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ABSTRACT: An important aspect of cells is their shape flexibility that gives them motion but also a high adaptation versa-

tility to their environment. This shape versatility is mediated by different types of protein-membrane interaction among 

which electrostatic plays an important role. In the present work we examined the interaction between a small di-cationic 

peptide that possess self-assembly properties and lipid model membranes. The peptide, Lanreotide, spontaneously forms 

nanotubes in water that have a strictly uniform diameter. In the current work, we show that the interaction between the 

cationic peptide and negatively charged bilayers of lipids induces the formation of myelin sheath like structures that we 

called nanoscrolls. By deciphering the different steps of formation and the molecular structure of the self-assembly, we 

show how electrostatics modify the spontaneous peptide and lipid way of packing. 

INTRODUCTION 

Self-assembled architectures are omnipresent in nature. Membranes, microtubules and microfilaments, chromatin, 

etc. are all dynamic and functional architectures playing a crucial role in the compartmentation of cellular functions. 

These functional and versatile materials have been selected by evolution and the chemical and physicochemical 



 

 

2 

rules governing their formation are still to be understood in detail. This is of great importance not only in biology 

but also for material science as the understanding of the strategies selected by nature could be used to build de novo 

materials with versatile properties.1–9 Furthermore, particular attention is devoted to protein assemblies since fibril-

lary architectures formed by misfolded proteins have been associated to diseases in particular neurodegenerative10 

but also systemic amyloidose.11  

In Alzheimer’s disease, the amyloid β peptide is cleaved from a native membrane protein and one of the important 

questions is “how the membrane proximity influences this peptide self-assembly process”.12 Another example is 

the α-synuclein that is found concentrated in abnormal deposition of cellular material, i.e. Lewy bodies in some 

cases of hereditary Parkinson’s disease.13 This protein that forms fibers is also known to interact with membranes 

and to play a role in the preservation of the pool of synaptic vesicles within the neuron.14 

On another hand, in material science, biological molecules and molecular self-assemblies are promising templates 

to organize well-defined inorganic nanostructures. For example, DNA-cationic membrane complexes, maintained 

by strong electrostatic interactions allowed the alignment of the CdS (002) polar planes parallel to the negatively 

charged sugar-phosphate DNA backbone, suggesting that molecular details of the DNA molecule have been repli-

cated onto the inorganic crystal structure.15,16 Hierarchical self-assembly of quantum dots has been realized by using 

a self-assembled three-dimensional crystal template of helical actin protein filaments and lipids bilayers.17 More 

recently, multilamellar nanocomposite membranes composed of phospholipid multilayers and silicon nanoparticles 

sandwiched between each adjacent lipid layers was fabricated. In these ordered composite material, the silicon 

nanoparticles achieved different photoluminescence properties compared to the nanoparticles in suspension.18 

Therefore, understanding the influence of membranes on protein self-assembly is important not only for biology 

and medicine but also for material science.  

In the present work, we studied the interaction between lanreotide and lipid membranes. Lanreotide, an oligo pep-

tide of eight amino acids, is a therapeutic analog of somatostatin hormone (Figure 1D). Lanreotide kept from the 

natural peptide hormone the self-assembly properties.19,20 However, if somatostatin forms reversible polydispersed 

amyloid structures, lanreotide forms very well defined nanotubes (Figure 1 A, B & C) with a strictly uniform di-

ameter that is essentially controlled by the close contacts between molecules within the crystalline wall of the 

nanotubes (Figure 1 D, E & F). This crystalline nanotube wall is formed by a bilayer of peptide. This bilayer 

presents two hydrophilic surfaces that protects the hydrophobic residues likes D-Nal and Tyr from water. This 
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unique capacity of lanreotide to form very well organized self-assembly, allowed very fundamental studies for 

which we deciphered not only the structure2,21,22 but also the mechanism of formation of the nanotubes23 and the 

role of the counterions in this mechanism.24,25 Lanreotide is therefore a very simple model for deciphering the 

molecular and physicochemical determinants driving the self-assembly processes.  

In this study, we ask the question “How do lipid membranes influence the self-assembly process of lanreotide?” 

Indeed, in a physiological context, self-assembly processes are influenced by many different environmental param-

eters and in particular by the presence of membranes. In some cases, the environment can drive the assembly to 

another pathway resulting in the stabilization of an architecture that is less stable than the one formed in the absence 

of these new parameters. In the present work, we studied the interaction between lanreotide and lipid membranes 

containing increasing proportions of negatively charged lipids. 

RESULTS AND DISCUSSION 

To determine the conditions of interaction between lanreotide and lipids, we performed ultrafiltration experiments 

with the idea that the large self-assemblies will remain in the retentate, while the non-assembled peptide will cross 

the filter. Thus after centrifugation quantification of the peptide in the filtrate by UV-Visible spectroscopy 

(εm
280nm=12000 cm-1M-1) will give access to the concentration of the non-assembled peptide in equilibrium with the 

assemblies.  

The capacity of such experiment to give access to the non-assembled peptide was tested on solutions of increasing 

lanreotide concentration. On Figure 2A, we show the results obtained after ultrafiltration on Amicon Ultra with a 

membrane in regenerated cellulose and a 50 KD cut off. Other ultrafiltration units were tested but showed strong 

peptide absorption (see Material and Methods for details and Supplementary Information, Figure SI-1).). The evo-

lution of the peptide concentration in the filtrate describes a curve showing two distinct domains (Figure 2 A, blue 

points): from 0 to 17 mM, the points describe a straight line with a slope of 0.98 followed at higher concentrations 

by a plateau. In the first part of the curve, the slope, close to one, indicates that i) that the absorption of the peptide 

onto the filter is negligible and ii) all the peptide is free and not assembled. The break between this straight line and 

the plateau determines a critical assembly concentration (CAC) of lanreotide of 17 mM. This concentration is in 

very good agreement with previous determination.21,23 
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Ultrafiltration of solutions that contain lanreotide together with unilamellar liposomes composed of neutral lipids 

shows an evolution of lanreotide concentration in the filtrate with the initial lanreotide concentration similar in 

shape to the one obtained for lanreotide alone (Figure 2 A, orange points). However, the initial straight line has a 

lower slope (0.69 compared to 0.98) and the break between the straight line and the plateau is also lower than for 

the peptide alone (12,6 mM compared to 16,6 mM). This means two things: i) at low concentrations part of the 

peptide partitions between water and lipid membrane and ii) the critical assembly concentration of lanreotide is 

lowered by this interaction. Electron micrographs of the ePC-Lanreotide retentate above this new critical assembly 

concentration show the coexistence of liposomes and lanreotide nanotubes (Supplementary Information Figure SI-

2) indicating that upon the “mixed critical assembly concentration”, lanreotide self-assembles into classical nano-

tubes. Therefore, the interaction between neutral lipids and lanreotide indicates that lanreotide can probably cross 

the lipid membrane by passive diffusion and that upon a critical concentration the peptide forms regular nanotubes. 

