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Abstract—In this work, a super-resolution method is proposed
for indoor scenes captured by low-resolution thermal cameras.
The proposed method is called Edge Focused Thermal Super-
resolution (EFTS) which contains an edge extraction module
enforcing the neural networks to focus on the edge of images.
Utilizing edge information, our model, based on residual dense
blocks, can perform super-resolution for thermal images, while
enhancing the visual information of the edges. Experiments on
benchmark datasets showed that our EFTS method achieves bet-
ter performance in comparison to the state-of-the-art techniques.

Keywords—Thermal image, Neural network, Super-resolution,
Edge extraction

I. INTRODUCTION

Thermal infrared images are used in the field of indoor
surveillance even if they are subject to many drawbacks such
as infrared reflection, infrared halo, and noise. Unlike their
visible counterparts, they can be used in daily and nightly
situations even if they are more expensive. Recently, a few
manufacturers proposed some very low price thermal cameras,
e.g., the FLIR Lepton 2, but with a low 80×60 pixels resolution.
However, this little resolution induces a loss of accuracy that
can alter the efficiency of the final application.

One solution to address this induced low accuracy is to
increase the size of images, so adding more information.
However, such process, so-called super-resolution, is an ill-
posed inverse problem. Indeed, an infinite number of high-
resolution images can correspond to the same low-resolution
image. When only one image is used during this process, it is
called a single image super-resolution (SISR).

Generally, there are three ways to perform SISR: interpo-
lation based methods [1], model-based optimization methods
[2, 3] and learning-based methods [4, 5]. As in many other
fields, deep learning based methods (a sub-set of learning
based methods) have achieved better results than other methods
regarding quality. In [6], the authors are the first to propose
a convolutional neural network to perform super-resolution.
Their network, SRCNN, is composed of 3 modules: features
extraction and representation, non-linear mapping and recon-
struction. Authors in [7] proposed VDSR which is a very deep
network inspired by VGGNet [8]. The difficulty of training is
by-passed by global residual learning and gradients clipping.
Handling multiple scales helps their model to better generalize
and gives better results than a single scale model. To reduce
the number of parameters, a recursive neural network called

DRCN is proposed in [9]. In [10], the authors proposed to
handle denoising, deblocking and multi-scale super-resolution
at the same time. But as most of the previous super-resolution
methods, they preprocess the low-resolution image by applying
bicubic resizing which can introduce some artifacts and increase
the computation time.

To encounter the bicubic resizing disadvantages, many works
propose to upscale the image at the final stage of the super-
resolution process. In [11], the authors presented a scheme
to add a sub-pixel convolution layer at the late stage of the
network. In [12] a similar idea was proposed by the researchers
using deconvolution layer. In [13] authors proposed LapSRN,
a multi-scale super-resolution neural network that gradually
upscales the image by a factor of 2. To improve the perceptual
quality of the super-resolved image, authors in [14] proposed
SRGAN using two sub-pixel convolutional layers to upscale
the input by 4.

It is also possible to improve the quality of reconstructed
images by increasing the depth of networks. But a more
complex model is much more difficult to be trained. In [15],
the authors proposed DenseNet where the features in each
dense block are propagated. Short path connections counteract
the vanishing gradients. Deconvolution layers are integrated
into the late stage to upscale the low-resolution image. In [16],
the authors, inspired by DenseNet, proposed a dense residual
network, called RDN. Their network is composed of four parts:
shadow features extraction, residual dense blocks, dense fusion
module, and an up-scaling module.

While there are many published works for visible (RGB)
images, the thermal images have received less attention.
Authors in [17] proposed TEN, a thermal enhancement network
inspired by SRCNN with three convolutional layers. In [18]
authors used two inputs for their networks: a low resolution near
infrared and a high-resolution visible image. In [19], the authors
proposed a model CNN with skipped connections. Inspired by
VDSR, in [20] authors proposed a two convolutional neural
network using 20 + 10 layers. The low-resolution image is
gradually upscale from 1 to 2 and then to 8.

