng), in order to constrain variations in oceanic anoxia and its links to biotic and climatic
changes during the Smithian-Spathian transition. These two sections yielded identical secular
patterns, demonstrating that they record a global signal, which is characterized by a minimum
in the late Smithian (—0.6 to —0.7 %e.) followed by a rapid positive shift across the SSB (to ~0 %)
and a shift back to more negative values (—0.4 to —0.6 %o) in the early to middle Spathian. Based
on mass balance modeling, these values correspond to changes in the global area of anoxic
seafloor from a peak of ~11 % in the late Smithian (i.e., coincident with the STM; Zhang-L et al.,
2019) to a minimum of ~2 % in the early Spathian (i.e., during the post-SSB cool interval).

During the STM, Early Triassic tropical sea-surface temperatures (SSTs) reached their
peak of ~40 °C, followed by a decline to somewhat lower temperatures (~32 °C) by the early
Spathian, as revealed by conodont 880 records (Fig. 1A) (Sun et al., 2012; Romano et al., 2013).
The SSB cooling event was accompanied by a steepening of the latitudinal temperature
gradient, as reflected in ammonoid faunal distributions (Brayard et al., 2006). In this volume,
Goudemand et al. (2019) examine temperature trends during the Smithian-Spathian transition
based on new conodont 8'80 data. They present a high-resolution record from the Salt Range
(Pakistan), documenting in greater detail the major cooling event that occurred during the SSB
transition. These results imply that climatic cooling was an important factor in the recovery of
marine biotas during the early Spathian (e.g., Brayard et al., 2006, 2009, 2017; Stanley, 2009;
Brosse et al., 2013).

The ultimate cause of global climatic cooling and attendant changes in oceanic
circulation during the SSB transition is uncertain. Links to Siberian Traps Large Igneous Province
(STLIP) activity have been speculated upon, but without much firm evidence to date.
Sedimentary mercury (Hg) enrichments have recently emerged as a proxy for volcanic inputs to
sedimentary successions, potentially providing information about the intensity, duration, and
episodicity of volcanic activity (Sanei et al., 2012; Font et al., 2016; Thibodeau et al., 2016). The
residence time of Hg in the atmosphere is sufficiently long to ensure that volcanic Hg is
distributed widely following major eruptive events but sufficiently short to ensure its rapid
removal to the sediment, resulting in discrete Hg-rich event horizons. In this volume, Shen et al.
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(2019) use Hg concentrations to examine the record of volcanism through the Early Triassic,
with a focus on the SSB, based on five sections from the Paleotethys, Neotethys, and
Panthalassic oceans. Their results show that volcanic activity was nearly continuous through the
first ~1.3 Myr of the Early Triassic at a global scale, probably related to emissions from the
STLIP, and that the level of volcanic activity plunged sharply at the SSB. This event may have
been a primary cause of climatic cooling at the SSB (Sun et al., 2012; Romano et al., 2013) as
well as of reduced continental weathering rates as revealed by stabilization of seawater
87Sr/86Sr values (Sedlacek et al., 2014). This study thus provides direct evidence of a close link
between volcanism and climatic-oceanic perturbations of the Early Triassic, and that the
amelioration of environmental conditions and accelerated recovery of marine ecosystems
during the Spathian were potentially tied to a decline in volcanic activity.

5. Concluding remarks

The present thematic issue contains 11 studies presenting a combination of new
research and reviews on aspects of the biostratigraphy, paleoecology, paleoceanography, and
volcanism during the transition between the Smithian and Spathian substages of the Early
Triassic. The SSB was a key interval associated with major climatic, oceanic and biotic changes
of the Early Triassic, coinciding with the first sustained amelioration of environmental
conditions and recovery of marine ecosystems following the end-Permian crisis. These studies
represent the current state of knowledge regarding the SSB event and lay the groundwork for
future studies on this topic.
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Figure caption

Fig. 1. Global paleogeography of Early Triassic (base map courtesy of Ron Blakey, Deep-Time
Maps). Study sections in present volume shown in yellow; note that the paleogeographic location
of Tulong is uncertain. Numbers of study sections/areas in both figures are keyed to papers in
this thematic issue: (1) Zhang et al., 2019a, 2019b; (2) Chen et al., 2019; (3) Leu et al., 2019; (4)
Stebbins et al., 2019a; (5) Stebbins et al., 2019b; (6) Thomazo et al., 2019; (7) Lyu et al., 2019; (8)
Song et al., 2019; (9) Zhang et al., 2019a, 2019b; (10) Goudemand et al., 2019; (11) Shen et al.,
2019. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 2. Simplified stratigraphy of Early Triassic (adapted from Algeo et al.,, 2013). Smithian-
Spathian substages of Early Triassic shown in blue; stratigraphic ranges of studies in this volume
shown by vertical bars at right, with numbers keyed as in the Fig. 1 caption. Abbreviations:
LPME=latest Permian mass extinction; PTB=Permian/Triassic boundary; I0B=Induan/Olenekian
boundary; SSB=Smithian/Spathian boundary; EMTB=Early/Middle Triassic boundary. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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