The same ultrafiltration experiments have been performed on samples containing lanreotide together with nega-

tively charged membranes (Figure 2, panels B & C). For these experiments, we plot the evolution of the concen-

tration of lanreotide determined in the filtrates after spinning versus the charge ratio Rq defined by the ratio between 

the positive charges of the peptide and the negative charges of the lipids:  

Rq=2*[Lanreotide]/[anionic lipids]        (1)  

Table 1: Saturation charge ratio “Rq
sat” for membranes composed of different lipid (ePC, ePA, DMPC and DMPA) 

and of different negatively charged lipid proportions 

[lip]tot mM DMPC % M/M DMPA % M/M ePC % M/M ePA % M/M Rq
 sat 

26 90 10 - - 1 

26 50 50 - - 0,8 

26 30 70 - - 0,9 

26 30 70 - - 0,9 

10 30 70 - - 1 

10 - - 90 10 1.4 

10 - - 30 70 1.1 

This representation allows the direct comparison of the experiments performed with different lipid composition and 

concentrations. Contrary to neutral lipid membranes, as soon as negatively charge lipids (ePA or DMPA) are added 
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to the membranes, the peptide interacts strongly with the lipids as no peptide is measured in the filtrates until a Rq 

of 1, i.e. the electro neutrality (Figure 2, B & C). Moreover, independently of the proportion of negatively charged 

lipids in the membrane (from 10 to 70% (M/M) or the nature of negatively charged lipids (ePA or DMPA), the Rq
sat 

for saturation is close to one (Table 1). A slight difference can be seen when ePA/ePC or DMPA/DMPC mixtures 

of lipids are used: the Rq
sat for natural lipids being slightly higher than for synthetic lipids (Table 1). Above this 

ratio, non-assembled lanreotide is detected  

Electron microscopy of DMPC/DMPA (30/70% M/M)-lanreotide mixture for Rq values of 0.5, 1 and 2 has been 

performed either after negative staining (Figure 3 A, B & C) or after freeze fracture (Figure 3 D & E). For negative 

staining, we had to dilute the samples to get observable grids. This dilution can break nanotubes of pure lanreotide 

as they are sensitive to concentration, but the mixed lanreotide/lipids architectures were not affected by dilution as 

no free peptide is in equilibrium. As soon as the peptide was added to a suspension of unilamellar liposomes, we 

detected the presence of different assemblies and the disappearance of liposomes. For Rq =0.5, liposomes, planar 

lamellae, curved lamellae and “myelin sheath type structures” that we called “nanoscrolls” coexist. For Rq =1, 

curved lamellae and a majority of nanoscrolls coexist and for Rq =2, only nanoscrolls are detected. The photos taken 

after freeze-fracture show the internal structure of these nanoscrolls that are formed by the winding of multilamellar 

structures (Figure 3 D). The density profiles determined using ImageJ, on different part of a multilamellar na-

noscroll (Figure 3, D lower panel) give an interlamellar distance of 60±10Å. The micrographs Figure 3E show the 

internal structure of different nanoscrolls that can be composed of the winding of 1, 2, 3 or 4 stacked lamellae. At 

the center of the nanoscrolls, the deep etching reveals a water column, the internal diameter of which is about 17nm 

±3 nm (average on 63 measurements) close to the internal diameter of pure peptide nanotubes (about 20 nm). The 

mean diameter of the nanoscrolls based on 225 measurements is centered at 118nm±26 nm. The formation of na-

noscrolls is independent of the chain lengths, of the chemical nature of the head group of the anionic lipids or of 

the presence of complex natural lipid mixtures cells plasmic membrane (Figure SI-3). The nanoscrolls can be fitted 

by an Archimedean spiral (Supplementary Information, Figure SI-4) confirming that the interdistance between la-

mellae is constant. 

These micrographs allow to draw intermediate steps of the nanoscrolls formation (Figure 4). When negatively 

charged unilamellar liposomes and lanreotide are mixed together, the liposomes disappear in favor of planar lamel-

lae that curve and form either diagonal nanoscrolls (upper schemes and micrographs) or on-sided nanoscrolls (lower 
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scheme and micrographs). The spontaneous curvature of the multi-lamellae suggests an asymmetric structure of 

the assembly. 

To solve the question of the molecular structure of these nanoscrolls, we performed both X-ray scattering experi-

ments and ATR-FTIR measurements (Figure 5).  

The Amide I ATR-FTIR spectrum of lanreotide gives access to the conformation of the peptide within the assem-

blies. A typical ATR-FTIR Amide I spectrum of nanotubes of lanreotide shows five components that were previ-

ously assigned in agreement with literature26,27 to turn secondary structure (1664cm-1) and to two different antipar-

allel β-sheet organizations (1620cm-1 and 1682cm-1 and 1640cm-1 and 1692 cm-1)21 (Figure 5A). These vibrations 

were shown to correspond to a β-hairpin peptide backbone conformation developing an inner- and an inter-antipar-

allel β-sheet network. The ATR-FTIR spectra of the DMPC/DMPA (30/70% M/M) unilamellar vesicles is shown 

on Figure 5C. The decomposition of the peak between 1700 and 1770 cm-1 gives two bands that correspond to H-

bounded ester (1725cm-1) and unbounded ester (1742 cm-1) of the glycerol backbone28 leading to a proportion of 

