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Abstract
Empirical evaluation is nowadays the main evaluation

paradigm in Natural Language Processing for assessing the rel-
evance of a new machine-learning based model. If large cor-
pora are available for tasks such as Automatic Speech Recog-
nition, this is not the case for other tasks such as Spoken Lan-
guage Understanding (SLU), consisting in translating spoken
transcriptions into a formal representation often based on se-
mantic frames. Corpora such as ATIS or SNIPS are widely
used to compare systems, however differences in performance
among systems are often very small, not statistically signifi-
cant, and can be produced by biases in the data collection or
the annotation scheme, as we presented on the ATIS corpus (“Is
ATIS too shallow?, IS2018”). We propose in this study a new
methodology for assessing the relevance of an SLU corpus. We
claim that only taking into account systems performance does
not provide enough insight about what is covered by current
state-of-the-art models and what is left to be done. We apply
our methodology on a set of 4 SLU systems and 5 benchmark
corpora (ATIS, SNIPS, M2M, MEDIA) and automatically pro-
duce several indicators assessing the relevance (or not) of each
corpus for benchmarking SLU models.
Index Terms: Spoken Language Understanding (SLU) , bench-
mark , ATIS , SNIPS , M2M , MEDIA

1. Introduction
Spoken Language Understanding (SLU) consists in translating
spoken transcriptions into a formal representation, often based
on semantic frames. SLU received lately a particular atten-
tion as one of the crucial component of spoken chatbots and
many models have been proposed to tackle this task although
very few benchmark corpora are available to train and evaluate
them. Corpora such as ATIS are widely used to compare sys-
tems, however differences in performance among systems are
often very small, not statistically significant, and can be due to
biases in the data collection or the annotation scheme, as we
presented for the ATIS corpus [1].

We propose in this study a new methodology for assess-
ing the relevance of an SLU corpus for benchmarking auto-
matic tagging systems. We claim that only taking into account
systems performance does not provide enough insight about
what is covered by current state-of-the-art models and what is
left to be done. We apply our methodology on a slot-tagging
tasks for 4 benchmark corpora (ATIS, SNIPS, M2M, MEDIA).
We build 4 tagging systems implementing 4 different machine
learning models (Boosting, Conditional Random Fields (CRF),
Multi-Layer Perceptron (MLP) and Recurrent Neural Networks
(RNN) and automatically produce several indicators assessing
the relevance (or not) of each corpus of the 4 corpus for bench-
marking SLU models.

2. Methodology
The way SLU systems are benchmarked today consists mostly
in a quantitative evaluation where the performance of each sys-
tem is given on a corpus annotated with a semantic model
(slot/value, frame, . . . ). These raw evaluations don’t take into
account the intrinsic characteristics of these test corpora. In
other terms, can we assume that two corpora for which state-of-
the-art models achieve the same level of accuracy are compara-
ble in terms of complexity and relevance for benchmarking SLU
systems?

We believe that this is not the case as some corpora can
have biases in the data collection process or the annotations
provided, the intrinsic ambiguity of the semantic model chosen
can be very different in each corpus (size of the semantic lexi-
con, average number of possible semantic label for each word)
and finally the size of the training partition and its similarity
toward the test partition in terms of lexical and semantic label
distributions can also be very different. All these factors impact
performance of a given SLU system, regardless of the model
implemented to learn the task.

Describing corpora thanks to descriptive indicators about
the semantic complexity of the annotation schemes or words
and labels distributions is useful but this won’t indicate which
aspects are already well covered by current state-of-the-art
models and which ones can still be considered as open issues.
Moreover the discovery of corpus biases can only be done with
respect to processing models, as a corpus characteristic be-
comes a bias only when it has an impact on the inference capa-
bilities of the models. This is why we propose a new automatic
methodology for assessing the relevance of a given corpus for
benchmarking SLU systems based on the use of several SLU
models, implementing different state-of-the-art paradigms. The
first step in this methodology is to partition the test corpus into
four clusters according to agreement/disagreement measures as
well as correct/incorrect predictions obtained by all the SLU
models trained on the task; then to train a classifier to automati-
cally predict, for each sample in the test corpus, its cluster label.
The relevance indicators for a given corpus are obtained from
its cluster distribution as well as the capacity of the classifier to
automatically predict cluster labels.