In most of these reports, the authors used bicubic degrada-
tion. But in real-world applications, the degradation is more
complicated. Moreover, thermal cameras point spread function
can be different of visible cameras point spread function. In
[21], authors proposed a network handling multiple models of
degradation for visible images. They state that blind model



cannot work well in real applications. The input of their
network is the low-resolution image and a degradation map.
For known blur kernel and noise, the degradation map is
estimated through a dimensionality stretching. Given that real
images do not have ground truth, authors performed a grid
search to estimate the degradation settings with good visual
quality. Such a scheme will be quite challenging for real-time
applications. Moreover, for the thermal images, it is difficult to
assess the visual quality of the reconstructed images. However,
this assumption is not always valid for actual imaging device
sensors. Therefore, once generating synthetic low-resolution
images for training, we must consider a wide range of noise and
blurring artifacts as possible. Unlike previously published super-
resolution methods, here we propose a blind model the Edge
Focused Thermal Super-resolution (EFTS) to perform single
image super-resolution for thermal images. Our model is based
on residual dense block preceded by an edge extraction module
which focuses the reconstruction on the edge enhancement.
Our contributions are threefold:
• First, we investigated to find the best combination of edge

operators (Sobel, Kirsch, Laplace, Prewitt) to obtain better
results

• Second, we proved that the edge extraction module helps
our model to output a reconstructed image with more
enhanced edges.

• Third, we showed that in the context of thermal images,
very deep networks tend to over-fit given that thermal
images contain less pixel variance than their visible
counterparts.

The paper is structured as follows: the details of our degradation
model and the proposed network are given in Section II.
In Section III, results including PSNR, SSIM and Edge
Preservation Index are presented. Finally, Section IV concludes
the paper and presents some perspectives.

II. APPROACH

A. Degradation model

There are multiple degradation models reported in [22],
however, the basic model is given below:

Ilr(m,n) = d (h (w (Ihr (x, y)))) + σ (m,n) (1)

where Ilr and Ihr are respectively low-resolution and high-
resolution images, w is a warping function, h is a blurring
function, d is a down-sampling operator, and σ is additive
noise. This equation has been modified or simplified in many
situations.

1) Blur kernel: The blur kernel η has a significant impact on
the reconstruction of the image. The most common blur kernel
is isotropic Gaussian with kernel size and a standard deviation
[23]. In certain conditions, it is also possible to consider an-
isotropic blur kernel where x and y standard deviations are
different [24]. When there is long exposure time, in [25], the
authors use more complex blur models such as motion blurring.

The estimation of the blur kernel is essential for the
reconstruction. If the estimated blur kernel is smaller than

the ground truth blur kernel, reconstructed images are smooth,
and if it is bigger than the ground truth blur kernel, there are
some artifacts in the reconstructed images.

2) Noise: Low-resolution thermal cameras are more sen-
sitive to noise than higher resolution ones. Infrared images
drawbacks such as halo and noise are highlighted. Traditionally,
noise is assumed to be Gaussian. To deal with noise, there
are many solutions. One way is first to perform denoising and
then implement super-resolution. But the denoising process
causes the loss of some image information. It is also possible
to perform super-resolution before denoising, but this process
becomes computationally costly given that it is completed
with a high-resolution image. To deal with these drawbacks,
denoising, and super-resolution can be performed jointly.

3) Why learn a blind model for thermal images?: In [21],
to determine the blur kernel in real-world applications, authors
used a visual quality assessment. For real-time applications,
this is quite complicated. Moreover, if human eyes can compare
the quality of two visible reconstructed images, such a task will
be more complicated for thermal images. Even high-resolution
thermal images contain noise, blurring, and artifacts.

One could anticipate that the degradation model can be
learned only one time for a given thermal camera. But
depending on the luminosity, the heat, the distance between
the cameras and objects, the quality of the image can be up- or
downgraded. For all these reasons, it is difficult to determine
the degradation model given that such degradation model is
not fixed. This is why we are using a blind model for our
network.