61% of unbounded ester and 39% of H-bounded ones. On this spectra we can also see a large band between 1600 

and 1700 cm-1. This remaining band probably comes from water as we could only remove it after drying the sample 

on the ATR crystal using nitrogen flux. This large band that always remains after bulk water subtraction could be 

due to either encapsulated water within the liposomes or water in strong interaction with lipids that should both 

have a slightly different spectrum than bulk water. Figure 5B represents the spectra recorded for a solution that 

contains DMPC/DMPA and Lanreotide for an Rq of 1. The decomposition of both Amide I and ester band shows 

exactly the same peak positions than for peptide and lipids separately. The amide I decomposition gives the same 

proportions of the different structural elements than for lanreotide nanotubes and indicates that in presence of neg-

atively charge membranes i) the peptide is self-assembled, ii) the peptide is in a β-hairpin peptide backbone con-

formation and iii) it develops an inner- and an inter-antiparallel β-sheet network very similar to the network present 

in the pure peptide nanotubes. Moreover, the ester band decomposition gives a proportion of unbounded and H-

bounded ester only slightly different than for pure vesicle suspension, i.e. 36% of H-Bounded ester instead of 39% 

for pure lipids indicating that the peptide barely disturbed the lipid’s glycerol backbone and thus did not penetrate 

deeply within the lipid lamellar phase. This conformational information indicate that the molecular packing of 

lanreotide within the nanoscrolls and within the walls of the nanotubes are very similar and that the peptide essen-

tially interacts with the surface of the lipid bilayer. 
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Figure 5 (D, E and F) presents the X-ray patterns of DMPC/DMPA-lanreotide mixtures with Rq of 0.5, 1, 1.6 and 

2. For reference, we also plot the patterns obtained for lipid unilamellar vesicles (Figure 5, lower black trace) and 

peptide nanotubes (Figure 5, upper black trace). In the small angle range (Figure 5D), the X-Ray patterns obtained 

for lipid-peptide evidence the absence of peptide nanotubes and of unilamellar vesicles. The intense peaks at about 

0.1 and 0.2 Å-1 indicate that the interaction between the di-cationic peptide and the anionic membranes induces a 

lamellar stacking with a typical interdistance of 66±1Å. This interdistance is in very good agreement with the 

interdistance determined from freeze fracture replica of multilamellar nanoscrolls (Figure 3). Interestingly, from Rq 

0.5 to 1.6, the interlamellar distance is independent of the concentration of peptide. Other peaks are also present on 

the traces and will be discussed and attributed later.  

In the intermediate q range (Figure 5 E), the series of peaks centered at 0.35Å-1 is typical of the β-sheet network of 

the lanreotide packed in the nanotubes. These patterns show that lanreotide, even at low concentration, well below 

its CAC, self-assembles as soon as it interacts with the negatively charge membranes.  

Finally in the wide angle region (Figure 5F), the peak detected on all the patterns reveals the organization of the 

lipid aliphatic chain. As a function of Rq increase, the wide angle peak i) decreases in intensity indicating that the 

interaction with increasing amount of peptide, the aliphatic chains have a tendency to melt and ii) changes in shape 

indicating that the aliphatic chains changes orientation within the bilayer. The analysis of the peak shape at Rq =1 

gives a maximum angle of 40° (supplementary information, Figure SI-5). 

For samples containing higher amounts of lanreotide (Rq >2) distinct macroscopic phases coexist that contain pref-

erentially either nanoscrolls or peptide nanotubes (Supplementary Information, Figure SI-6).  

The X-ray scattering patterns have been recorded as a function of temperature between 23.5°C and 55°C for differ-

ent Rq (0< Rq <3.6). In Figure 6 (A, B & C) we plot the evolution of the X-Ray pattern for DMPC/DMPA (30/70% 

M/M) and Rq =1.2 with temperature (from 23.5 to 55°C). Membranes formed by mixtures of DMPC and DMPA 

present gel to fluid transition that depends on the proportion of each lipids. For membrane composed of 

DMPC/DMPA (30/70% M/M), we detected the transition between gel and fluid phase between 40°C and 45°C in 

agreement with literature29. At small angles, (Figure 6A), the pattern of DMPC/DMPA/lanreotide (Rq =1.2) at 

23.5°C already evidences a coexistence of gel and fluid phases of lipids as seen by the higher angle shoulders of 

the two major Bragg peaks. With the temperature increase, the major Bragg peaks disappear in favor to a wider 
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angle Bragg peaks at the position of the previous shoulders. Together with the temperature induce disappearance 

of the wide angle peak at about 1.5Å-1 (Figure 6C) this evidence a gel-to-fluid lipid phase transition within the 

nanoscrolls. On figure 6 B, the X-Ray patterns show higher order Bragg peaks that shift with temperature but also 

some peaks that that remain unchanged with temperature: 0.35Å-1, 0.62 Å-1 0.89 Å-1 for the most visible. These 

peaks are related to the peptide packing within the nanoscrolls.  

On Figure 6 D (and supplementary information, Table SI-1) we depicted the different phases we observed on the 

X-Ray patterns: NSβ’ for nanoscrolls with lipids in gel phase (β’ indicates that the aliphatic chains are tilted), NSα 

for nanoscrolls with lipids in fluid phase and NT for nanotubes. The interaction of lanreotide with DMPC/DMPA 

membranes induces a drastic decrease of the phase transition temperature (of about 20°C) until the saturation of 

membranes by the peptide, i.e. for Rq about 1.  

Altogether, these results indicate that i) the peptide is self-assembled at the surface of lipid bilayers, ii) the peptide 

packing in this self-assembly is very similar to the peptide packing within the nanotube walls iii) this interaction 

decreases drastically the temperature of the gel to fluid phase transition of the lipids and iv) the mixed lipid-peptide 

lamellae spontaneously stack to form multilamellar and rolled up on themselves structures. 

The indexation of the X-Ray pattern of DMPC/DMPA-lanreotide (30/70%; [lip]=26mM and lanreotide Rq 1.2) at 

23.5°C and at 48.5°C was done by trial and error approach using an homemade program in order to find an unique 

set of unit cell parameters and an indexation for all the observed peaks. Lamellar peaks (00l) were first indexed. 

The 2D lattice (hk0) was then indexed with an unit cell close to the lanreotide nanotubes. Additional peaks require 

the formation of a 2x2 superlattice, doubling the in-plane parameters. The cell parameters were then optimized to 

reduce the mean squared error. As a result, the X-Ray patterns obtained at 23.5 and 48.5°C have been indexed in a 

3-D triclinic and a monoclinic unit cell respectively. The parameters of these two 3-D cells are reported on Table 2 

(the indexations of the patterns at 23.5°C and 48.5°C are detailed in Supplementary Information, Table SI-2). 

At 23.5°C, the “c” parameter (67.2 Å) corresponds well to the lamellae interdistance measured by electron micros-

copy (Figure 3, 60±10Å). This distance (67.2Å) corresponds to a stacking of a lipid bilayer and of a peptide bilayer 

The cell parameters “a” (46.7 Å) and “b” (40.2 Å) (Table 2) represent the unit cell for the peptide packing. The 

surface delimited by “a” and “b” (1820 Å2) is about 4.5 times higher than the 2-D unit cell of the peptide in the 
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nanotubes2 ( Figure 1 D, a=20.7Å and b=20.8Å, γ=119° and S=400Å2)2 indicating that instead of two molecules of 

peptide, 8 peptides can fit within the surface delimited by a and b parameters.  