The application of this methodology on an SLU entity tag-
ging task is described in the next sub-sections.

2.1. Automatic clustering of test utterances

We consider here an entity tagging task where the annotations
are projected at the word label following a Begin, Inside, Out-
side scheme (B,I,O). The first step in our methodology is to de-
velop a set of SLU systems M = m1,m2, . . .mn, implement-
ing several inference models, trained on the same set of cor-
pora C1, C2, . . ., each corpora being split into a train (C-train)



and test (C-test) partitions. For each word wi of an utterance
u ∈C-test, let label(m,u, i) be the label predicted by model
m on wi and let label(ref, u, i) be the reference label of wi.
An example of this annotation scheme on the utterance u=find
flights arriving new-york new-york next saturday is given in ta-
ble 1. Let’s point out that choosing words as the basic units for
semantic annotation has the advantage to be independent from
a specific semantic model but has drawbacks since entity size
impact the amount of errors.

i word wi label(ref,u,i) label(m1,u,i) label(m2,u,i) cluster
1 find O O O AC
2 flights O O O AC
3 arriving O O O AC
4 new-york B-to-city B-to-city B-from-city NC
5 new-york O B-to-city B-to-city AE
6 next B-date-arr B-date-dep O NE
7 saturday I-date-arr I-date-dep B-date-arr NE

Table 1: Example of annotation of utterance u with two SLU
models (m1, m2) and the resulting cluster for each word

We then partition all words in C-test according to two di-
mensions: agreement and correctness. If all systems agree, they
belong to partition A (agreement), otherwise partition N (no-
agreement). If at least one system predict the correct label, they
belong to partition C (correct), otherwise partition E for errors.
This partitioning process produces 4 clusters formally defined
as follows:

1. AC - Agreement/Correct: all labels label(ref,u,i) such
as ∀m ∈M, label(m,u, i) = label(ref, u, i)

2. AE - Agreement/Error: all labels label(ref,u,i) such
as ∀m,m′ ∈ M, label(m,u, i) = label(m′, u, i) and
label(m,u, i) 6= label(ref, u, i)

3. NC - No agreement/Correct: all labels label(ref,u,i)
such as ∃m,m′ ∈ M, label(m,u, i) 6= label(m′, u, i)
and label(m,u, i) = label(ref, u, i)

4. NE - No agreement/Error: all labels label(ref,u,i) such
as ∃m,m′ ∈ M, label(m,u, i) 6= label(m′, u, i) and
@k ∈M, label(k, u, i) = label(ref, u, i)

We then make the following assumptions on these clusters:

AC is the solved problem cluster, containing examples well
covered by all models, regardless of their intrinsic per-
formance.

NC is the system comparison cluster containing challenging
examples covered by some state-of-the-art models (for
example in line 4 of table 1).

NE is the open problem cluster containing examples not han-
dled by any of the current models. This can correspond
to two different situations: errors coming from a lack in
the training data (such as Out-Of-Vocabulary words) or
errors coming from real ambiguities not yet covered by
current models.

AE is the annotation problem cluster containing mostly an-
notation errors or biases in the training corpus. We con-
sider that if all systems make the same errors, it might
come from a mistake in the annotation process, like line
6 of table 1, where the repetition of the word new-york
is erroneously labelled as O in the reference annotation.
Or it might come from a missed entity by all models, due
like cluster NE to a lack in the training data.

We believe that the word distribution among the 4 clusters
for a given corpus C provides good insights about the relevance

of C for benchmarking systems. We propose to define our first
indicator of corpus complexity as I1 = 100 − |AC|×100

|C-test| . A
low value of I1 indicates that the corpus is nearly a solved prob-
lem as most examples are correctly labelled by all models, even
the low performing ones, therefore this corpus not necessarily
relevant to compare different SLU models performance.