Rather than performing SISR for a specific type of degrada-
tion model values (blur kernel η and noise σ), we want our
network to be as general as possible.

This is why for each image we have generated synthetic
low resolution images by randomly selecting a degradation
model values to have both enough training images and enough
generalization. These values are selected from {ηmin, ηmax}×{
σ2
min, σ

2
max

}
.

B. Proposed network

Thermal images are highly texture-less. Even high-resolution
images are more affected by noise than their visible counter-
parts. There are also other drawbacks such as infrared halo
effects and history effects. Two thermal images taken by the
same sensor can be very different. These images suffer from
low signal-to-noise ratio (SNR).

However, what is often less sensitive to the variation of
temperature or measure error are edges. One of the challenges
of super-resolution is to reconstruct salient edges. So, we have
integrated a mean to enhance edges in the thermal image
through an edge extraction module.

The proposed EFTS model (Fig. 1) is composed of four
modules: 1) edge extraction module (EEM) (Fig. 2), 2) shallow
feature extractor (SFE), 3) non-linear mapping module (NMM)
and finally 4) an upscaling module (UM).

1) Edge extraction module: Image edge detection is one
of the basic fields in image processing. To detect edges in



an image I , a kernel is generally convoluted with this image.
There are three types of edge operators: classical, Zero crossing
(Laplacian of Gaussian), Gaussian and colored edge detectors.

In [26], the authors highlight the advantages and disadvan-
tages of each type of edge detector. The Laplacian of Gaussian
(LoG) is a well-known operator that can find correct places
of edges, but it does not work well at corners and edges. The
main advantage of LoG is that it is noise tolerant, given that
a Gaussian kernel first blurs the image. There are classical
operators such as Sobel [27], Prewitt [28] and Kirsch [29].
If these methods are simple and can detect edges in many
orientations, they would be sensitive to noise. Zero crossing
operator such as Laplacian [30] can detect edges and their
orientations using fixed characteristics in all direction. On the
other hand, Gaussian and colored edge detectors are complex
and time-consuming.

The primary objective of the edge extraction module is
not to denoise the input image but rather to represent the
noise and blurring effect. So, the network would receive
additional information as input. Edges have a crucial factor in
a thermal image, and these edges have an essential impact on
segmentation [31].

All the operators as mentioned earlier respond differently
to noise and blurring and can represent many ways to see
the same scene. This difference can bring more information
to our network. But how to combine this information to
improve the network? We have tried the following operators:
Prewitt, Sobel, Laplacian, Kirsch and their combinations (Sobel-
Kirsch-Laplacian, Sobel-Kirsch-Prewitt, and Kirsch-Prewitt-
Laplacian).

The EEM module takes the original low-resolution degraded
image as input and output Υ.

Υ = EEM(Idlr)

= Γ1 ⊗ Γ2 ⊗ · · · ⊗ Γn

(2)

where Γi is the ith edge extractor, n the number of edge
extractors and ⊗ is the concatenation operator.

Then FEM is concatenated with the original low resolution
degraded image Idlr. So we have:

Λ = Idlr ⊗Υ (3)

2) Shallow feature extractor module: For shallow features
extraction, we use one convolutional layer as proposed by [32].
This is also a difference in our model compared to RDN. Given
that F ′ is composed of very different information we first fuse
them in a 1× 1 convolutional neural layer. So, we have:

Ψ0 = Fu [Λ]

Ψ1 = SF [Ψ0]
(4)

where Fu is a 1 × 1 convolutional layer and SF a 3 × 3
convolution layer.

3) Non-linear mapping: The non-linear mapping module
allows learning the non-linear mapping between Idlr and Ihr.

This part is inspired by RDN [16]. Their dense residual
network can extract hierarchical features through contiguous
memory, local feature fusion, local residual learning, and global
residual learning. Their model is also based on DenseNet [15]
and MemNet [33].