Table 2: Unit cell parameters at 23.5°C and 48.5°C of DMPC/DMPA-Lanreotide Rq =1.2 

 

 
a (Å) b (Å) c (Å) α° β° γ° Vol (Å3) 

23,5°C 46.7 40.2 67.2 94.9 90.3 93.7 125364.8 

48,5°C 44.7 39.6 56.9 90 90 94.3 100495.4 

 

If we consider that these objects are formed for electroneutrality conditions, 25 molecules of lipids should fit within 

this surface allowing the presence of 16 molecules of DMPA required for electroneutrality. This amount of lipids 

give an average surface/lipid of 79Å2. The area we deduced from the analysis of the wide angle X-ray scattering 

pattern was in the same order of magnitude, i.e. 76Å2 (supplementary information, Figure S1-4). These area values 

are significantly higher than for example 60 Å2 determined for fully hydrated DMPC.30 Therefore, the assembly of 

the peptide at the membrane surface induces strong constraints on the lipid organization that increases of the average 

surface occupied by the lipid. This observation very well explains the decrease of the transition temperature as well 

as the 40° angle of the aliphatic chain when lipids are in the gel phase. Using these structural information, we built 

a molecular model (Figure 7). We show, that the interaction between lanreotide and anionic membrane, induces the 

formation of multilamellar structures, i.e. nanoscrolls, the curvature radius of the lamellae continuously varying 

within the same object. The resulting nanoscrolls are formed by alternate peptide and lipid bilayers in strong elec-

trostatic interaction. The structural and spectroscopic data also indicate that the molecular packing of lanreotide 

within the nanotubes and within the nanoscrolls are very similar. The most important change is the surface of the 

unit cell that is four times higher than in the nanotubes. 

For the pure lanreotide architectures, i.e. nanotubes, we have previously shown that curvature radius of the nanotube 

is due to the difference of the peptide packing on the two layers forming the nanotube wall2. We have also shown 

that the strictly uniform diameter of the nanotubes is controlled by close contacts between the lateral chains within 

the assembly31 or by the size of the counterions24. Finally, in presence of divalent counterions, double walled nano-

tubes are formed but never multi walled nanotubes because the adhesion energy coming from the divalent anions 

that counterbalances the mechanic rigidity of the crystalline wall was too low25. Therefore, within the nanoscrolls, 
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the doubling in each direction a and b should be due to a double ripple surface of the architecture. This double 

ripple surface cannot be observed by our electron microscopy due to the low resolution.  

 

CONCLUSIONS 

The nanoscrolls that we observed in this study remarkably look like the ones observed when Ca2+ interacts with 

negatively charges lipids such as phosphatidylserine or phosphatidylglycerol. In these studies, the interaction be-

tween lipids and Ca2+, besides the formation of nanoscrolls, induces a drastic increase of the gel to liquid phase 

transition temperature of the lipids as seen by differential scanning calorimetry. Moreover, the authors also showed 

that the nanoscroll structures disappeared upon the addition of ethylene diamine tetra acetic acid (EDTA), a strong 

chelating agent for Ca2+. It is proposed that Ca2+ induces a flip-flop of the negatively charged lipids, creating an 

asymmetric membrane32. In both cases, lanreotide and Ca2+, the interaction is driven by strong electrostatic attrac-

tion. However, in our case, lanreotide decreases the gel-liquid phase transition as seen by X-Ray scattering. As the 

peptide self-assembles at the surface of the membrane, one possibility is that the strong electrostatic interaction 

between the lipids and the peptide crystalline self-assembly induces a reorganization of the lipid packing.  

Another analogy between the mixed peptide-membrane studied in this work can be made with the myelin sheath. 

The intracytoplasmic proteins that are directly involved in the tight membrane packing are positively charged and 

the driving force for the membrane packing within the myelin is essentially electrostatic.33,34 In particular, stacking 

of lipid membranes can be induced in vitro by the interaction of P2 basic proteins, one of the two major proteins 

involved in the myelin sheath structure35. More recently, septin, an ubiquitous protein regarded as one of cytoskel-

eton proteins, was shown not only to interact with clusters of negatively charged lipids, but also to self-assemble 

into filament when interacting with membranes either in vivo36 or in vitro37. Lanreotide-negatively charge lipid 

membrane assemblies mimic well natural protein-membrane assemblies that have structural functions for the cells. 

MATERIAL AND METHODS 

MATERIAL 

Lanreotide is provided by IPSEN. The lipids (ePC; ePA, DMPC, DMPA) are purchased from AVANTI Polar Lipids 

and used without any further purification. The ultrafiltration units (AMICON centrifugal filter units) of 0.5ml are 

used, quartz capillaries, DMSO 
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METHODS 

Small unilamellar liposomes 

The lipids are dissolved in chloroform: methanol (90:10 v/v) and then evaporated using a Büchi Rotavapor R-200 

for obtaining a thin and homogeneous film. The film is then hydrated with a precise volume of pure water and the 

lipid solution is vigorously vortexed. This solution is dispatched in different small vials that have been previously 

weighted. The samples are then frozen and lyophilized overnight. After lyophilization, each vials containing lipids 

are weighted to estimate the quantity of lipids. The lyophilized lipids are then hydrated and rigorously vortexted. 

For natural lipids, the suspensions, kept in ice, are then submitted to 10 cycles of 1min sonication followed by 3 

min without sonication. For synthetic lipids such as DMPC and DMPA the lipid suspensions are kept at room 

temperature. When liposomes are prepared for ultrafiltration experiments, 0.1% (M/M) of Laurdan, a lipid fluores-

cence probe, is added to the lipids allowing the quantification of lipids. 

 

Liposomes-lanreotide mixtures 

The unilamellar vesicles are mixed with the appropriate lanreotide solution and rigorously vortexed. The samples 

are kept one day before ultrafiltration experiment to allow equilibration. When synthetic lipid mixtures such as 

DMPC/DMPA are used, the sample are subjected to 10 annealing cycles between 40°C and 5°C to accelerate equi-

libration.  

 

Ultrafiltration experiments 

In order to find the most convenient ultrafiltration unit for our experiments, we tested different cut-off (between 

3KD and 100KD) and two different filtration membranes (polyethersulfone and cellulose). Lanreotide forms nano-

tubes when the total peptide concentration exceeds 17mM, i.e. its critical self-assembly concentration (CAC). 21 

After spinning a solution of 41mM using the different ultrafiltration units, only the Amicon® Ultra, 0.5ml (cellulose 

membrane and 50KD cut-off) gave a satisfactory result (Supplementary Information, Figure SI-5), i.e. a concentra-

tion of lanreotide in the filtrate corresponding to its critical assembly concentration. 