2.2. Automatic prediction of cluster labels

Once the clustering into the four clusters has been done, we
want to check how efficient would be a classifier to automati-
cally classify each word of the test corpus as belonging to AC,
AE, NC and NE thanks only to corpus characteristics. Our as-
sumption is that cluster prediction accuracy for error clusters
AE and NE are good indicators of the kind of errors contained
in them:

NE : we consider that the examples in NE which are not
properly classified correspond to the real challenging ex-
amples (not predictable). In contrast to the predictable
examples that can correspond to error regularities that
can be easily fixed, for example by incorporating knowl-
edge about the task (list of cities, movies, restaurant,etc.)
coming from the task database.

AE : the examples that can be accurately classified as be-
longing to AE must correspond to a corpus bias rather
than an intrinsic ambiguity.

To train this classifier (called CC) we build a training cor-
pus where each word wi of an utterance u ∈C-test is a training
example, with features related to its left and right context as
well as its label. The class to predict CC(u, i) = c is the clus-
ter id the word wi in u belongs to. For example, for the word 5
of table 1, we generate the following training example:

left(arriving,O new-york,to-city)
word(new-york),label(O)
right(next,date-arr saturday,date-arr) => AE

We train the classifier following a 10-fold setting and com-
pute precision (P), recall (R), F-measure (F) as well as the
global classification error rate. F-measure for clusters NE and
AE can be used to find how important is the impact of biases
in the classification process. We define our second corpus com-
plexity indicator I2 as being the classification error rate on the
four clusters.
It is defined as: I2 = 100− |∀u∀iCC(u,i)=error|

|C-test| × 100

A low value for I2 indicates that the corpus is very predictable in
terms of error prediction, therefore with little interest for eval-
uating systems. At the contrary a high value for I2 is a good
indicator of corpus complexity.

3. Application
We apply our methodology on a set of five SLU corpora on
an entity tagging task, using four different tagging models for
estimating agreement and correct/incorrect predictions. They
are presented in the next subsections.

3.1. SLU corpora

We did experiments on 5 standard benchmarks used to evaluate
slot tagging systems whose characteristics are presented in table
2:

1. M2M: this corpus is a fusion of two datasets contain-
ing dialogues for restaurant and movie ticket booking. It
has been released by [2] and collected using their M2M



corpus ATIS MEDIA SNIPS SNIPS70 M2M
vocabulary 1117 2445 14354 4751 900
#tags 84 70 39 39 12
train size 4978 12908 13784 2100 8148
test size 893 3005 700 700 4800
av. turn length 11[2,42] 8[2,193] 10[3,36] 7[2,30]

Table 2: Corpus characteristics

framework (Machines Talking To Machines) that com-
bines dialogue self-play and crowd sourcing to generate
dialogues.

2. ATIS: The Air Travel Information System (ATIS) task
[3] is dedicated to provide flight information. The train-
ing set consists of 4978 utterances selected from the
Class A (context independent) training data in the ATIS-
2 and ATIS-3 corpora while the ATIS test set contains
both the ATIS-3 NOV93 and DEC94 datasets. The ver-
sion is the widely used corrected version released with
[4].

3. MEDIA: this corpus is made of 1250 French dialogue,
dedicated to provide tourist information. It has been col-
lected by ELDA, following a Wizard of Oz protocol:
250 speakers have followed 5 hotel reservation scenar-
ios. This corpus has been transcribed manually and an-
notated with concepts from a rich semantic ontology [5].

4. SNIPS: this corpus has been collected by the SNIPS
company. It is dedicated to 7 in-house tasks, SearchCre-
ativeWork, GetWeather, BookRestaurant,PlayMusic,
AddToPlaylist,RateBook, SearchScreeningEvent [6].