The global residual learning induces:

ζ = Ψ0 + Λ (5)

where

U = DFu (Φ1 ⊗ Φ2 ⊗ · · · ⊗ ΦD) (6)

Where DFu expresses dense feature fusion composed of a
1× 1 convolutional layer followed by a 3× 3 convolutional
layer, Φi the output of the ith residual block and D the number
of residual blocks. The output of the ith residual block (Ωi) is
defined as follows:

Φi = Ωi (Ωi−1 (. . .Ω1 (Ψ1) . . . )) (7)

where Ωi = Ωi−1 + Bi. Bi is the ith block containing
C (Convolutional + ReLU) layers followed by a 1 × 1
convolutional layer. The output of Bi is defined as follows:

Bi = Fui(FCi,0 ⊗ FCi,1 · · · ⊗ FCi,N ) (8)

where Fui is a 1× 1 convolutional layer and

FCi,j = ReLU (FCi,j−1 ⊗ FCi,j−2 ⊗ · · · ⊗ FCi,0) (9)

where ReLU is the non-linear activation function and FCi,j

the jth 3× 3 convolutional of the ith block. The input of the
first residual block is Ψ1.

Each convolutional layer FC with input ι has bias b and
weights W in such a way that:

FC = W × ι+ b (10)

4) Upsaling module: The upscaling module is inspired by
ESPCN [11]. It is followed by a 1× 1 convolutional layer and
a 3× 3 convolutional layer.

III. EXPERIMENTS

A. Settings

1) Dataset: The generalization of the deep network model
very much depends on the data. Our main goal is indoor
surveillance, and this is why we focused only on indoor thermal
dataset such as one reported in [34]. The resolution of images
is 512× 512 (cropped from 1024× 640). The dataset [34] is
composed of various scenes, cameras views and sequences.
Two indoor situations are considered: atrium-test (Atrium),
lab1-test-seq1 (Lab1).

We used various views and sequence from Lab1 to construct
our training dataset. Thus, we end up having 894 images.
For testing, we use 30 images from multiple perspectives and
sequences of Atrium.



Figure 1: Edge Focused Thermal Super-resolution (EFTS)

2) Degradation model: For each high resolution im-
age, we randomly select a blur kernel standard deviation
η ∈ {ηmin, · · ·, ηmax} and Gaussian noise variance σ2 ∈{
σ2
min, · · ·, σ2

max

}
. To implement the degradation model, we

down-sampled a high resolution blurred image with an additive
noise.

3) Training settings: We follow the settings of [32], so
we have extracted 32× 32 images from each low-resolution
degraded image. We used a stride of 16. We also proceed
with data augmentation by randomly flipping and rotating the
images. The batch size is set to 16, and we train the network
for 100 epochs. For each epoch, we have 680 iterations. Our
model EFTS is implemented on top of Tensorflow, and the
initial learning rate is set to 1e− 4. To update the weights we
used Adam optimizer.

4) Comparison methodology: Given that, we knew the
ground truth (the high-resolution image) we evaluated the
impact of our model by three metrics: the Peak Signal to Noise
Ratio (PSNR), the Structural Similarity Index (SSIM) and the
Edge Preservation Index (EPI) [35].

We took 30 images from Atrium, and for each image we
generated 456 low resolutions images with blur η ∈ [0.2, 4]
and Gaussian noise σ2 ∈ [5, 50]. We had so 13680 degraded
low-resolution images. For each methods we computed the
average of the metrics over these 13680 images.

Even if the SSIM/EPI metrics are supposed to be related
to the perceived quality, we also made some qualitative
visual comparisons between the highly resolved image and
the reconstructed one. To better highlight the impact of the
reconstruction methods to the edge preservation, we create
an Edges Map of each image using the Sobel operator. This
allowed us to make some qualitative visual inspection of the
edge preservation or degradation.

B. Depth of the network

With a deeper non-linear mapping model we should normally
be able to obtain better results. In [16], the authors show
that using big values of D (number of residual blocks) and
C (number of convolutional layers per residual block) the
performance of the network is better. In their implementation,

they use D = 16 and C = 8. However, for real-time execution
purpose, we tried smaller values of D and C. We have tried
the following combinations D3C1, D5C3 and D7C5, but grid
search also could be performed.