The experiments were performed as follow: 0.4ml of each sample is pipetted in the filter unit and is subjected to 

either 14000rpm during 10min or 5000 rpm during half an hour. The UV spectra of the solutions in the resulting 



 

 

12 

filtrate are recorded on a UV-Visible spectrophotometer (GE Healthcare, Ultrospec7000). The concentration of 

lanreotide in the filtrate is calculated from the optical density at 280nm using the molar absorption coefficient 

determined previously at 12000 M-1.cm-1 and compared to the initial lanreotide concentration in the samples. For 

the measurement of lanreotide within the samples containing lipids and to avoid errors due to light scattering, the 

initial solution are dissolved in DMSO.  

 

Sample preparation for electron microscopy 

Electron microscopy is performed on the samples either after negative staining or freeze-fracture for visualizing 

the object formed by lanreotide and lipids. For negative staining, we used uranyl acetate 1% as previously de-

scribed23. For freeze fracture, we used a Balzers (BAF 600) apparatus. Different techniques has been used depend-

ing on the sample and the information we wanted to reach: simple Pt (30°) carbon replica after surface fracturing, 

Pt (30°) carbon replica obtained after surface fracturing and etching or rotative Pt pulverization and carbon replica 

after fracturing and etching.  

 

Small angle X-Ray scattering 

SAXS was performed on the high brilliance SWING beam line (12 KeV) at the Soleil Synchrotron Facility using 

sample-detector distances of 0.5m. The diffraction patterns were recorded for reciprocal spacing q (Å-1) from 0.02 

to 1.8 Å-1. The X-ray patterns were detected and recorded via a chip charge-coupled device camera detector, AVIEX. 

The samples were prepared in 1.1 to 1.5mm glass capillaries (Glas Technik and Konstruktion, Schönewalde, Ger-

many) and introduced into a homemade capillary holder accommodating 20 capillaries at controlled temperature. 

For each capillary, 34 patterns (exposure time 50 msec) were recorded from the top to the bottom to test homoge-

neity of the sample and to avoid degradation during measurements. All samples exhibited powder diffraction and 

scattering intensities as a function of the radial wave vector q (q=4π*sin(θ)/λ ) which was determined by circular 

integration. The diffraction spacing were calibrated using the lamellar peaks of silver behenate (d = 53.380 Å). 

For temperature scanning experiments, the samples were heated directly in the homemade capillary holder con-

nected to a programmable thermostatic bath. The heating rate was fixed 0.16°C/min leading to an average difference 

of 3°C between each recorded X-Ray patterns of the same sample. 
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ATR-FTIR spectroscopy 

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectra were measured at 4 cm-1 

resolution with a Bruker IFS 66 spectrophotometer equipped with a 45° n ZnSe ATR attachment. The spectra shown 

resulted from the average of 50 scans. Spectra were corrected for the linear dependence on the wavelength of the 

absorption measured by ATR. The water signal was removed by subtraction of a pure water spectrum recorded the 

day of the experiment. Analysis of the lanreotide conformation was performed by decomposition of the absorption 

spectra using GRAMS software, as a sum of Gaussian-Lorentzian (10%) components38.  

ASSOCIATED CONTENT  

The supporting information file (pdf) is available free of charge. Additional material includes electron 

micrographs of ePC-lanreotide solution after ultrafiltration, fit of the inside structure of nanoscrolls with 

Archimedean spiral, X-ray patterns of DMPC/DMPA (30/70% m/M)-lanreotide Rq>1.2, wide angle X-ray 

analysis and the indexation tables of the patterns at 23.5°C and 48.5°C  of DMPC/DMPA(30/70% m/M)-

lanreotide Rq=1.2. 

AUTHOR INFORMATION 

Corresponding Author :* maite.paternostre@i2bc.paris-saclay.fr 

Present Addresses 

†Joel Richard MedinCell, Jacou, Languedoc-Roussillon, France 

Author Contributions 

All authors have given approval to the final version of the manuscript. 

Funding Sources 

This work has been realized in the context of ArchiPex, a joint laboratory between Industry (Beaufour Ipsen Industry) and two 
academic teams belonging to the institute of physics of Rennes (IPR) and the Institute for Integrative Biology of the Cell (I2BC) 
respectively. 

ACKNOWLEDGMENT  

We are thankful to the ANR program “ANR-LabCom” for funding the research of Archi-Pex (Project N°ANR-14-LAB5-0001-001). 
We sincerely acknowledge the TEM Team of Joliot Institute and the Biophysics platform of I2BC supported by French Infrastruc-
ture for Integrated Structural Biology (FRISBI) ANR-10-INBS-05. Drs Sonia Fieulaine, Yves Boulard and Stéphane Bressanelli are 
warmly thanked for advises and scientific discussions. 

ABBREVIATIONS 

CAC: critical self-assembly concentration; ePC: egg- phosphatidylcholine; ePA: egg-phosphatidic acid; DMPC: di-
myristoylphosphatidylcholine; DMPA: di-myristoylphosphatidic acid; ATR-FTIR: attenuated total reflectance Fourier transformed 
infrared spectroscopy; Rq; charge ratio between the cationic charges and the anionic charges; NS: Nanoscrolls; NT: Nanotubes. 
  

mailto:maite.paternostre@i2bc.paris-saclay.fr


 

 

14 

 
REFERENCES 

(1)  Subramanian, G.; Hjelm, R. P.; Deming, T. J.; Smith, G. S.; Li, Y.; Safinya, C. R. Structure of 

Complexes of Cationic Lipids and Poly(Glutamic Acid) Polypeptides:  A Pinched Lamellar Phase. 

J. Am. Chem. Soc. 2000, 122 (1), 26–34. https://doi.org/10.1021/ja991905j. 

(2)  Valery, C.; Paternostre, M.; Robert, B.; Gulik-Krzywicki, T.; Narayanan, T.; Dedieu, J. C.; Keller, 

G.; Torres, M. L.; Cherif-Cheikh, R.; Calvo, P.; et al. Biomimetic Organization: Octapeptide Self-

Assembly into Nanotubes of Viral Capsid-like Dimension. Proc. Natl. Acad. Sci. U. S. A. 2003, 

100 (18), 10258–10262. https://doi.org/10.1073/pnas.1730609100. 