5. SNIPS70: The SNIPS benchmark is proposed in two
configurations. SNIPS70 is the same as the previous one
but the training set is limited to 70 queries per intent,
randomly chosen, reflecting the fact that in a real life
scenario, even an enthusiastic NLU developer will gen-
erally stop after supervising around 70 query examples.
This makes the training set more close to real NLU de-
velopment condition.

3.2. SLU models

We developed four different entity tagging systems, each of
them implementing a different machine-learning model with
different characteristics:

1. Boost: a boosting algorithm of small decision trees
called bonsai trees [7]. This is a very efficient text classi-
fier but is not dedicated to model sequence-to-sequence
problems. It does not model either any output label de-
pendencies. We used 1000 bonsai trees of size 2 (4
leaves) on word 1-grams with their relative position.
Since the classifier is performing feature selection, the
feature window cover the full utterance.

2. CRF: a standard CRF algorithm with symbolic input
features, very relevant to model output label dependen-
cies. It uses a feature set of 1-grams word/relative po-
sitions in an observation windows of size 7 around the
current decision step.

3. MLP: a standard single-hidden-layer feed-forward neu-
ral network with an hidden layer of 100 ReLu neurons
and a joint embedding layer of size 100; it uses word
embedding representations but does not model any tar-
get label dependencies.

4. BiGru+CRF: a bidirectional recurrent GRU [8] network
used to encode the sequence of words into a vector,
followed by a CRF output layer. It implements a 200
(2*100) encoded utterance representation. This is the
most elaborate model, with word embedding, it has ac-
cess to the whole utterance thanks to the GRU and model
target label dependencies thanks to the CRF objective.
However this model is the one with the highest number
of parameter.

In all our experiments we did not use any pretrained embed-
dings or any knowledge base such as named entity dictionnaries
since the goal here is not to obtain the best tagging accuracy but
to observe decisions agreement among systems trained exactly
in the same conditions. All neural based models are build using
Keras [9], bonzaiboost implementation has been used for boost-
ing [7] and Wapiti [10] for symbolic CRF. The model selection
strategy for neural systems is to keep the best set of parameters
among 50 epochs according to the validation set (or training set
if no official validation set is provided); regularisation is done
using a dropout [11] of 0.5 at the output of the last−1 layer of
the network.

Table 4 reports performance for each model on each cor-
pus using the global F-measure F1 computed by the connlleval
scoring script. Note that no system is particularly tuned for a
given corpus therefore small differences between systems are
not necessarily significant. Unsurprisingly F1 obtained on most
corpora are lower than those reported in the literature since no
pretrained embeddings or semantic lexicon were used.

We can note, that the best F1 obtained on ATIS, M2M and
SNIPS are pretty similar, around 94%. On the other hand per-
formance on MEDIA and SNIPS70 are much lower, around
86%. If all methods perform equally well on M2M and ATIS,
this is not the case for MEDIA and SNIPS: for MEDIA, using
a classifier with a bag of features, not modelling any sequence
as in Boost, is a big handicap, leading to poor results (−15%
compared to the best one); for SNIPS and SNIPS70, not mod-
elling output label dependencies like Boost or MLP has a great
negative impact on performance (nearly−10%). For SNIPS70,
not having enough data to train a model with a lot of parameter
such as BiGru+CRF has also a negative impact.

3.3. Estimating indicator I1 and I2

Table 3 show the size of the 4 clusters AC, AE, NC, NE we
obtained following our methodology along with their 5 most
frequent misrecognized labels. By computing our indicator I1
from the size of cluster AC, as presented in section 2.1, we can
compare each corpus in a more accurate way than just looking at
the F1 max obtained by the best system, as presented in table 6.
As we can see, although ATIS, M2M and SNIPS obtain roughly
the same F1 max, they differ in terms of I1, ATIS being the
most solved corpora compared to the other two. Similarly I1
emphasises the difference between SNIPS70 and MEDIA.