Table I illustrates the performance of each one of the network
depths. It is noticeable that D5C3 outperforms both D3C1 and
D7C5. When the number of layers increases, the number of
network parameters also increases. Given very similar training
data, a highly complex function fits the training data better than
a less complex one. Such complex function will memorize the
training data, over-fitting, and the model performs poorly on
the unseen data resulting in high generalization error. So, these
results are overall due to the type of our dataset. Our focus
is the indoor scene super-resolution of people. Such scenes
are limited to human shapes and contain less information than
their visible counterparts.

D3C1 D5C3 D7C5

PSNR/SSIM 39.07/0.9549 39.37/0.9588 38.99/0.9573

Table I: Average PSNR and SSIM of 3 combinations of D
(number of residual blocks) and C (number of convolutional
layers). The best two results are highlighted in bold and
underlined, respectively.

C. Edge extraction module
We have investigated different types of combinations of

edge operators to see which one is more suitable for super-
resolution. We compare SKL (Sobel, Kirsch, Laplace), SKP
(Sobel, Kirsch, Prewitt) and KPL (Kirsch, Prewitt, Laplace).
We use the same type of experiment as in section III-B.

Table II illustrates that the model SKL outperform SKP
and KPL. KPL gives second best SSIM while regarding
PSNR, SKP gives second best results.

The fact that SKL gives better results than SKP can be
explained by the fact that Prewitt operator is derived from
Sobel. So Prewitt operator does not bring more information
to the network than Sobel operator. In SKP model, Sobel
and Prewitt’s operators are bringing almost the same kind of
information about the edges.



KPL is very close to SKL in therms of SSIM, but the
difference is more noticeable regarding PSNR. The main
difference between these models is that Prewitt replaces Sobel.
In [36], the authors reported that although Prewitt is similar
to Sobel, there are differences in their spectral responses. As
shown in table II, our results demonstrate that noise suppression
characteristics are better with Sobel than with Prewitt.

For all these reasons, we used SKL (Fig. 2). As illustrated
by this figure, we first extracted edges using the three operators.
For Sobel and Kirsh operators, we have computed the edge
magnitudes. The output of the edge extraction module is the
concatenation of the results of the three operator.

For our network, we use the model designed in Fig. 1. We
use five residual blocks with 3 (convolutional+ RELU) layers
in each. For all convolutional layers, the kernel size is 3× 3
except fusion layers which kernel size is set to 1× 1.

SKL SKP KPL

PSNR/SSIM 39.39/0.9588 39.37/0.9576 39.21/0.9586

Table II: Average PSNR and SSIM of 3 combinations of edge
operators (S Sobel, K Kirsch, L Laplacian and P Prewitt).
The best two results are highlighted in bold and underlined,
respectively.

Figure 2: Edge extraction module

D. Comparison with state-of-the-art methods

We evaluated our proposed EFTS method against other
existing state-of-the-art techniques in the literature. First, we
compared our method with the methods developed for thermal
images (TEN [17], CNN [19]) and as well as those which are
developed for visible images (VDSR [7], LapSRN [13], RDN
[16]). We use the same training dataset for all these models
and the parameters they used in their respective papers for a
fair comparison.

Most of these models source codes were available online
except TEN [17] and CNN [19]. For these models, we have
implemented their codes based on what is reported in [17, 19].

These re-implementations achieved expected Super-resolution
results similar as those reported in the original articles. For
RDN, we used the same number of blocks as for ours, that
is to say, D = 5 and C = 3. All comparisons are made for a
scale of ×4.

Table III shows quantitative comparisons with methods TEN
and CNN (for thermal images) and VDRS, LapSRN and RDN
(for visible images). As evaluation metrics, we use PSNR and
SSIM for images degraded by different values of noise and blur
kernel. Among thermal image-based methods, CNN gets the
closer results to EFTS while TEN is diverging. The performance
of RDN is very close to EFTS. Such results can be explained
by the fact that EFTS uses residual blocks like RDN, but its
edge extraction module performs better in comparison. TEN
is the shallower network with only 4 layers tends to provide
less reconstruction quality than Bicubic interpolation for the
values (1,

√
5) and (2,

√
5). Overall, EFTS is performing better

than CNN with a noticeable amount of dB PSNR in most of
the cases. TEN is diverging, giving sometimes worst results
compared to bi-cubic interpolation.