(3)  Valery, C.; Deville-Foillard, S.; Lefebvre, C.; Taberner, N.; Legrand, P.; Meneau, F.; Meriadec, 

C.; Delvaux, C.; Bizien, T.; Kasotakis, E.; et al. Atomic View of the Histidine Environment Stabi-

lizing Higher-PH Conformations of PH-Dependent Proteins. Nat. Commun. 2015, 6, 7771. 

https://doi.org/10.1038/ncomms8771. 

(4)  Valery, C.; Artzner, F.; Paternostre, M. Peptide Nanotubes: Molecular Organisations, Self-Assem-

bly Mechanisms and Applications. Soft Matter 2011, 7 (20), 9583–9594. 

https://doi.org/10.1039/c1sm05698k. 

(5)  Sasso, L.; Suei, S.; Domigan, L.; Healy, J.; Nock, V.; Williams, M. a. K.; Gerrard, J. A. Versatile 

Multi-Functionalization of Protein Nanofibrils for Biosensor Applications. Nanoscale 2014, 6 (3), 

1629–1634. https://doi.org/10.1039/C3NR05752F. 

(6)  Wei, G.; Su, Z.; Reynolds, N. P.; Arosio, P.; Hamley, I. W.; Gazit, E.; Mezzenga, R. Self-Assem-

bling Peptide and Protein Amyloids: From Structure to Tailored Function in Nanotechnology. 

Chem. Soc. Rev. 2017, 46 (15), 4661–4708. https://doi.org/10.1039/C6CS00542J. 

(7)  Hughes, S. A.; Wang, F.; Wang, S.; Kreutzberger, M. A. B.; Osinski, T.; Orlova, A.; Wall, J. S.; 

Zuo, X.; Egelman, E. H.; Conticello, V. P. Ambidextrous Helical Nanotubes from Self-Assembly 

of Designed Helical Hairpin Motifs. Proc. Natl. Acad. Sci. 2019, 201903910. 

https://doi.org/10.1073/pnas.1903910116. 

(8)  Baker, E. G.; Bartlett, G. J.; Porter Goff, K. L.; Woolfson, D. N. Miniprotein Design: Past, Present, 

and Prospects. Acc. Chem. Res. 2017, 50 (9), 2085–2092. https://doi.org/10.1021/acs.ac-

counts.7b00186. 

(9)  Silk, M. R.; Mohanty, B.; Sampson, J. B.; Scanlon, M. J.; Thompson, P. E.; Chalmers, D. K. Con-

trolled Construction of Cyclic d / l Peptide Nanorods. Angew. Chem.-Int. Ed. 2019, 58 (2), 596–

601. https://doi.org/10.1002/anie.201811910. 

(10)  Jucker, M.; Walker, L. C. Self-Propagation of Pathogenic Protein Aggregates in Neurodegenerative 

Diseases. Nature 2013, 501 (7465), 45–51. https://doi.org/10.1038/nature12481. 

(11)  Blancas-Mejía, L. M.; Ramirez-Alvarado, M. Systemic Amyloidoses. Annu. Rev. Biochem. 2013, 

82 (1), 745–774. https://doi.org/10.1146/annurev-biochem-072611-130030. 

(12)  Akinlolu, R. D.; Nam, M.; Qiang, W. Competition between Fibrillation and Induction of Vesicle 

Fusion for the Membrane-Associated 40-Residue Beta-Amyloid Peptides. Biochemistry 2015, 54 

(22), 3416–3419. https://doi.org/10.1021/acs.biochem.5b00321. 

(13)  Spillantini, M. G.; Schmidt, M. L.; Lee, V. M.-Y.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. α-

Synuclein in Lewy Bodies. Nature 1997, 388 (6645), 839–840. https://doi.org/10.1038/42166. 

(14)  Burré, J.; Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M. R.; Südhof, T. C. α-Synuclein 

Promotes SNARE-Complex Assembly in Vivo and in Vitro. Science 2010, 329 (5999), 1663–1667. 

https://doi.org/10.1126/science.1195227. 

(15)  Liang, H.; Angelini, T. E.; Ho, J.; Braun, P. V.; Wong, G. C. L. Molecular Imprinting of Biominer-

alized CdS Nanostructures:  Crystallographic Control Using Self-Assembled DNA−Membrane 

Templates. J. Am. Chem. Soc. 2003, 125 (39), 11786–11787. https://doi.org/10.1021/ja036529o. 

(16)  Liang, H.; Angelini, T. E.; Braun, P. V.; Wong, G. C. L. Roles of Anionic and Cationic Template 

Components in Biomineralization of CdS Nanorods Using Self-Assembled DNA−Membrane 

Complexes. J. Am. Chem. Soc. 2004, 126 (43), 14157–14165. https://doi.org/10.1021/ja046718m. 



 

 

15 

(17)  Henry, E.; Dif, A.; Schmutz, M.; Legoff, L.; Amblard, F.; Marchi-Artzner, V.; Artzner, F. Crystal-

lization of Fluorescent Quantum Dots within a Three-Dimensional Bio-Organic Template of Actin 

Filaments and Lipid Membranes. Nano Lett. 2011, 11 (12), 5443–5448. 

https://doi.org/10.1021/nl203216q. 

(18)  Liu, J.; Song, B.; Li, J.; Tian, X.; Ma, Y.; Yang, K.; Yuan, B. Photoluminescence Modulation of 

Silicon Nanoparticles via Highly Ordered Arrangement with Phospholipid Membranes. Colloids 

Surf. B Biointerfaces 2018, 170, 656–662. https://doi.org/10.1016/j.colsurfb.2018.06.066. 

(19)  Van Grondelle, W.; Iglesias, C. L.; Coll, E.; Artzner, F.; Paternostre, M.; Lacombe, F.; Cardus, M.; 

Martinez, G.; Montes, M.; Cherif-Cheikh, R.; et al. Spontaneous Fibrillation of the Native Neuro-

peptide Hormone Somatostatin-14. J. Struct. Biol. 2007, 160 (2), 211–223. 

https://doi.org/10.1016/j.jsb.2007.08.006. 

(20)  van Grondelle, W.; Lecomte, S.; Lopez-Iglesias, C.; Manero, J.-M.; Cherif-Cheikh, R.; Paternostre, 

M.; Valery, C. Lamination and Spherulite-like Compaction of a Hormone’s Native Amyloid-like 

Nanofibrils: Spectroscopic Insights into Key Interactions. Faraday Discuss. 2013, 166, 163–180. 

https://doi.org/10.1039/c3fd00054k. 