We then generate a corpus in order to train a model for clas-
sifying word/label tokens as AC, AE, NC, NE thanks only to
word and label features from the utterance transcription, as pre-
sented in section 2.2. As input features we provided, the refer-
ence label, the word itself, the left and right word context, the
fact that the word is an Out-Of-Vocabulary words with respect
to the training corpus , the number of potential labels for this
word in the train and the utterance length. The classifier we use
is the Bonzai Boost classifier presented in the previous section,
trained with a 10-fold process on each test corpus of our 5 cor-
pora. Table 5 shows the prediction accuracy of this classifier for



M2M ATIS MEDIA SNIPS SNIPSs70
5632 samples 83.2% 2472 samples 88.3% 11693 samples 69.6% 2589 samples 81.2% 1947 samples 61.1%
time 26.0% toloc-city name 27.7% reponse 12.7% object name 16.4% object name 13.5%
date 13.4% fromloc-city name 27.1% command-tache 11.8% playlist 9.4% object type 9.6%

AC theatre name 12.1% depart date-day name 8.3% temps-date 9.2% timeRange 8.3% playlist 9.3%
restaurant name 12.0% depart time-periodofday 4.5% nombre 7.1% object type 7.5% timeRange 7.6%
location 10.5% airline name 4.0% localisation-ville 6.3% artist 5.0% spatial relation 5.6%
310 samples 4.6% 229 samples 8.2% 3702 samples 22.0% 540 samples 16.9% 1112 samples 34.9%
movie 50.3% fromloc-city name 9.6% command-tache 9.6% object name 18.5% object name 23.2%
restaurant name 34.8% aircraft code 7.0% objet 8.3% artist 15.9% artist 13.8%

NC num tickets 3.9% city name 4.8% nom 7.1% movie name 11.3% timeRange 9.4%
rating 3.2% arrive date-day name 4.4% localisation-ville 5.5% playlist 9.3% playlist 8.8%
time 2.9% airport name 4.4% local.-lieuRelatif-gen. 4.9% timeRange 6.5% movie name 6.7%
687 samples 10.2% 63 samples 2.3% 804 samples 4.8% 30 samples 0.9% 28 samples 0.9%
restaurant name 54.6% city name 34.9% command-tache 20.4% artist 23.3% movie name 17.9%
movie 40.9% depart time-periodofday 12.7% objet 16.4% entity name 23.3% artist 14.3%

AE num tickets 3.8% fromloc-city name 11.1% connectProp 6.6% album 16.7% object name 14.3%
rating 0.3% toloc-city name 9.5% command-dial 6.5% playlist 10.0% city 10.7%
location 0.1% airport name 7.9% reponse 5.3% object select 6.7% entity name 10.7%
137 samples 2.0% 34 samples 1.2% 604 samples 3.6% 35 samples 1.1% 107 samples 3.4%
movie 56.9% state name 23.5% objet 17.2% album 22.9% album 18.7%
restaurant name 40.9% airport code 14.7% local.-lieuRelatif-gen. 6.5% state 11.4% playlist 15.9%

NE time 1.5% city name 11.8% command-tache 6.1% timeRange 11.4% country 9.3%
location 0.7% aircraft code 8.8% chambre-equipement 5.5% track 11.4% city 8.4%

airport name 8.8% nom 5.3% entity name 11.4% state 6.5%

Table 3: Label distribution according to the 4 clusters for each corpora

F-measure M2M ATIS MEDIA SNIPS SNIPS70
Boost 92.6 94.2 70.6 87.2 78.1
MLP 93.1 93.2 82.3 85.7 75.9
CRF 91.7 92.4 85.7 94.0 87.9
BiGru+CRF 92.5 93.9 85.6 91.8 74.1

Table 4: Tagging performance for all systems on all corpora in
terms of Micro F1 using conlleval scoring script (in %)

each corpora and cluster.
As we can see classification accuracy varies a lots accord-

ing to the cluster and the corpus considered. These results are
especially interesting for the error clusters (AE and NE), be-
cause a high or low prediction score for these clusters allows us
to further characterize them as mentioned before.