While PSNR and SSIM are essential for comparison between
the original and reconstructed images, the PSNR/SSIM between
the Edges Map of these two images also bring more information
in the quality of the reconstruction. Many thermal image
applications are based on edge extraction. Therefore, we
evaluated the performance of our method by computing the
PSNR/SSIM of the Edges Maps. As shown in table III and table
V the performance of EFTS is also better than RDN. EFTS and
RDN performance are more stable to degradation variations
than TEN and CNN. In these methods PSNR decreases almost
for 2 dB from [1,

√
5] to [3,

√
35]. The Edge Preservation Index

(EPI) calculates the number of edges preserved in an image
after applying each method to the original low-resolution image.
Table IV confirms the results reported in table III and table V.
It is noticeable that EFTS and RDN results are very close, but
EFTS still outperforms TEN and CNN.

Figure 3. shows qualitative comparisons between EFTS,
RDN, CNN and TEN. It is noticeable, in the reconstructed
images and their Edges Maps, that EFTS is more able to
enhance edges than the other methods. The edges extracted
by RDN are comparable to edges extracted by EFTS, but we
can see that our model responds equally to edges and does not
enhance certain parts of edges while weakening other parts.
some artifacts can be seen, while our reconstructed images
contain no artifacts. TEN and CNN results proved that these
methods are not suitable for edge-based thermal applications
with this degradation model.

E. Application on a real low-resolution camera

The primary goal of our model is to apply super-resolution
in real-world applications with very low resolution thermal
images. This is why we have acquired indoor images using
Lepton 2. The resolution of such images is 80×60. Fig 4. shows
the qualitative results super-resolution of such images. The
originals images are very noisy and practically unusable. By



Original image(PSNR/SSIM) Bicubic interpolation(33.8491/0.9140) TEN(23.5135/0.9011) CNN (23.73/0.9266) RDN(35.60/0.9566) EFTS(36.81/0.9570)

Original image cropped Bicubic interpolation cropped TEN cropped CNN cropped RDN cropped EFTS cropped

Original image Sobel Bicubic interpolation Sobel TEN Sobel CNN Sobel RDN Sobel EFTS Sobel

Original image Sobel cropped Bicubic interpolation Sobel cropped TEN Sobel cropped CNN Sobel cropped RDN Sobel cropped EFTS Sobel cropped

Figure 3: SISR using a blur kernel of 3 and a noise of 50

Degradation Methods

η σ2 Bicubic VDSR [7] LapSRN [13] RDN [16] TEN [17] CNN [19] EFTS

5 39.27/0.9499 39.99/0.9670 39.51/0.9601 41.22/0.9703 37.42/0.9602 40.30/0.9659 41.65/0.9718
1

35 35.50/0.8447 38.58/0.9503 38.45/0.9398 40.34/0.9643 36.56/0.9293 39.19/0.9498 40.71/0.9655

5 38.41/0.9339 39.49/ 0.9667 38.77/0.9526 39.71/ 0.9661 37.90/0.9486 40.00/ 0.9551 41.19/0.9677
2

35 34.90/0.8149 38.08/0.9484 37.86/0.9301 39.59/0.9573 36.94/0.9143 38.98/0.9278 40.28/0.9592

5 36.28/0.9145 38.06 /0.9540 36.90/0.9398 38.80/ 0.9597 37.27/0.9337 37.87/0.9397 39.20/0.9614
3

35 33.80/0.7847 36.76/0.9436 36.29/0.9144 38.17/0.9506 36.40/0.8968 37.23/0.9233 38.68/0.9518

Table III: Comparison of EFTS vs state-of-the-art methods in terms of PSNR/SSIM. The best two results are highlighted in
bold and underlined, respectively.

performing super-resolution, we want to get more information
about the scene.