(21)  Valery, C.; Artzner, F.; Robert, B.; Gulick, T.; Keller, G.; Grabielle-Madelmont, C.; Torres, M. L.; 

Cherif-Cheik, R.; Paternostre, M. Self-Association Process of a Peptide in Solution: From Beta-

Sheet Filaments to Large Embedded Nanotubes. Biophys. J. 2004, 86 (4), 2484–2501. 

(22)  Valery, C.; Pouget, E.; Pandit, A.; Verbavatz, J.-M.; Bordes, L.; Boisde, I.; Cherif-Cheikh, R.; 

Artzner, F.; Paternostre, M. Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: 

A Mutational Approach. Biophys. J. 2008, 94 (5), 1782–1795. https://doi.org/10.1529/bio-

physj.107.108175. 

(23)  Pouget, E.; Fay, N.; Dujardin, E.; Jamin, N.; Berthault, P.; Perrin, L.; Pandit, A.; Rose, T.; Valery, 

C.; Thomas, D.; et al. Elucidation of the Self-Assembly Pathway of Lanreotide Octapeptide into 

Beta-Sheet Nanotubes: Role of Two Stable Intermediates. J. Am. Chem. Soc. 2010, 132 (12), 4230–

4241. https://doi.org/10.1021/ja9088023. 

(24)  Gobeaux, F.; Fay, N.; Tarabout, C.; Meriadec, C.; Meneau, F.; Ligeti, M.; Buisson, D.-A.; Cintrat, 

J.-C.; Nguyen, K. M. H.; Perrin, L.; et al. Structural Role of Counterions Adsorbed on Self-Assem-

bled Peptide Nanotubes. J. Am. Chem. Soc. 2012, 134 (1), 723–733. 

https://doi.org/10.1021/ja210299g. 

(25)  Gobeaux, F.; Fay, N.; Tarabout, C.; Meneau, F.; Meriadec, C.; Delvaux, C.; Cintrat, J.-C.; Valery, 

C.; Artzner, F.; Paternostre, M. Experimental Observation of Double-Walled Peptide Nanotubes 

and Monodispersity Modeling of the Number of Walls. Langmuir 2013, 29 (8), 2739–2745. 

https://doi.org/10.1021/la304862f. 

(26)  Krimm, S.; Bandekar, J. Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, 

and Proteins. In Advances in Protein Chemistry; Anfinsen, C. B., Edsall, J. T., Richards, F. M., 

Eds.; Academic Press, 1986; Vol. 38, pp 181–364. https://doi.org/10.1016/S0065-3233(08)60528-

8. 

(27)  Barth, A. The Infrared Absorption of Amino Acid Side Chains. Prog. Biophys. Mol. Biol. 2000, 74 

(3), 141–173. https://doi.org/10.1016/S0079-6107(00)00021-3. 

(28)  Mantsch, H. H.; McElhaney, R. N. Phospholipid Phase Transitions in Model and Biological Mem-

branes as Studied by Infrared Spectroscopy. Chem. Phys. Lipids 1991, 57 (2), 213–226. 

https://doi.org/10.1016/0009-3084(91)90077-O. 

(29)  Garidel, P.; Johann, C.; Blume, A. Nonideal Mixing and Phase Separation in Phosphatidylcholine 

Phosphatidic Acid Mixtures as a Function of Acyl Chain Length and PH. Biophys. J. 1997, 72 (5), 

2196–2210. 

(30)  Kučerka, N.; Liu, Y.; Chu, N.; Petrache, H. I.; Tristram-Nagle, S.; Nagle, J. F. Structure of Fully 

Hydrated Fluid Phase DMPC and DLPC Lipid Bilayers Using X-Ray Scattering from Oriented 

Multilamellar Arrays and from Unilamellar Vesicles. Biophys. J. 2005, 88 (4), 2626–2637. 

https://doi.org/10.1529/biophysj.104.056606. 



 

 

16 

(31)  Tarabout, C.; Roux, S.; Gobeaux, F.; Fay, N.; Pouget, E.; Meriadec, C.; Ligeti, M.; Thomas, D.; 

Ijsselstijn, M.; Besselievre, F.; et al. Control of Peptide Nanotube Diameter by Chemical Modifi-

cations of an Aromatic Residue Involved in a Single Close Contact. Proc. Natl. Acad. Sci. U. S. A. 

2011, 108 (19), 7679–7684. https://doi.org/10.1073/pnas.1017343108. 

(32)  Papahadjopoulos, D.; Ohki, S. Stability of Asymmetric Phospholipid Membranes. Science 1969, 

164 (3883), 1075–1077. https://doi.org/10.1126/science.164.3883.1075. 

(33)  Omlin, F. X.; Webster, H. D.; Palkovits, C. G.; Cohen, S. R. Immunocytochemical Localization of 

Basic Protein in Major Dense Line Regions of Central and Peripheral Myelin. J. Cell Biol. 1982, 

95 (1), 242–248. https://doi.org/10.1083/jcb.95.1.242. 

(34)  Inouye, H.; Kirschner, D. A. Evolution of Myelin Ultrastructure and the Major Structural Myelin 

Proteins. Brain Res. 2016, 1641, 43–63. https://doi.org/10.1016/j.brainres.2015.10.037. 

(35)  Sedzik, J.; Blaurock, A. E.; Hoechli, M. Reconstituted P2/Myelin-Lipid Multilayers. J. Neurochem. 

1985, 45 (3), 844–852. https://doi.org/10.1111/j.1471-4159.1985.tb04071.x. 

(36)  Caudron, F.; Barral, Y. Septins and the Lateral Compartmentalization of Eukaryotic Membranes. 

Dev. Cell 2009, 16 (4), 493–506. https://doi.org/10.1016/j.devcel.2009.04.003. 

(37)  Bridges, A. A.; Zhang, H.; Mehta, S. B.; Occhipinti, P.; Tani, T.; Gladfelter, A. S. Septin Assem-

blies Form by Diffusion-Driven Annealing on Membranes. Proc. Natl. Acad. Sci. 2014, 111 (6), 

2146–2151. https://doi.org/10.1073/pnas.1314138111. 

(38)  Byler, D. M.; Susi, H. Examination of the Secondary Structure of Proteins by Deconvolved FTIR 

Spectra. Biopolymers 1986, 25 (3), 469–487. https://doi.org/10.1002/bip.360250307. 

(39)  Zantl, R.; Baicu, L.; Artzner, F.; Sprenger, I.; Rapp, G.; Radler, J. O. Thermotropic Phase Behavior of Cat-
ionic Lipid-DNA Complexes Compared to Binary Lipid Mixtures. J. Phys. Chem. B 1999, 103 (46), 
10300–10310. https://doi.org/10.1021/jp991596j. 