For NE, a high predictability score suggests that errors in
this corpus are recurrent and identifiable. Indeed, NE from cor-
pus M2M is highly predictable, and as we can see in table 3
is composed of errors in movie and restaurant name labels. An
examination of these utterances showed us that they had no con-
text to help disambiguate the expression when the restaurant or
movie name have not been seen in the training conditions. By
adding the list of restaurant and movie names to the tagging
models these errors will move from NE to AC cluster. It is partly
true for ATIS where the predictability is medium and where the
main errors are state name, airport name and code that can be
easily incorporated into the models.

Once again we have a high predictability score for AE in
M2M and medium in ATIS while the main errors in this cluster
in M2M are the same as NE, so same conclusion can be drawn.
In ATIS the main error in this cluster is on ”city name” and as
shown in [1] there are two issues on this label, the first one is
frequent annotation errors when a user mention twice the same
city-name, only the first occurrence is labelled; the second one
is errors on ground transportation queries that were not included
in the semantic annotation scheme.

By looking at the indicator I2 (cluster classification error
rate), as shown in table 6, we can have an additional view on
corpora complexity: although M2M seems to be more chal-
lenging than ATIS according to I1 it is almost completely pre-
dictable in terms of cluster classification according to I2. This

means that the errors in M2M are due to missing data from the
training corpus, and not internal complexity. Similarly I1 indi-
cates than SNIPS70 is more difficult than MEDIA, but by look-
ing at I2 we draw the conclusion than MEDIA is intrinsically
more ambiguous than SNIPS70. In all cases I1 and I2 are much
more informative than F1max.

M2M ATIS MEDIA SNIPS SNIPS70
AC 99.8 98.6 89.1 95.4 92.5
NC 71.0 60.8 45.5 49.9 64.6
AE 89.7 55.1 27.5 22.2 0.0
NE 71.2 45.9 18.0 12.8 32.7
All 99.1 97.0 79.5 91.1 86.5

error rate 0.9 3.0 20.5 8.9 13.6

Table 5: Cluster predictability in F1 and classification error
rate for all corpus

Indicators M2M ATIS MEDIA SNIPS SNIPS70
max F1 93.1 94.2 85.7 94.0 87.9

I1 16.8 11.7 30.4 18.8 38.9
I2 0.9 3.0 20.5 8.9 13.6

Table 6: Indicators max F1, I1 and I2 on the 5 corpora

We claim that the predictability of a cluster measure the
overall simplicity of a corpus: the more a cluster is predictable,
the more examples are similar or contains similar patterns than
can be learned easily. Therefore indicator I2 is a good indicator
of the quality of a corpus to be used as a benchmark. Accord-
ing to our experiments and the indicators in table 6, we may
rank these 5 benchmarks from the most challenging one to the
almost-solved one for evaluating slot tagging systems as:
MEDIA→ SNIPS70→ SNIPS→ ATIS→M2M.

4. Conclusion
We proposed in this study a new methodology for assessing the
relevance of an SLU corpus based on two indicators, I1 and
I2, obtained through the study of firstly the agreement among
several SLU systems developed for the task and secondly the
predictability of the error classes made by the different systems.
We apply our methodology on a set of 4 SLU systems and 5
benchmark corpora obtaining a ranking of these corpora from
the most ambiguous to the almost-solved one that we claim is
more accurate than just using the F1 max score.
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[10] T. Lavergne, O. Cappé, and F. Yvon, “Practical Very Large
Scale CRFs,” in Proceedings the 48th Annual Meeting of the
Association for Computational Linguistics (ACL). Association
for Computational Linguistics, July 2010, pp. 504–513. [Online].
Available: http://www.aclweb.org/anthology/P10-1052

[11] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving neural networks by preventing
co-adaptation of feature detectors,” CoRR, vol. abs/1207.0580,
2012. [Online]. Available: http://arxiv.org/abs/1207.0580