Fig 4. points out super-resolution applied without ground
truth. We used the same trained network as in earlier sections.
It is easily noticeable that EFTS allows reconstructing more
details than CNN and TEN. The output images of these later
methods contain some artifacts. CNN provides better results
than TEN and the reconstructed image is less blurred.

Training our model with several degradation model settings
allowed our network to generalize better. So such a network
can be used for very low-resolution images (80× 60).

IV. CONCLUSION

We proposed a network to perform thermal image super-
resolution to handle several kinds of degradation via a single
model. Unlike previous thermal image super-resolution meth-
ods, we use residual blocks and above all an edge extraction
that allows us to obtain stronger reconstructed edges. Moreover,
we not only evaluated the performance of our proposed model
based on PSNR/SSIM but also assessed the PSNR/SSIM of
Edges Maps and Edge Preservation Index. All these evaluations
metrics confirm that the edge extraction module improves the



Degradation Methods

η σ2 Bicubic VDSR [7] LapSRN [13] RDN [16] TEN [17] CNN [19] EFTS

5 0.9369 0.9598 0.9435 0.9619 0.9546 0.9562 0.9620
1

35 0.9350 0.9591 0.9347 0.9610 0.9536 0.9555 0.9615

5 0.9505 0.9593 0.9464 0.9606 0.9532 0.9548 0.9609
2

35 0.9453 0.9582 0.9377 0.9592 0.9522 0.9537 0.9594

5 0.9509 0.9579 0.9479 0.9578 0.9519 0.9528 0.9585
3

35 0.9471 0.9561 0.9393 0.9566 0.9509 0.9521 0.9567

Table IV: Comparison of EFTS vs state-of-the-art methods in terms of EPI. The best two results are highlighted in bold and
underlined, respectively.

Degradation Methods

η σ2 Bicubic VDSR [7] LapSRN [13] RDN [16] TEN [17] CNN[19] EFTS

5 24.99/0.8234 26.48/0.8196 25.54/0.7554 27.42/0.8315 25.61/0.7432 26.54/0.8040 27.64/0.8375
1

35 23.92/0.6329 26.06/0.7449 25.40/0.6866 27.04/0.8123 25.22/0.5969 26.31/0.7523 27.27/0.8171

5 24.95/0.6335 26.17/0.8040 24.87/0.6956 26.98/0.8189 24.70/0.6695 25.52/0.7360 27.13/0.8219
2

35 23.88/0.4386 25.73/0.7275 24.79/0.6192 26.35/0.7945 24.42/0.5171 25.38/0.6806 26.49/0.7959

5 24.10/0.4733 25.68/0.7876 24.16/0.6318 26.09/0.7992 23.91/0.6069 24.40/0.6676 26.39/0.8010
3

35 23.35/0.2580 25.35/0.7352 24.10/0.5482 25.51/0.7648 23.70/0.4545 24.32/0.6133 26.10/0.7767

Table V: Comparison of EFTS vs state-of-the-art methods in terms of PSNR/SSIM of the edge maps. The best two results are
highlighted in bold and underlined, respectively.

Original image (80x60) TEN (320x240)

CNN (320x240) EFTS (320x240)

Figure 4: Super-resolution of low-resolution thermal image of
a person sit in front of the camera

results.
The edge extraction module is composed of three edge

extractors (Sobel, Prewitt, Laplacian) that are concatenated
with the original low-resolution image and is fused to extract
shallow features. The results on real very low-resolution images
acquired from Lepton2 show that we can significantly enhance
the resolution of such type of images.

Here, our degradation models included isotropic blurring
and Gaussian noise; however, we should consider that thermal

images are also affected by other degradation models such as
motion blur. To increase our network generalization and real-
world performance, we must take into account such degradation.
Moreover, in the context of indoor surveillance, it is possible to
associate two thermal sensors together or a thermal sensor with
another type of sensor. It could be possible to use disparity to
enhance thermal image resolution even further.
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