 

 



 

 

17 

 

Figure 1: Morphology and structure of the nanotubes formed by the self-assembly of Lanreotide in water. Freeze-

fracture micrographs of nanotubes that have been transversally and longitudinally cut (A) , zoom on longitudinally 

(B) and transversally (C) cut nanotubes. (D): Detail of the unit cell of the peptide crystal that form the wall of the 

nanotube. The two cationic charges of the peptide are indicated in red and are brought by the N-ter and the lysine 

residue. The wall is formed by a peptide bilayer and the two leaflets are not equivalent explaining the spontaneaous 

wall curvature. E: The nanotube structure and F: detail on the internal structure of the wall; the wall present two 

external hydrophilic surface and the hydrophobic residues (yellow) are concentrated within the wall at the interface 

between the internal and external leaflets (in grey and green respectively). 
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Figure 2: Ultrafiltration experiments of solutions containing Lanreotide (A, blue points) and solutions containing 

lanreotide and liposomes (A, orange points, B & C). For all the experiments in presence of lipids, we kept constant 

the total lipid concentration and increased the lanreotide one. (A) Evolution of the free lanreotide concentration 

measured in the filtrate with the initial lanreotide concentration in the solution (before ultrafiltration) for Lanreotide 

solutions (blue points) and for lanreotide-ePC liposomes (orange points) and [lip]=10mM. (B & C) Evolution of 

the lanreotide concentration in the filtrate with the charge ratio Rq (see text for definition), (B) Ultrafiltration of 

solutions containing Lanreotide & liposomes ([lip]=10mM) formed by either 90% of ePC and 10% of ePA (violet 

points) or 30% of ePC and 70% of ePA (red points). (C) Ultrafiltration of solutions containing Lanreotide & lipo-

somes ([lip]tot=26mM) formed by 90% of DMPC and 10% of DMPA (violet points), 50% of DMPC and 50% of 

DMPA (green points), or 30% of ePC and 70% of ePA (red points). In all the samples containing lipids, the absence 

of lipid in the filtrate was controlled thanks to the fluorescent probe Laurdan (λexc=360nm; 360<λem<640nm) 

incorporated within the initial liposomes at 0.1% (M/M). The lipid concentration within the filtrate never exceeds 

0,01 % of the initial lipid concentration. 

  



 

 

19 

 



 

 

20 

Figure 3: Electron micrographs after negative staining of DMPC/DMPA(30/70% M/M)-lanreotide mixtures leading 

to Rq  of 0.5 (A), 1 (B) and 2 (C) ([lip]=26mM). The stars on the micrographs indicate the different types of objects 

that are present within the sample: liposomes (blue star), planar lamellae (red star), curve stack of lamellae (orange 

star) and nanoscrolls (green star). D & E Electron micrographs after freeze fracture that reveals internal arrangement 

of the nanoscrolls. (D) Interdistance between lamellae determined from the blue, green and orange box and details 

of the spiral structure of the nanoscrolls (the micrographs have been taken for Rq =1).). The scales are indicated on 

each micrograph.   
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Figure 4: Steps of nanoscroll formation. Unilamellar liposomes of about 100nm (electron micrographs after nega-

tive staining and after freeze fracture) are mixed with lanreotide in monomeric state, the volume of which is about 

2nm3. Upon interaction with the peptide, the liposomes disappear for planar lamellae that stack. These lamellae 

then curve forming uni- or multi-lamellae and finally form either diagonal nanoscrolls (upper scheme) or one-side 

nanoscrolls (lower scheme). The blue and orange sheets indicate that the structures are formed by the initial stacking 

of two different membranes composed of either lipids or peptides. 
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Figure 5: ATR-FTIR spectra (A, B & C) and X-ray scattering patterns (D, E & F). For ATR-FTIR spectra we focused 

on the Amide I band of the peptide backbone and the ester bond of the lipids (between 1580 and 1780cm-1). (A) 

ATR-FTIR spectrum of the Amide I band of nanotubes of peptide ([lan]=55.2mM); (B) ATR-FTIR spectrum of 

unilamellar vesicles of DMPC/DMPA (30/70% m/M-[lip]=158 mM) and lanreotide ([Lan]=55.2mM); (C) ATR-

FTIR spectrum of the unilamellar vesicles of DMPC/DMPA (30/70% m/M and [lip]=158mM). For X-ray scattering 

patterns, we focused on three different regions of the patterns: (D) X-ray patterns between 0<q<0.3 Å-1 (small 

angles), (E) X-ray patterns between 0.25<q<0.55 Å-1 (intermediate angles) and (F) X-ray patterns between 



 

 

23 

1.2<q<1.7 Å-1 (wide angles). On each panel the same patterns are presented: black patterns: unilamellar vesicles 

of DMPC/DMPA (30/70% M/M-[lip]=26mM) (black lower traces) and peptide nanotubes ([Lan]=70mM) (back 

upper traces). The dotted black upper trace represents the fit of the peptide nanotubes by a Bessel function of zero 

order leading to a diameter of 238.5 Å. The other patterns were recorded for DMPC/DMPA (30-70% M/M and 

[lip]=26mM) containing increasing concentration of lanreotide to reach Rq =0.5 (green pattern), Rq =1 (orange 

pattern); Rq =1.6 (blue pattern) and Rq =2 (brown pattern).  
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Figure 6: Evolution of the X-Ray patterns with temperature from 23.5°C to 55°C by increments of 3,5°C (from the 

bottom to the top) for DMPC/DMPA (30/70% M/M and [lip]=26mM)-Lanreotide Rq =1.2 (A, B & C) and phase 

diagram (D): blue points: lamellar stacking with lipids in Lβ phase, orange points: lamellar stacking with lipids in 

Lα phase and green points: peptide nanotubes. 
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Figure 7: Molecular model of the nanoscrolls. Molecular packing of the peptide at the surface of the lipid bilayer 

(A), transversal views of the nanoscrolls structure for lipids in gel (B) and fluid (C) phase. Within panel B and C, 
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two 90° transversal views are schematized. (A) lanreotide molecule is schematized by a hairpin: the aromatic resi-

dues are located on the red branch of the hairpin and the aliphatic ones on the green branch. The positives charges 

of lanreotide are indicated in yellow. The peptide crystal is shown from the top. Two 90° transversal view of the 

peptide bilayer crystal are also described. The lipids are schematized in blue and in red when in the gel (B) or in 

the fluid (C) state.  
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